液相化学法制备氧族化合物纳米材料及其电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用简便、快速的微波辅助法通过抗坏血酸与高锰酸钾的氧化还原反应制备了分布均匀的α-MnO2纳米棒;以KMnO4为锰源,在[BMIM][PF6]离子液体水溶液中采用微波辅助加热法合成了α-MnO2纳米线;采用水浴加热法以p-环糊精为表面活性剂,在60℃水溶液中合成了形貌规整且尺寸分布均匀的由纳米片(平均厚度为5nm)插成的δ-MnO2花状球;通过液相化学法以十六烷基三甲基溴化铵(CTAB)为表面活性剂,在室温下水溶液中合成了CuS纳米空心球。用X-射线衍射仪(XRD)、X-射线能谱(EDX)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、比表面积仪(BET)、热重分析仪(TG)、电化学方法(CV, LSV, CD, CP, Tafel)等手段对样品进行了分析和表征。主要内容如下:
     1.以高锰酸钾为锰源,抗坏血酸为还原剂,在0.5 M稀硫酸溶液中通过微波辅助法在160℃温度下加热30 min,得到了形貌规整且尺寸分布均匀的α-MnO2纳米棒,其平均直径为50nm、平均长度超过3μm。研究发现反应的时间和温度对产物的形貌有着重要的影响。通过热重曲线、循环伏安曲线以及恒电流充放电曲线对产物的热学和电学性能进行了表征,结果表明α-Mn02纳米棒具有良好的电化学性能,有望用于超级电容器阴极材料。
     2.以高锰酸钾为原料,在离子液体[BMIM][PF6]水溶液中采用与微波加热相结合的方法制备出平均直径为15 nm、平均长度为2μm的α-MnO2纳米线,长径比达130:1。基于实验结果,提出了纳米线生长的四步反应机理。用电化学方法对样品进行了表征,结果表明α-Mn02纳米线在碱性环境中的催化活性与商用Pt催化剂相似,有望作为阴极催化剂应用在燃料电池上。
     3.水浴加热法是一种合成纳米材料较简单普遍的方法。本论文中以可溶性淀粉和无水硫酸铜为反应原料,以β-环糊精为表面活性剂,在60℃水溶液中合成了形貌规整且尺寸分布均匀的由纳米片(平均厚度为5 nm)插成的δ-MnO2花状球。该花状球大小均匀、直径在500nm左右。经过平行的对比实验,说明β-环糊精在该花状球的形成过程中起着重要的作用。在0.5 M的Na2S04中性电解液中研究了产物的电化学性能,发现其电化学性能较高。
     4.本论文运用液相法以CuSO4?5H2O和硫代乙酰胺(TAA)为反应原料,以十六烷基三甲基溴化铵(CTAB)为表面活性剂,在室温下水溶液中合成了CuS纳米空心球。研究发现该空心球是由平均厚度为15 nm的纳米片插成的。基于实验结果,提出了CuS空心球的生K机理。通过XRD.FESEM.BET.BJH.CV.LSV及CP曲线对CuS空心球的结构及电化学性能进行了表征,结果表明具有孔道结构的CuS空心球(SBET=99.77 m2g-1)具有优异的电化学性能。
In this dissertation, a facile and ultrafast microwave-assisted heating process has been developed to synthesize pure phaseα-MnO2 nanorods based on the redox reaction of KMnO4 and ascorbic acid; A microwave-assisted heating process has been developed to synthesize a-MnO2 nanowires based on the decomposed reaction of KMnO4 in ionic liquid([BMIM][PF6]) aqueous solution; Nanoflakes(with an average thickness of 5 nm) constructed 8-MnO2 flower-like nanospheres with a diameter of about 500 nm were prepared in water bath at 60℃usingβ-CD as a capping reagent; Nanoflakes(with an average thickness of 15 nm) constructed CuS hollow nanospheres with a diameter of about 500 nm were successfully prepared by a simple and efficient way with the aid of CTAB. The products were characterized by X-ray diffraction (XRD), X-ray spectra (EDX), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Thermo-gravimetric (TG), Cyclicvoltammetry (CV), Charging-discharging (CD), Linear sweep voltammtry (LSV), Chronopotentiometric (CP), Tafel techniques. The main points can be summarized as followed:
     1. We get the uniform pure phase a-MnO2 nanorods from potassium permanganate (KMnO4) and ascorbic acid (Vitamin C) with microwave irradiation heating at 160℃for 30 min in 0.5 M dilute sulfuric acid. The average diameter of theα-MnO2 nanorods is about 50 nm and length over 3μm. The reaction temperature and time were found to play important roles in formation of a-MnO2 nanorods. The product was characterized by TG, CV and CD curves. The results show that a-MnO2 nanorods exhibit excellent electrochemical characteristics. It's possible that the a-MnO2 nanorods can be used as a cathode material in supercapacity.
     2. By combing the advantages of both RTILs and microwave heating, a-MnO2 nanowires have been successfully synthesized. The results showed that the as-prepared a-MnO2 nanowires have a diameter of about 15 nm and a length of 2μm. Its length-diameter ratio is 130:1. A plausible four-step mechanism was proposed to explain the formation of a-MnO2 nanowires. The product was characterized by electrochemical methods. The results show thatα-MnO2 nanowires have similar electrochemical catalytic property as commercial Pt electrodeideal in alkaline solution. It's possible that the a-MnO2 nanowires can be used as a catalyst in fuel cells.
     3. Water bath method is a popular method to prepare nanometer powders. Nanoflakes(with an average thickness of 5 nm) constructed 5-MnO2 flower-like nanospheres with a diameter of about 500 nm were prepared in water bath at 60℃usingβ-CD as a capping reagent. The results show that (3-CD plays a key role. The electrochemical properties of the as-prepared samples were utilized by cyclicvoltammetry curves in 0.5 M Na2SO4 neutral solution. The results show that a-MnO2 nanowires exhibited excellent electrochemical characteristics.
     4. CuS hollow nanospheres have been synthesized via liquid phase reduction method in the presence of cupric sulphate anhydrous (CuSO4·5H2O) with thioacetamide (TAA) in ethylene glycol (EG) under the assistance of cetyltrimethylammonium bromide (CTAB). The hollow nanospheres are composed of nanoflaks with a diameter about 15 nm. A possible growth mechanism of the CuS hollow nanospheres was proposed. The product was characterized by XRD, FESEM, BET, CV, LSV and CP. The results show that the porous CuS hollow nanospheres with special high BET surface area (99.77 m2 g-1) exhibited high electrochemical catalytic properties.
引文
[1]郭景坤,冯楚德.纳米陶瓷的最近进展[J].材料研究学报,1995,9(5):412-414.
    [2]王文中,李良荣,刘兴龙.纳米材料的性能、制备和开发应用[J].材料导报,1994(6)8-11.
    [3]张竞敏,唐正文,杨治中.纳米粒子及其材料的特性、应用和制备[J].广州化学,1995,3:54-63.
    [4]M. R. Fitzsimo, E. Burkal. Experimental Measurement of the Thermal Displacive Properties of Large-Angle Twist Grain Boundary in Gold [J]. Phys Rev Lett,1988,61(19):2237-2240.
    [5]王大志.纳米材料结构特征[J].功能材料,1993,24(4):303-306.
    [6]W. P. Halperin. Quantum size effects in metal particles[J]. Rev Modern Phys,1986,58:532.
    [7]P. Ball. L. Garwin. Science at the atomic scale[J]. Nature,1992,355,761.
    [8]赵于文.超细粉的性能、制备及应用[J].现代化工,1991(5):52-55.
    [9]张立德.科学,1993,45,13.
    [10]R. Kubo. Electromic Properties of Metallic Fine Particles [J]. Phys Soc of Jap,1962,17 975-978.
    [11]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域——纳米微粒与纳米固体[J].物理,1992,21(3):167.
    [12]朱孝信.超细粉末材料的发展[J].材料开发于应用,1998,13(5):28-30.
    [13]张梅.纳米材料的研究现状及展望[J].导弹与航天运载技术,2000,17(3):11-16.
    [14]翟庆洲.纳米技术[M].北京:兵器工业出版社,2006,15.
    [15]曹茂盛,关长斌,徐甲强.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001,1.
    [16]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.
    [17]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002,29.
    [18]尹邦跃.纳米时代——现实与梦想.北京:中国轻工业出版社,2001,62.
    [19]夏峰,王晓莉,姚熹PZN-PMN-PT陶瓷的介电、压电性能[J].材料研究学报,1999,13(4):416.
    [20]W. Schlump, H. Grewe. Technical Note:Nanocrystalline materials by mechanical alloying[J]. Int. J Mater Product Technol,1990,5(3):281.
    [21]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001,538.
    [22]Q. Chen, Y. Qian, Y. Zhang. Mater Sci Technol,1996,12:211.
    [23]钱逸泰.化学物理学报,1997,10(1):39.
    [24]Y. Xie, Y. T. Qian, W. Z. Wang, et al. A benzene-thermal synthetic route to nanocrystalline GaN[J]. Science,1996,272:1926.
    [25]Y. Xie, Y. T. Qian, W. Z. Wang, et al. Coexistence of wurtzite GaN with zinc blende and rocksalt studied by x-ray power diffraction and high-resolution transmission electron microscopy[J]. Appl Phys Lett,1996,69(3):334.
    [26]M. Van de Graaf, K. Keizer, Burggraaf A J. Sci Ceramics,1980,10:83.
    [27]A. Roosen, H. Hausner. Agglomeration in ceramics[J]. Ceramic Powders. Amserdam Elservier, 1983,773.
    [28]H. Dislich. Sol-Gel 1984-2004 (?)[J]. J Non-Ctyst Solids,1985,73:599.
    [29]K. S. Mazdiyashi. Powder synthesis from metal-organic precursors[J]. Ceramics International, 1982,8(2):42.
    [30]L. M. Brown, K. S. Mazdiyashi. Synthesis and some properties of yttrium and lanthanide isopropoxides[J]. Inorg Chem,1970,9:2783.
    [31]K. S. Mazdiyashi. Mat Res Soc Symp Proc,1984,32:175.
    [32]徐国才,张立德.纳米复合材料[M].北京:化学工业出版社,2002,69.
    [33]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2001,170.
    [34]李凤生.纳米功能复合材料及应用[M].北京:国防工业出版社,2003,6.
    [35]颐宁,付德刚.纳米技术与应用[M].北京:人民邮电出版社,2002,153.
    [36]朱屯.国外纳米技术进展与应用[M].北京:化学工业出版社,2002,132.
    [37]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001,517.
    [38]张星辰.离子液体——从理论基础到研究进展[M].北京:化学工业出版社,2009.
    [39]P. Wasserscheid, W. Keim. Ionic liquid new "solutions" for transition metal catalysis[J]. Angew. Chem. Int. Ed,2000,39:3773-3798.
    [40]J. S. Wilkes, J. A. Levisky, R. A. Wilson, et al. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem.,1982,21(3):1263-1264.
    [41]K. R. Seddon. Ionic liquids for clean technology[J]. Chem. Biotechnol.,1997,2:351-356.
    [42]M. Freemantle. Designer solvents-ionic liquids may boost clean technology development[J]. Chem. Eng. News,1998,76(13):32-37.
    [43]R. R. Deshmukh, R. Rajagopal, K. V. Srinivasan. Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids[J]. Chem Commun, 2001(17):1544-1545.
    [44]Ki-Sub Kim, D. Demberelnyamba, Huen Lee. Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids[J]. Langmuir,2004,20:556-560.
    [45]T. Nakashima, N. Kimizuka. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids [J]. J. Am. Chem. Soc.,2003,125:6386.
    [46]Chuyan Chen, Qing Li, Ming Nie, Hua Lin, Yuan Li, Huijie Wu, Yiying Wang. An efficient room-temperature route to uniform ZnO nanorods with an ionic liquid[J]. Materials Research Bulletin,2011,46:888-893.
    [47]陈楚艳,李庆,吴会杰,王译莹,钟小玲,李元.离子液体中微波辅助制备ZnO纳米棒及光学性能研究[J].功能材料,2010,41(6):1086-1089.
    [48]Yongzhong Wu, Xiaopeng Hao, Jiaxiang Yang, et. al. Ultrasound-assisted synthesis of nano-crystalline ZnS in the ionic liquid [BMIM]·BF4 Materials Letters[J],2006,60(21-22): 2764-2766.
    [49]Y. M. Li, L. D. Zhang, et al. Ordered semiconductor ZnO nanowires arrays and their photo-luminescence properties[J]. App. Phy. Lett.2007,76(15):2011-2013.
    [50]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185.
    [51]白春礼.纳米科技——现代与未来[M].成都:四川教育出版社,2002.
    [52]Jiaqi Yuan, Zong-Huai Liu, Shanfeng Qiao, Xiangrong Ma, Naicai Xu. Fabrication of MnO2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process[J]. Journal of Power Sources,189 (2009) 1278-1283.
    [53]Zhao-rong Chang, Yuan-ying Liu, Hong-wei Tang, Yun-ping Li. Studies on Preparation and Electrochemical Performance for Nano-MnO2 with Wet Chemical Method [J]. Journal of Henan Normal University (Natural Science),2006,34(1):77-81.
    [54]V. Subramanian, Hongwei Zhu, Bingqing Wei. Nanostructured MnO2:Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources,159 (2006):361-364.
    [55]R. G. Burns, V. M. Burns. Manganese Dioxide Symposium[C]. Tokyo,1980:2.
    [56]H. Cao, S. L. Suib. Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts[J]. J Am Chem Soc[J].1994,116(12):5334.
    [57]J. Yuan, K. Laubemds, Q. H. Zhang, S. L. Suib. Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres[J]. J Am Chem Soc.2003,125:4966.
    [58]田含晶,张涛,杨黄河,孙孝英,梁东白,林励吾.用于过氧化氢分解的锰铅复合氧化物催化剂[J].催化学报,2000,21:600.
    [59]B. K.Sukriti. Physicochemical properties of MnO2 and MnO2--CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation[J]. J Catal.1979,58:419.
    [60]E.R. Stobbe, B.A. de Boer, J.W. Geus:The reduction and oxidation behaviour of manganese oxides[J]. Catal. Today,1999,47:161.
    [61]E. Grootendorst, Y. Verbeek, V. Ponec. The Role of the Mars and Van Krevelen Mechanism in the Selective Oxidation of Nitrosobenzene and the Deoxygenation of Nitrobenzene on Oxidic Catalysts[J]. J. Catal.,1995,157:706.
    [62]杨则恒,宋欣民,张卫新,王华,汪芳α/β-MnO2的水热合成及其催化性能[J].应用化学,2008,1(25):13-16.
    [63]孙洁,张莉,张文莉,倪良.溶胶—乳状液—凝胶法制备纳米Mn02及其催化性质研究[J].应用化工,2007,7(36):656-659.
    [64]王文亮,李东生,王继武,薛岗林,史启祯.一种新的制备纳米γ-MnO2的方法——超声辐射氧化还原法[J].化学学报,2004,16(62):1557-1560.
    [65]李素梅,朱琦,朱维耀,刘文彬.纳米二氧化锰制备及在环境治理方面应用的研究进展[J].工程技术,2009,414:75-77.
    [66]R. Jothiramalingam, M. K. Wang. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition[J]. Journal of Hazardous Materials,2007 (147):562-569.
    [67]ShuGuang Wang, WenXin Gong, XianWei Liu, YaWei Yao, BaoYu Gao, QinYan Yue. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes[J]. Separation and Puri-cation Technology,2007 (58):17-23.
    [68]张懿强,张辉,于敬学,杨德仁,阙端麟.单分散硫化铜纳米晶的生长及调控[J].材料科学与工程学报,2008,26(2):208-212.
    [69]台玉萍,李宏涛.非水溶剂法制备纳米硫化铜微粉[J].长春工业大学学报(自然科学版),2007,28(1):22-25.
    [70]王二兰,陶庭先,辛后群.超声波一直接沉淀法制备CuS纳米溶胶[J].安徽工程科技学院学报,2006,21(4):12-15.
    [71]台玉萍,杜锦屏,马淑惠,李新忠.纳米硫化铜的非水溶剂法合成及其光学性能研究[J].河北化工,2008,31(10):21-23.
    [72]周杰,贾殿赠,刘浪.硫化铜纳米棒的低热固相合成及其光学性能[J].高等学校化学学报,2005,26(4):620-622.
    [73]J. S. Chung, H. J. Sohn. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. Journal of Power Sources,2002,108:226-231.
    [74]Fei Li, Tao Kong, Wentuan Bi, Dachang Li, Zhen Li, Xintang Huang. Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method[J]. Applied Surface Science 255 (2009):6285-6289.
    [75]吕维忠,刘波,韦少慧,游新全,李均钦.纳米硫化铜的超声波化学合成及其表征[J].电子元件与材料,2004,10(10):4-5.
    [76]X. L. Yu, Y. Wang, H. L.W. Chan, C. B. Cao. Novel gas sensoring materials based on CuS hollow spheres[J]. Microporous and Mesoporous Materials 118 (2009):423-426.
    [77]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科技出版社,1999.
    [78]杨华明,黄承焕.微波合成无机纳米的研究进展[J].材料导报,2003,17(11):3942.
    [79]Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li, L. Qi, Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry[J]. Chem. Mater.2008,20:3965.
    [80]A. G. Saskia. Microwave chemistry[J]. Chem. Soc. Rev.,1997,26:233-238.
    [81]K. R. J Seddon. Ionic Liquids for Clean Technology[J]. Chem. Tech. Biotechnol,1997,68: 351-356.
    [82]Sridhar Komarneni, Rajha Rama K, Hiroaki Karsuki. Microwave-hydrothermal processing of titanium dioxide[J]. Mater. Chemphy.,1999,61.
    [83]刘阳.微波合成纳米碳化钛粉体的机理探讨[J].中国陶瓷,2005,41(4):55-56.
    [84]刘阳,曾令可.微波合成纳米碳化钛粉体的动力学研究[J].中国陶瓷工业,2003,10(5):8-10.
    [85]Changhong D, Xianpeng Z, Jinsong Z, Yongjin Y. The synthesis of ulrafine SiC powder by the microwave heating technique[J]. J. Mater. Sci.,1997,32(9):2469-2472.
    [86]Zhihui Ai, Lizhi Zhang, Fanhai Konga, Hao Liu, Wenting Xing, Jianrong Qiu, Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity[J]. Mater. Chem. Phys. 111 (2008) 162-167.
    [87]Norihito Kijima, Hiroyuki Yasuda, Toshio Sato, et al. Preparation and Characterization of Open Tunnel Oxide a-MnO2 Precipitated by Ozone Oxidation[J]. J. Solid State Chem.,159 (2001): 94-102.
    [88]Nian Tang, Xike Tian, Chao Yang, et al. Facile synthesis ofa-MnO2 nanorods for high-performance alkaline batterise[J]. Materials Research Bulletin,44(2009):2062-2067
    [89]Benxia Li, Guoxin Rong, Yi Xie, Lunfeng Huang, Chuanqi Feng. Low-Temperature Synthesis of a-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries[J]. Inorg. Chem. 2006,45 (16):6404-6410.
    [90]Shujuan Bao, Qianliang Bao, Changming Li, Tupei Chen, Changqing Sun, Zhili Dong, Ye Gan, Jun Zhang, Synthesis and Electrical Transport of Novel Channel-Structured β-AgVO3[J]. Small 2007,3(7):1174-1177.
    [91]张崇才,赵志伟.纳米技术及其应用前景[J].材料导报,2004,18(Ⅱ):19-21.
    [92]宋旭春,杨娥,郑遗凡,等a-MnO2和P-MnO2纳米棒的制备和催化性能研究[J].无机化学学报,2007,5(23):919-922.
    [93]谭柱中,梅光贵,李维健,等.锰冶金学[M].湖南:中南大学出版社,2004.
    [94]M. M. Thackeray. Manganese oxides for lithium batteries[J]. Prog. Solid State Chem.,1997,25: 1-71.
    [95]Y. Lin, X. Cu, L. Li. Low-Potential amperometric determination of hydrogen peroxide with a carbon paste eleetrode modified with nanostruetured cryptomelane-type manganese oxides[J]. Electrochem. Commun.,2005,7:166-172.
    [96]F. Y. Cheng, J. Chen, X. L. Gou, et al. High-Power alkaline Zn-MnO2:batteries using y-MnO2 nanowires/nanotubes and electrolytic zinc Powder[J]. Adv. Mater.,2005,17:2753-2756.
    [97]R. Xu, X. Wang, D. S. Wang, et al. Surface structrue effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO[J]. J Catal.,2006,237:426-30.
    [98]V. Subramanian, H. W. Zhu, R. Vajtai, et al. Hydrothermal synthesis and pseudo- eapacitance properties of MnO2 nanostructures[J]. J. Phys. Chem. B,2005,109:20207-20214.
    [99]M. Sugantha, P. A. Ramakrishnan, A. M. Hermann, C. P. Warmsingh, D. S. Ginley. Nanostructured MnO2 for Li batteries[J]. Inter. J Hydrogen Energy,2003,28:597-600.
    [100]张元广,刘弈,郭范.水热法生长棒状MnOOH和MnO2晶体[J].人工晶体学报,2006,35(4):705-708.
    [101]J. X. Dai, F. Y. Li, K. S. Siow, et al. Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries[J]. Electrochimica Acta,2000,45:2211-2217.
    [102]汪形艳,王先友,黄伟国.溶胶-凝胶模板法合成Mn02纳米线[J].材料科学与工程学报,2005,23(1):113-115.
    [103]Xingyan Wang, Xianyou Wang, Weiguo Huang. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources,140(2005):211-215.
    [104]张春霞,陈野,舒畅等.熔盐法制备λ-MnO2及其超级电容器[J].精细化工,2007,27(2):121-124.
    [105]张宝宏,张娜.纳米Mn02超级电容器的研究[J].物理化学学报,2003,19:286-288.
    [106]卢凯.微波的原理及特点[J].农业机械化与电气化,2007,1,61-62.
    [107]王红强,张艳伟,李庆余等.淀粉还原制备纳米Mn02超级电容器电极材料[J].化工新型材料,2009,2(37):86-88.
    [108]Shirley Turner, eter R. Buseck. Todorokites:A new family of naturally occurring manganese oxides[J]. Science,1981,212:1024-1027.
    [109]王步国,施尔畏,仲维卓.几种极性有机晶体的生长习性与形成机理[J].人工晶体学报,1998,1(27):20-25.
    [110]Hua Gui, Huachun Zeng. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening[J]. J. Phys. Chem. B,2004,108(11):3492-3495.
    [111]Yongqian Gao, Zhenghua Wang, Junxi Wan, Guifu Zou, Yitai Qian. A facile route to synthesize uniform single-crystalline α-MnO2 nanowires[J]. J Crystal Growth,2005,279:415-419.
    [112]桂义才,钱立武,钱雪峰.纳米Mn02:水热法制备及盐对晶型和形貌的影响[J].无机化学学报,2009,4(25):668-673.
    [113]Hong-En Wang, Zhouguang Lu, Dong Qian, et al. Facile synthesis and electrochemical characterization of hierarchical α-MnO2 spheres[J]. Journal of Alloys and Compounds,2008, 466:250-257.
    [114]M. Xu, L. Kong, H. Li, et al. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins[J]. Phys. Chem. C,2007,111(51):19141-19147.
    [115]韩晓莹,张莹,刘开宇,等.二氧化锰电容材料的制备及性能表征[J].电池工业,2008,1(13):30-34.
    [116]宋文顺.化学电源工艺学[M].北京:中国轻工业出版社,1998.
    [117]F. Leroux, D. Guyomard, Y. Piffard. The 2D rancieite-type manganic acid and its alkali-exchanged derivatives:part Ⅱ-electrochemical behavior[J]. Solid State tonics,1995,80: 307-316.
    [118]P. L. Goff, N. Baffier, S. Bach, et al. Synthesis, ion exchange and electrochemical properties of lamellar phyllo manganates of the birnessite group[J]. Maters. Research Bulletin,1996,31(1): 63-75.
    [119]F. Leroux, D. Guyomard, Y. Piffard. The 2D rancieite-type manganic acid andits alkali-exchanged derivatives:part Ⅰ-Chemical characterization and thermal behavior, Solid State tonics,1995,80:299-306.
    [120]朱立才.新型锰氧化物的制备及其电化学性能研究,硕士学位论文,华南师范大学,2005.
    [121]S. Bach, J. P. Pereira Ramos, N. Baffier. Rechargeable 3-V-Li Cells Using Hydrated Lamellar Manganese Oxide[J]. J Electrochem Soc,1996,143(11):3429-3434.
    [122]Stanton Ching, Landrigan J A, Jorgensen M L, Niangao Duan, Suib S L, Chi Lin O' Young. Sol-gel synthesis of birnessite from KMnO4 and simple sugars[J]. Chem Mater,1995,7: 1604-1606.
    [123]Philippe Le Goff, Baffier N, Stephane Bach, Jean Pierre, Pereira Ramos. Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis:classical and sol-gel routes[J]. J Mater Chem,1994,4(6):875-881.
    [124]L. Z. Wang, N. Sakai, Y. Ebina, et al. Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations:Fabrication, structure, and electrochemical behavior[J]. Chemistry of Materials,2005,17(6):1352-1357.
    [125]G. Xi, Y. Peng, Y. Zhu, L. Xu, W. Zhang, W. Yu, Y. Qian. Preparation of β-MnO2 nanorods though a γ-MnOOH precursor route[J]. Mater. Res. Bull.,2004,39:1641-1648.
    [126]B. Yang, H. Hu, C. Li, X. Yang, Q. Li, Y. Qian. One-step route to single-crystal nanorods in alcohol-water system[J]. Chem. Lett.,2004,33:804-805.
    [127]Y. Gao, Z. Wang, J. Wan, G. Zou, Y. Qian. A facile route to synthesize uniform single-crystalline α-MnO2 nanowires[J]. J. Cryst. Growth,2005,279:415-419.
    [128]Y. Zhang, Y. Liu, F. Guo, Y. Hu, X. Liu, Y. Qian. Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures[J]. Solid State Commun.,2005,134:523-527.
    [129]C. Zhang, T. Qian, Y. Hu, D. Zhou. Simple hydrotheraml preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO2 nanowires[J]. J. Cryst. Growth,2005, 280:652-657.
    [130]W. Zhang, Z. Yang, Y. Liu, S. Tang, X. Han, M. Chen. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method[J]. J. Cryst. Growth,2004, 263:394-399.
    [131]P. K. Sharma, M. S. Whittingham. The ole of tetraethyl ammonium hydroxide on the phase determination and electrical properties of γ-MnOOH sythesized by hydrothermal[J]. Mater. Lett.,2001,48:319-323.
    [132]杨玉娟.纳米二氧化锰的制备及其电容性能研究,硕十学位论文,天津大学,2007.
    [133]廖萍,何平,王玉,姜天玥,陈琪,石崸,严拯宇.基于环糊精的纳米功能组装体的研究进展[J].化学世界,2009,3:178-185.
    [134]杜小旺,张良桥,唐明建,周光明.淀粉还原氯酸钠制备二氧化氯的研究[J].西南师范大学学报(自然科学版),2005,30(4):703-706.
    [135]石东坡.p-环糊精在液相合成反应中的应用[J].广东化工,2009,36(2):38-41.
    [136]E. Beaudrouet, A. Le Gal LaS alle, D. Guyomard. Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials[J]. Electrochimica Acta, 54(2009):1240-1248.
    [137]Peng Yu, Xiong Zhang, Yao Chen, Yanwei Ma, Zhiping Qi. Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave- assisted emulsion method[J]. Materials Chemistry and Physics,2009,118(2-3):303-307.
    [138]Yunhui Shi, Jun Chen, Panwen Shen. ZnS microspheres and flowers:Chemically controlled synthesis and template use in fabricating MS (shell)/ZnS (core) and MS (M=Pb, Cu) hollow microspheres[J]. Journal of Alloys and Compounds.441 (2007):337-343.
    [139]L. Bakueva, S. Musikhin, M. A. Hines, T-W. F. Chang, M. Tzolov, G. D. Scholes, E. H. Sargent. Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrysta-Is in a semiconducting polymer[J]. Appl. Phys. Lett.82 (2003):2895-2897.
    [140]S. Inoue, U. Kazushige, H. Hosono. Electronic structure of the transparent p-type semiconductor (LaO) CuS[J]. Phys. Rev. B,2001,64(24):1880-1884.
    [141]Lei Chen, Jianmin Chen, Huidi Zhou, Liu Liu, Hongqi Wan. The use of CTAB to control the size of N, N-dioctyldithiocarbamates monolayer-stabilized copper sulfide nanoparticles[J]. Materials Letters 61 (2007):1974-1977.
    [142]KeitaroTezuka, William C. Sheets, Ryoko Kurihara, Yuejin Shan, Hideo Imoto, Tobin J. Marks, Kenneth R. Poeppelmeier. Synthesis of covellite (CuS) from the elements[J]. Solid State Sciences.9 (2007):95-99.
    [143]R. Blachnik, A. MUller. The formation of Cu2S from the elements I. Copper used in form of powders[J]. Thermochimica Acta,361 (2000):31-52.
    [144]Xue Hong Liao, Nian You Chen, Shu Xu, Shui BinYang, Jun Jie Zhu. A microwave assisted heating method for the preparation of copper sulfide nanorods[J]. Journal of Crystal Growth. 252 (2003):593-598.
    [145]Emannuel Ramli, Thomas B. Rauchfuss, Charlotte L. Stern. Interception of copper polysulfide clusters in the reaction of copper and sulfur in donor solvents:polysulfide complexes as the link between molecular and nonmolecular metal sulfides[J]. J. Am. Chem. Soc.,1990,112 (10): 4043-4044.
    [146]Ewen J. Silvester, Franz Grieser, Brett A. Sexton, Thomas W. Healy. Spectroscopic studies on copper sulfide sols[J]. Langmuir,1991,7(12):2917-2922.
    [147]Kate M. Drummond, Franz Grieser, Thomas W. Healy, Ewen J. Silvester, Michael Giersig Steady-state radiolysis study of the reductive dissolution of ultrasmall colloidal CuS[J]. Langmuir,1999,15(20):6637-6642.
    [148]Heriberto Grijalva, Motomichi Inoue, Sajiv Boggavarapu, Paul Calvert. Amorphous and crystalline copper sulfides, CuS[J]. J. Mater. Chem.,6 (1996):1157-1160.
    [149]M V. Artemyev, V. S. Gurin, K. V. Yumashev, P. V. Prokoshin, A. M. Maljiarevich. Picosecond absorption spectroscopy of surface modified copper sulfide nanocrystals in polymeric film[J]. J. Appl. Phys.,80 (1996):7028-7036.
    [150]X. L. Yu, Y. Wang, H. L. W. Chan, C. B. Cao. Novel gas sensoring materials based on CuS hollow spheres[J]. Microporous and Mesoporous Materials,118 (2009):423-426.
    [151]Xiangying Chen, Zhenghua Wang, Xiong Wang, Rui Zhang, Xinyuan Liu, Wanjuan Lin, Yitai Qian. Synthesis of novel copper sulfide hollow spheres generated from copper (Ⅱ)-thiourea complex[J]. Journal of Crystal Growth,263 (2004):570-574.
    [152]Abhay A. Sagade, Ramphal Sharma. Copper sulphide (CuXS) as an ammonia gas sensor working at room temperature[J]. Sensors and Actuators B:Chemical,133 (2008):135-143.
    [153]Francois Mongellaz, A. Fillot, R. Griot, J. De Lallee. Thermoelectric cooler for infrared detectors[J]. Proc. SPIE,2227 (1994):156-165.
    [154]S. T. Lakshmikumar, A. C. Rastogi. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source[J]. Solar Energy Materials and Solar Cells,32 (1994):7-19.
    [155]Yang Jiang, Bo Xie, Ji Wu, Shengwen Yuan, Yue Wua, Hao Huang, Yitai Qian. Room-temperature synthesis of copper and silver, nanocrystalline chalcogenides in mixed solvents[J]. Joumaol of Solide State Chemistry,167 (2002):28-33.
    [156]Tristram Chivers. Tellurium compounds of the main-group elements:progress and prospects[J]. J. Chem. Soc., Dalton Trans,7(1996):1185-1194.
    [157]Changlong Jiang, Wangqun Zhang, Guifu Zou, Liqiang Xu, Weicao Yu, Yitai Qian. Hydrothermal fabrication of copper sulfide nanocones and nanobelts[J]. Materials Letters,59 (2005):1008-1011.
    [158]Ivan Grozdanov, Metodija Najdoski. Optical and eletrical propertied of copper sulfied films of variable composition[J]. Journal of Solid State Chemistry,114 (1995):469-475.
    [159]Yongjun He, Xiangyang Yu, Xiaoling Zhao. Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies[J]. Materials Letters,61 (2007):3014-3016.
    [160]Ming Nie, Peikang Shen, Mei Wu, Zidong Wei, Hui Meng. A study of oxygen reduction on improved Pt-WC/C electrocatalysts[J]. Journal of Powder Sources,162 (2006):173-176.
    [161]Zhiguo Cheng, Shaozhen Wang, Dajie Si, Baoyou Geng. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route[J]. Journal of Alloys and Compounds 492 (2010):L44-L49.
    [162]M. Gangeri, G. Centi, A. L. Malfa, S. Perathoner, R. Vieira, C. P. Huu, M. J. Ledoux. Electrocatalytic performances of nanostructured platinum-carbon materials[J]. Cataly. Today, 2005,102-103:50-57.
    [163]Ryoki Nomura, Keico Miyawaki, Takayuki Toyosaki, Haruo Matsuda. Preparation of copper sulfide thin layers by a single-source MOCVD process[J]. Chemical Vapor Deposition,2 (2004): 174-179.
    [164]M. Mandal, D. Pal, K. Mandal. Negatively charged micelles directed synthesis of snow-ball flower like superparamagnetic Ni nanoparticles and investigation of their properties[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2009,348:35-38.
    [165]Lifei Chen, Yazhuo Shang, Honglai Liu, Ying Hu. Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion[J]. Materials and Design,2010,31(4):1661-1665.
    [166]N. M. Huang, C. S. Kan, P. S. Khiew, S. Radiman. Single w/o microemulsion templating of CdS nanoparticles[J]. J. Mater. Sci.,2004,39:2411-2415.
    [167]R Nagarajan, Chien Chung Wang. Solution Behavior of Surfactants in Ethylene Glycol:Probing the Existence of a CMC and of Micellar Aggregates[J]. J Colloid Interface Sci.,1996,178: 471-482.
    [168]S. L. Wang, H. Xu, L. Q. Qian, X. Jia, J. W. Wang, Y. Y. Liu and W. H. Tang. CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres[J]. J. Solid State Chem., 2006,182:1088-1093.
    [169]C. Y. Wu, S. H. Yu, S. F. Chen, G. N. Liu, B. H. Liu. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions[J]. J. Mater. Chem.,2006,16:3326-3331.
    [170]J. Y. Gong, S. H. Yu, H. S. Qian, L. B. Luo, X. M. Liu. Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes[J]. Chem. Mater.,2006,18:2012-2015.
    [171]Haitao Zhu, Jixin Wang, Daxiong Wu. Fast Synthesis, Formation Mechanism, and Control of Shell Thickness of CuS Hollow Spheres[J]. Inorg.Chem.,2009,48:7099-7104.
    [172]H. G. Yang and H. C. Zeng. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening[J]. J. Phys. Chem. B,2004,108:3492-3495.
    [173]Y. Yu, F. P. Du, J. C. Yu, Y. Y. Zhuang and P. K. Wong. One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template[J]. J. Solid State Chem.,2004,177:4640-4647.
    [174]Yunxia Qi, Kaibin Tang, Suyuan Zeng, Weiwei Zhou. Template-free one-step fabrication of porous CuInS2 hollow microspheres[J]. Microporous and Mesoporous Materials,114 (2008): 395-400.
    [175]Tongyong Ding, Mingsheng Wang, Shengping Guo, Guocong Guo, Jinshun Huang. CuS nanoflowers prepared by a polyol route and their photocatalytic property[J]. Materials Letters, 62 (2008):4529-4531.
    [176]P. Yu, X. Zhang, Y. Chen and Y. W. Ma, Solution-combustion synthesis of ε-MnO2 for supercapacitors[J]. Mater. Lett.2010,64:61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700