GaN单晶的HVPE生长及其应力和晶体取向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN晶体材料因其具有较高的电子迁移率和热导率,高化学稳定性,耐腐蚀等优点,被广泛应用于光电子器件和高频微波器件,但是由于缺乏GaN单晶衬底材料,目前器件大多是在蓝宝石、SiC等单晶衬底上进行异质外延制备而成,由于衬底材料和外延生长的器件之间存在较大的晶格失配和热失配,造成了在经过高温生长的器件中残余有较大的应力,大大降低了器件的性能,而获得自支撑GaN单晶衬底材料可以在根本上解决这些问题。氢化物气相外延(Hydride Vapor Phase Epitaxy-HVPE)方法生长GaN单晶,具有生长速率高,设备相对简单,所需成本较低等优点,因此被认为是生长GaN晶体最具有前景的生长方法。
     本文采用HVPE方法生长GaN晶体,并通过使用图形衬底、腐蚀衬底等技术降低位错密度和残余应力,利用EBSD技术分析异质外延系统中的晶体取向和晶格失配,并提出了一种由晶体取向计算应力的方法,得到了异质衬底外延生长GaN中的应力分布。论文主要取得了以下成果:
     1.研究了GaCl载气流量对GaN晶体质量的影响,发现在GaCl载气流量为1.3slm时(0002)和(10-12)衍射峰半峰宽最小,说明此时生长的晶体位错密度最低质量最好。室温PL测试发现每个样品都具有很强的带边发射峰,仅在GaCl载气流量较高时生长的GaN单晶样品处2.26-2.29eV处存在一个很弱的黄光发射峰,说明样品质量较好;通过拉曼光谱E2(high)峰位的移动,发现当GaCl载气流量为1.3slm时样品具有最低的残余压应力为0.36GPa; AFM表征样品的表面形貌发现GaN单晶的生长都是台阶流生长模式。六方GaN晶体的A1(LO)峰是LOPC模式,对峰形进行了拟合,得到了不同GaCl载气流量下生长GaN单晶样品的载流子浓度和迁移率。
     2.研究了磷酸腐蚀对MOCVD-GaN腐蚀坑形貌的影响,并利用腐蚀衬底生长出自支撑GaN晶体。首先研究了腐蚀时间对腐蚀坑形貌和大小的影响,利用磷酸短时间对MOCVD-GaN进行腐蚀,会出现常见的六边形腐蚀坑,当延长腐蚀时间到腐蚀坑的深度达到了MOCVD-GaN层厚度时,磷酸能够腐蚀到N面GaN,就会产生了独特的十二面锥形结构。我们根据六方纤锌矿结构对称性和晶体结构参数,计算出该结构出现了两套晶面,其晶面指数分别是(4,-1,-3,-4)和(3,1,-4,-4)。利用这种具有N面腐蚀十二面锥形结构的蓝宝石/MOCVD-GaN衬底进行HVPE生长,在生长GaN厚度较大时能够实现自剥离,获得自支撑GaN晶体,在生长时十二面锥形貌转变为六面锥。通过拉曼光谱对HVPE生长GaN晶体的应力进行了分析,结果显示自支撑GaN晶体中的应力远小于普通衬底生长的样品。
     3.研究了在具有六方周期排列Si02图形掩模的蓝宝石/MOCVD-GaN衬底上进行HVPE生长GaN晶体的生长规律。通过EBSD的菊池衍射花样和极图分析,确定了异质外延体系中GaN和蓝宝石衬底之间的晶体取向关系是c面相互平行,GaN晶格在面内相对于蓝宝石衬底晶格发生了30°的旋转。根据这一晶体取向关系和晶格参数,分别使用两种方法计算得到GaN和蓝宝石衬底之间的晶格失配为16.1%和13.8%。由于较大的晶格失配和热失配的存在,蓝宝石衬底上生长GaN的晶体取向偏离理想方向的程度在靠近界面处最大,随着生长厚度增加后逐渐接近理想方向。通过拉曼光谱分析发现图形衬底上生长的GaN晶体的残余应力,比平板衬底上生长的GaN晶体大大下降,说明图形衬底产生空隙的生长模式能够有效的释放GaN晶体中的应力。
     4.利用EBSD技术得到的晶体取向信息,分析了蓝宝石衬底上异质外延生长GaN晶体中晶体取向分布情况,提出了一种利用晶体取向信息计算晶体中应力的新方法。我们使用这种方法分析了蓝宝石衬底/GaN异质外延结构GaN晶体的应力分布情况,发现了应力分布的规律是距离衬底越近时应力越大,随着厚度增加应力值减小,达到一定厚度之后应力值保持不变。同时,我们对这一异质外延体系中GaN的应力进行了理论计算,并使用拉曼光谱对应力分布进行了验证。这种利用EBSD分析晶体材料中应力的方法也可以推广到其他晶体材料中。由于EBSD测试具有的独特优势,这种理论的提出为分析晶体材料的性质提供了新的思路。
     5.通过EBSD技术分析了6H-SiC衬底上HVPE生长GaN晶体的晶体取向,对外延体系的晶体取向关系进行了分析,并与蓝宝石衬底生长GaN的晶体取向关系进行了比较,发现在6H-SiC衬底上生长的GaN晶体取向没有发生相对衬底的旋转,这和蓝宝石衬底是不同的。根据晶体取向关系和晶格参数,计算了GaN和6H-SiC衬底之间的晶格失配,发现其失配度很小,因此能够有效降低外延生长GaN的位错密度和残余应力。同时还对蓝宝石衬底中产生的小角晶界进行了EBSD分析,研究了小角晶界两侧的晶体取向偏差。
GaN crystal material has a high electron mobility and thermal conductivity, high chemical stability. So it can be widely used in photoelectric devices, high frenquece microwave devices. Due to the lack of GaN single crystal substrate material, devices are mostly epitaxy on foreign substrate, such as sapphire and SiC crystals. There are large lattice mismatch and thermal expansion coefficient mismatch between GaN and substrate. In this case the devices have a larger residual stress and dislocation density after cooling from the growth temperature. In order to solve these problems, free-standing GaN crystal materials need to be grown. Hydride vapor phase epitaxy (HVPE) method growing GaN single crystal is considered to be a suitable way to obtain GaN single crystal substrate materials because of its high growth rate, relatively simple crystal growth system and the low cost of growth sources.
     In this work we grow GaN crystals by HVPE method and optimized the growth parameter. The patterned substrate and etching process are used to reduce the dislocation density and residual stress of HVPE growth GaN and obtain free-standing GaN crystal. The growth modes on these substrates are researched. EBSD technology is used to analyze the heteroepitaxy system crystallographic orientation relationship between GaN and substrate. The lattice mismatch and stress are calculated from the crystallographic orientation. The mainly research achievements are as follows:
     1. The influence of GaCl carrier gas flow rate was studied to obtain optimal condition for high crystalline quality GaN film. The1.3slm GaCl carrier gas flow rate sample with low FWHM of both (0002) and (10-12) reflection was demonstrated to have high crystalline quality and low dislocation density. Room temperature photoluminescence results showed a strong band-edge emission (NBE) peak with a FWHM of20-30meV which was detected in each sample. GaN films grown by high GaCl carrier gas flow rate had a very weak yellow luminescence (YL) peak at2.26-2.29eV. The HVPE GaN films grown with1.3slm GaCl carrier gas flow rate were found to have the lowest the residual compressive stress0.36GPa, which corresponded to the wave number of E2Raman mode at567.7cm-1. The surface morphology of all films showed a clear step flow growth model in AFM images. The carrier concentration and mobility of these GaN crystals are obtained by fitting of the A1(LO) Raman peak which is a LOCP mode.
     2. Hexagonal etch pits formed in the MOCVD grown GaN on sapphire after being etched in hot phosphoric acids. With long etching time the etch pits reached the sapphire substrate and kept extending etching time the etch pits connected with each other to form large irregularly shaped etch pits. There were some pyramid structures in the N-polar face of GaN clustered around the etch pits reached the sapphire substrate. These pyramids have twelve facets. The crystallographic plane indexes of the facets were identified as (4,-1,-3,-4) and (3,1,-4,-4) according to the symmetry of wurtzite structure GaN. This kind of structures reduced the contact area between epitaxial GaN and sapphire substrate and was beneficial to self-separated process. This wet etching method provided a possible facile method to obtain free-standing GaN using HVPE growth.
     3. GaN crystal was grown using a MOCVD-GaN/sapphire substrate with hexagonally distributed SiO2masks. GaN epitaxial grown on the maskless area underwent lateral overgrowth and coalesced on the top of the masks. Voids were formed on the masks because of this growth mode. The orientation relationship was examined by EBSD Kikuchi diffraction patterns and pole figures of GaN and sapphire. The cross-sectional plane was1-210for GaN and10-10for sapphire, respectively. The in-plane orientation relationship between the two materials constitutes an angular rotation of30°. The lattice mismatch calculated from the orientation relationship and the lattice parameters was16.1%and13.8%between GaN and the sapphire substrate, according to different evaluation methods. As a result of the large lattice mismatch, the disorientation of GaN was largest at the interface and decreased as the GaN grew. The crystallographic orientation approached the ideal growth direction as the GaN was growing. The EBSD mapping analysis also confirmed this result. The Raman spectrum measurements confirmed reduced residual stress values in the HVPE grown GaN on the substrate with masks.
     4. The method of calculating stress in the crystal materials directly from the deformation of lattice identified by EBSD was provided. The stress of crystal materials at each mapping point was obtained from EBSD by this method. Stress distribution in large area was obtained efficiently and exactly by this method. Wurtzite structure GaN crystals grown by HVPE on foreign substrate was used as the example of hexagonal crystal system. Stress obtained from Raman spectroscopy confirmed the distribution identified by EBSD. We think that the stress distribution of other crystal materials also can be calculated by this method depends on changing the form of elasticity tensor. Other properties related to the lattice deformation were also analyzed by this way.
     5. The GaN crystal HVPE grown on the6H-SiC substrate was researched by EBSD. The cross-sectional plane was10-10for GaN and6H-SiC substrate. It was different from the in-plane orientation relationship of sapphire/GaN heteroepitaxy system. The lattice mismatch calculated from the orientation relationship and the lattice parameters was3.7%and3.5%between GaN and the sapphire substrate, according to different evaluation methods. The lattice mismatch was much smaller than the GaN on sapphire substrate. The use of6H-SiC substrate reduced the dislocation density and residual stress values in the HVPE grown GaN. The small angle grain boundary of sapphire was also researched by the EBSD.
引文
[1]Streetman, Ben G.; Sanjay Banerjee (2000). Solid State electronic Devices (5th ed.). New Jersey:Prentice Hall. p.524.
    [2]J. Wu, W. Walukiewicz, K. Yu, J. Ager, E. Haller, H. Lu, W. Schaff, Small band gap bowing in In1-xGaxN alloys, Appl. Phys. Lett.,80 (2002) 4741.
    [3]B. Foutz, S. O'Leary, M. Shur, L. Eastman, Transient electron transport in wurtzite GaN, InN, and AlN, J. Appl. Phys.,85 (1999) 7727.
    [4]S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl. Phys. Lett.,64(1994) 1687-1689.
    [5]S. Nakamura, M. Senoh, N. Iwasa,S. Nagahama, High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures, Jpn. J. Appl. Phys.,34 (1995) L797-L799.
    [6]I.Akasaki, S. Sota, H. Sakai, T. Tanaka, M. Koike,H. Amano, Shortest wavelength semiconductor laser diode, Electron. Lett.,32 (1996) 1105-1106.
    [7]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita,H. Kiyoku,Y. Sugimoto, T. Kozai, H. Umemoto, M. Sano,K. Chocho, InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices, Jpn. J. Appl. Phys.,36 (1997) L1568-L1571.
    [8]P.Sandvik, K.Mi, F.Shahedipour, R. McClintock, A.Yasan,P. Kung, M.Razeghi, AlxGa1-xN for solar-blind UV detectors, J. Cryst. Growth,231 (2001) 366-370.
    [9]B. B. Kosicki and D. Kahng, Preparation and Structural Properties of GaN Thin Films, J. Vac. Sci. Technol.,6 (1969) 593.
    [10]H. Maruska and J. Tietjen., THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN, Appl. Phys. Lett., 15(1969)327.
    [11]J. Pankove, E. Miller, D. Richman, and J. Berkeyheiser, Electroluminescence in GaN, J. Luminescence,4 (1971) 63-66.
    [12]R. W. G. Wyckoff. Crystal Structures. Florida:Krieger Publishing,1982.
    [13]K. Karch, J. Wagner, an F. Bechstedt, Ab initio study of structural, dielectric, and dynamical properties of GaN, Phys. Rev. B.57 (1998) 7043.
    [14]X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. Denbaars, J. S. Speck, Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3, J. Appl. Phys.,80 (1996) 3228-3237.
    [15]N. Grandjean, J. Massies, P. Vennegues, M. Leroux, F. Demangeot, M. Renucci, J. Frandon, Molecular-beam epitaxy of gallium nitride on (0001) sapphire substrates using ammonia, J. Appl. Phys.,83(1998)1379-1983.
    [16]Y. Xin, S. J. Pennycook, N. D. Browning, P. D. Nellist, S. Sivananthan, F. Omnes, B. Beaumont, J. P. Faurie, P. Gibart, Direct observation of the core structures of threading dislocations in GaN, Appl. Phys. Lett.,72 (1998) 2680-2862.
    [17]L. T. Romano, J. E. Northrup, M. A. O'Keefe, Inversion domains in GaN grown on sapphire, Appl. Phys. Lett.,69 (1996) 2394.
    [18]P. D. Brown, TEM assessment of GaN epitaxial growth, J. Cryst. Growth,210 (2000) 143-150.
    [19]Warren C. Johnson, James B. Parsons, M.C. Crew, Nitrogen Compounds of Gallium. Ⅲ, Journal of Physical Chemistry,36 (1932) 2651-2654.
    [20]Robert Juza, Harry Hahn, Uber die Kristallstrukturen von Cu3N, GaN und InN Metallamide und Metallnitride (On the crystal structures of Cu3N, GaN and InN metal amides and metal nitrides), Zeitschrift fur Anorganische und Allgemeine Chemie (Journal of Inorganic and General Chemistry),239 (1938) 282-287.
    [21]J.A. Van Vechten, Quantum Dielectric Theory of Electronegativity in Covalent Systems. Ⅲ. Pressure-Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients, Physical Review B,7 (1973) 1479.
    [22]J.Karpinski, J.Jun, S. Porowski, Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN, J. Cryst. Growth,66 (1984) 1-10.
    [23]S. Porowski, High pressure growth of GaN-new prospects for blue lasers, J. Cryst. Growth,166 (1996) 583-589.
    [24]Y. Kagamitani, D. Ehrentraut, A. Yoshikawa, H. Hoshino, T. Fukuda, S. Kawabata, K. Inaba, Ammonothermal Epitaxy of Thick GaN Film Using NH4Cl Mineralizer, Jpn. J. Appl. Phys.45 (2006) 4018-4020.
    [25]H. Yamane, M. Shimada, S.J. Clarke, F.J. DiSalvo, Preparation of GaN Single Crystals Using a Na Flux, Chem. Mater.9 (1997) 413-416.
    [26]F. Kawamura, M. Morishita, M. Tanpo, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, T. Sasaki, Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method, J. Cryst. Growth 310 (2008) 3946-3949.
    [27]B. Lucznik, B. Pastuszka, I. Grzegory, M. Boc'kowski, G. Kamler, E. Litwin-Staszewska, S. Porowski, Deposition of thick GaN layers by HVPE on the pressure grown GaN substrates, J. Cryst. Growth,281 (2005) 38-46.
    [28]H.M. Kim, J.E. Oh, T.W. Kang, Preparation of large area free-standing GaN substrates by HVPE using mechanical polishing liftoff method, Materials Letters 47 (2001) 276-280.
    [29]M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, M. Stutzmann, Optical Process for Liftoff of Group Ⅲ-Nitride Films, Phys. Stat. Sol. (a) 159 (1997) R3-R4.
    [30]K. Motoki, T. Okahisa, R. Hirota, S. Nakahata, K. Uematsu, N. Matsumoto, Dislocation reduction in GaN crystal by advanced-DEEP, J. Cryst. Growth,305 (2007) 377-383.
    [31]Hsin-Hsiung Huang, Chu-LiChao, Tung-WeiChi, Strain-reduced GaN thick-film grown by hydride vapor phase epitaxy utilizing dotair-bridged structure, J. Cryst. Growth,311 (2009) 3029-3032.
    [32]J.S. Speck and S.F. Chichibu, Nonpolar and Semipolar Group Ⅲ Nitride-Based Materials, MRS BULLETIN,34 (2009) 304.
    [33]D. Hanser, M. Tutor, E. Preble, M. Williams, X. Xu, D. Tsvetkov, L. Liu, Surface preparation of substrates from bulk GaN crystals, J. Cryst. Growth,305 (2007) 372-376.
    [34]A. Anwar, S. Wu, R. Webster, Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors, IEEE Trans. Electron Devices,48 (2001) 567-572.
    [35]M. D. Drory, J. W. Ager, T. Suski, I. Grzegory and S. Porowski, Hardness and fracture toughness of bulk single crystal gallium nitride, Appl. Phys. Lett.,69 (1996)4044.
    [36]J. Edgar, in Properties of Group Ⅲ Nitrides, No.11 in EMIS Data reviews Series, ed. by J. Edgar (IEE INSPEC, London,1994), Sect.1.2, pp.7-21
    [37]R. Quay, K. Hess, R. Reuter, M. Schlechtweg, T. Grave, V. Palankovski,S. Selberherr, Nonlinear electronic transport and device performance of HEMTs, IEEE Trans. Electron Devices 48 (2001) 210-217.
    [38]G. Martin, A. Botchkarev, A. Rockett, H. Morkoc, Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by X-ray photoemission spectroscopy, Appl. Phys. Lett.,68 (1996) 2541.
    [39]S. Krukowski, M. Leszczynski, S. Porowski, in Properties, Processing and Applications of GaN Nitride and Related Semiconductors, No.23 in EMIS Data reviews Series, ed. by J. Edgar et al. (IEE INSPEC, London,1999), Sect.1.4, pp. 21-28.
    [40]Bougrov V., Levinshtein M.E., Rumyantsev S.L., Zubrilov A., in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York,2001,1-30.
    [41]T. Harafuji and J. Kawamura, Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys.96 (2004) 2501.
    [42]M. Drechsler, D. Hofmann, B. Meyer, T. Detchprohm, H. Amano, I. Akasaki, Determination of the Conduction Band Electron Effective Mass in Hexagonal GaN, Jpn. J. Appl. Phys.34 (1995) L1178-L1179.
    [43]B. Foutz, S. O'Leary, M. Shur, L. Eastman, Transient electron transport in wurtzite GaN, InN, and AlN, J. Appl. Phys.85(1999) 7727.
    [44]I. Akasaki, H. Amano, in Properties of Group Ⅲ Nitrides, No.11 in EMIS Data reviews Series, ed. by J. Edgar (IEE INSPEC, London,1994), Sect.7.2, pp. 222-230
    [45]A. Chakraborty, B. Haskell, S. Keller, J. Speck, S. Denbaars, S. Nakamura,U. Mishra, Demonstration of Nonpolar m-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates, Jpn. J. Appl. Phys.44 (2005) L173.
    [46]D. Cherns, TEM characterisation of defects, strains and local electric fields in AlGaN/InGaN/GaN structures, Materials Science and Engineering B,91-92 (2002) 274-279.
    [47]Leonid A. Bendersky, Denis V. Tsvetkov and Yuriy V. Melnik, Transmission electron microscopy study of a defected zone in GaN on a SiC substrate grown by hydride vapor phase epitaxy, J. Appl. Phys.,94 (2003) 1676-1685
    [48]M. Shiojiri, C. C. Chuo, J. T. Hsu, J. R. Yang, and H. Saijo, Structure and formation mechanism of V defects in multiple InGaN/GaN quantum well layers, J. Appl. Phys.,99 (2006) 073505.
    [49]王俊忠,吉元,田彦宝,牛南辉,徐晨,韩军,郭霞,沈光地,GaN外延结构中微区应变场的测量和评价,电子学报,Vol.36,No.11,2008,2139-2143。
    [1]Hsin-Hsiung Huang, Chu-Li Chao, Tung-Wei Chi, Yu-Lin Chang, Po-Chun Liu Li-Wei Tu, Jenq-Dar Tsay, Hao-Chung Kuo, Shun-Jen Cheng, Wei-I Lee, Strain-reduced GaN thick-film grown by hydride vapor phase epitaxy utilizing dot air-bridged structure, J. Cryst. Growth,311(2009) 3029-3032.
    [2]C. L. Chao, C. H. Chiu, Y. J. Lee, H. C. Kuo, Po-Chun Liu, Jeng Dar Tsay and S. J. Cheng, Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy, Appl. Phys. Lett.,95 (2009) 051905.
    [3]Lei Zhang, Yongliang Shao, Xiaopeng Hao, Yongzhong Wu, Haodong Zhang, Shuang Qu, Xiufang Chen and Xiangang Xu, Improvement of crystal quality HVPE grown GaN on an H3PO4 etched template, Crystal Engineering Communications,13 (2012) 5001-5004.
    [4]Lei Zhang, Yongliang Shao, Xiaopeng Hao, Yongzhong Wu,Shuang Qu,Xiufang Chen,Xiangang Xu, Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth, J. Cryst. Growth,334 (2011) 62-66.
    [5]O. Chelda-Gourmala, A. Trassoudaine, Y. Andre, S. Bouchoule, E. Gil, J. Tourret, D. Castelluci, R. Cadoret, Complete HVPE experimental investigations: Cartography of SAG GaN towards quasi-substrates or nanostructures, J. Cryst. Growth,312 (2010) 1899-1907.
    [6]E. Aujol, A. Trassoudaine, D. Castelluci, R. Cadoret, Influence of the partial pressure of GaCl3 in the growth process of GaN by HVPE under nitrogen, Mat. Sci. Eng. B-Solid,82 (2001) 65-67.
    [7]X.C. Cao, D.L. Xu, H.M. Guo, C.J. Liu, Z.J. Yin, X.H. Li, K. Qiu, Y.Q. Wang, The influence of reactor pressure on qualities of GaN layers grown by hydride vapor phase epitaxy, Thin Solid Films,517 (2009) 2088-2091.
    [8]张雷,邵永亮,吴拥中,张浩东,郝霄鹏,蒋民华,HVPE生长室气流分布模拟及GaCl载气流量对GaN单晶生长的影响,人工晶体学报,第40卷,第4期,287-291页。
    [9]X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. Denbaars, J. S. Speck, Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3 J. Appl. Phys.,80 (1996) 3228-3237.
    [10]N. Grandjean, J. Massies, P. Vennegues, M. Leroux, F. Demangeot, M. Renucci, J. Frandon, Molecular-beam epitaxy of gallium nitride on (0001) sapphire substrates using ammonia, J. Appl. Phys.,83 (1998) 1379-1983.
    [11]Y. Xin, S. J. Pennycook, N. D. Browning, P. D. Nellist, S. Sivananthan, F. Omnes, B. Beaumont, J. P. Faurie, P. Gibart, Direct observation of the core structures of threading dislocations in GaN, Appl. Phys. Lett.,72 (1998) 2680-2862.
    [12]P. Gay, P.B. Hirsch, A. Kelly, The estimation of dislocation densities in metals from X-ray data, Acta. Metall. Mater.,1 (1953) 315-319.
    [13]V. Srikant, J. S. Speck, and D. R. Clarke, Mosaic structure in epitaxial thin films having large lattice mismatch, J. Appl. Phys.,82 (1997) 4286-4295.
    [14]J. L. Lyons, A. Janotti, and C. G. Van de Walle, Carbon impurities and the yellow luminescence in GaN, Appl. Phys. Lett.,97 (2010) 152108.
    [15]F. J. Xu, B. Shen, L. Lu, Z. L. Miao, J. Song, Z. J. Yang, G. Y. Zhang, X. P. Hao, B. Y. Wang, X. Q. Shen, and H. Okumura, Different origins of the yellow luminescence in as-grown high-resistance GaN and unintentional-doped GaN films, J. Appl. Phys.,107 (2010) 023528.
    [16]Masakatsu Suzuki and Takeshi Uenoyama, Strain effect on electronic and optical properties of GaN/AlGaN quantum-well lasers, J. Appl. Phys.,80 (1996) 6868-6874.
    [17]Hiroshi Harima, Properties of GaN and related compounds studied by means of Raman scattering, J. Phys.:Condens. Matter.,14 (2002) R967-R993.
    [18]C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, Ⅲ, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B,54 (1996) 17745-17753.
    [19]M. V. Klein, B. N. Ganguly and P. J. Colwell, Theoretical and Experimental Study of Raman Scattering from Coupled LO-Phonon-Plasmon Modes in Silicon Carbide, Phys. Rev. B,6 (1972) 2380-2388.
    [20]G. Irmer, V. V. Toporov, B. H. Bairamov and J. Monecke, Determination of the charge carrier concentration and mobility in n-gap by Raman spectroscopy, Phys. Status Solidi b,119 (1983) 595-603.
    [21]W. L. Faust and C. H. Henry, Mixing of Visible and Near-Resonance Infrared Light in GaP, Phys. Rev. Lett.,17 (1966) 1265-1268.
    [22]F. Demangeot, J. Frandon, M.A. Renucci, N. Grandjean, B. Beaumont, J. Massies, P. Gibart, Coupled longitudinal optic phonon-plasmon modes in p-type GaN, Solid State Commun.,106 (1998) 491-494.
    [23]A. S. Barker, Jr. and M. Ilegems, Infrared Lattice Vibrations and Free-Electron Dispersion in GaN, Phys. Rev. B,7 (1973) 743-750.
    [1]D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire, Appl. Phys. Lett.,67 (1995) 1541-1543.
    [2]W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland, and D. K. Gaskill, Microstructural characterization of α-GaN films grown on sapphire by organometallic vapor phase epitaxy, Appl. Phys. Lett.,66 (1995) 1252-1254.
    [3]Hsin-Hsiung Huang, Chu-Li Chao, Tung-Wei Chi, Yu-Lin Chang, Po-Chun Liu Li-Wei Tu, Jenq-Dar Tsay, Hao-Chung Kuo, Shun-Jen Cheng, Wei-I Lee, Strain-reduced GaN thick-film grown by hydride vapor phase epitaxy utilizing dot air-bridged structure, J. Cryst. Growth,311(2009) 3029-3032.
    [4]C. L. Chao, C. H. Chiu, Y. J. Lee, H. C. Kuo, Po-Chun Liu, Jeng Dar Tsay and S. J. Cheng, Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy, Appl. Phys. Lett.,95 (2009) 051905.
    [5]Lei Zhang, Yongliang Shao, Xiaopeng Hao, Yongzhong Wu, Haodong Zhang, Shuang Qu, Xiufang Chen and Xiangang Xu, Improvement of crystal quality HVPE grown GaN on an H3PO4 etched template, Crystal Engineering Communications,13 (2012) 5001-5004.
    [6]Lei Zhang, Yongliang Shao, Xiaopeng Hao, Yongzhong Wu,Shuang Qu,Xiufang Chen,Xiangang Xu, Comparison of the strain of GaN films grown on MOCVD-GaN/A12O3 and MOCVD-GaN/SiC samples by HVPE growth, J. Cryst. Growth,334 (2011) 62-66.
    [7]M. K. Kelly, O. Ambacher, R. Dimitrov, R.Handschuh and M. Stutzmann, Optical Process for Liftoff of Group Ⅲ-Nitride Films, Phys. Status Solidi A,159 (1997)R3-R4.
    [8]Y. Oshima, T. Eri, M. Shibata, H. Sunakawa and A. Usui, Fabrication of Freestanding GaN Wafers by Hydride Vapor-Phase Epitaxy with Void-Assisted Separation, Phys. Status Solidi A,194 (2002) 554-558.
    [9]A. D. Williams and T. D. Moustakas, Formation of large-area freestanding gallium nitride substrates by natural stress-induced separation of GaN and sapphire, J. Cryst. Growth 300 (2007) 37-41.
    [10]Ch. Hennig, E. Richter, M. Weyers and G. Trankle, Freestanding 2-in GaN layers using lateral overgrowth with HVPE, J. Cryst. Growth 310 (2008) 911-915.
    [11]Lei zhang, Yongliang Shao, Yongzhong Wu, Xiaopeng Hao, Xiufang Chen, Shuang Qu, Xiangang Xu, Characterization of dislocation etch pits in HVPE-grown GaN using different wet chemical etching methods, Journal of Alloys and Compounds,504 (2010) 186-191.
    [12]Hock M. Ng, Nils G. Weimann, and Aref Chowdhury, GaN nanotip pyramids formed by anisotropic etching, J. Appl. Phys.94 (2003) 650.
    [13]S. L. Qi, Z. Z. Chen, H. Fang, Y. J. Sun, L. W. Sang, X. L. Yang, L. B. Zhao, P. F. Tian, J. J. Deng, Y. B. Tao, T. J. Yu, Z. X. Qin, and G. Y. Zhang, Appl. Phys. Lett. 95(2009)071114.
    [14]Feng Yu, Zhizhong Chen, Shengli Qi, Suyuan Wang, Shuang Jiang, Xingxing Fu, Xianzhe Jiang, Tongjun Yu,Zhixin Qin, Xiangning Kang, Jiejun Wu and Guoyi Zhang, Crystal Engineering Communications 14 (2012) 4781-4785.
    [15]C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, Ⅲ, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B,54 (1996) 17745-17753.
    [16]G. H. Olsen and M. Ettenberg, Calculated stresses in multilayered heteroepitaxial structures, J. Appl. Phys.48 (1977) 2543-2547.
    [17]G.H. Olsen and M. Ettenberg, Crystal Growth Theory and Techniques,Vol. Ⅱ., C Goodman,1977.
    [18]Z. C. Feng and H. D. Liu, Generalized formula for curvature radius and layer stresses caused by thermal strain in semiconductor multilayer structures, J. Appl. Phys.54 (1983) 83-85.
    [19]I. P. Nikitina, M. P. Sheglov, Yu. V. Melnik, K. G. Irvine, V. A. Dmitriev, Diamond Relat. Mater.6 (1997) 1524-1527.
    [20]S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagasish, M. Toth, M.R. Phillips, M.V. Swain, Appl. Phys. Lett.77 (2000) 3373.
    [21]L. Liu, J.H. Edgar, Mater. Sci. Eng. R 37 (2002) 61-127.
    [1]Kenji Fujito, Shuichi Kubo, Hirobumi Nagaoka, Tae Mochizuki, Hideo Namita, Satoru Nagao, Bulk GaN crystals grown by HVPE, J. Cryst. Growth, 2009,311,3011-3014.
    [2]D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire, Appl. Phys. Lett.,67 (1995) 1541-1543.
    [3]W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland and D. K. Gaskill, Microstructural characterization of a-GaN films grown on sapphire by organometallic vapor phase epitaxy, Appl. Phys. Lett.,66 (1995) 1252-1254.
    [4]C. L. Chao, C. H. Chiu, Y. J. Lee, H. C. Kuo, Po-Chun Liu, Jeng Dar Tsay and S. J. Cheng, Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy, Appl. Phys. Lett.,95 (2009) 051905.
    [5]Yuichi Oshima, Takeshi Eri, Masatomo Shibata, Haruo Sunakawa, Kenji Kobayashi, Toshinari Ichihashi and Akira Usui, Preparation of Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy with Void-Assisted Separation, Jpn. J. Appl. Phys.,42 (2003) L1-L3.
    [6]Hsin-Hsiung Huang, Chu-Li Chao, Tung-Wei Chi, Yu-Lin Chang, Po-Chun Liu Li-Wei Tu, Jenq-Dar Tsay, Hao-Chung Kuo, Shun-Jen Cheng, Wei-I Lee, Strain-reduced GaN thick-film grown by hydride vapor phase epitaxy utilizing dot air-bridged structure, J. Cryst. Growth,311(2009) 3029-3032.
    [7]Hyun-Jae Lee, S. W. Lee, H. Goto, Sang-Hyun Lee, Hyo-Jong Lee, J. S. Ha, Takenari Goto, M. W. Cho, T. Yao, and Soon-Ku Hong, Self-separated freestanding GaN using a NH4Cl interlayer, Appl. Phys. Lett.,91 (2007) 192108.
    [8]D. J. Dingley and V. Randle, Microtexture determination by electron back-scatter diffraction, J. Mater. Sci.,27 (1992) 4545-4566.
    [9]A. Gholinia, F. J. Humphreys, P. B. Prangnell, Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling, Acta. Mater.,50 (2002) 4461-4476.
    [10]J.F. Luo, Y. Ji, T.X. Zhong, Y.Q. Zhang, J.Z. Wang, J.P. Liu, N.H. Niu, J. Han, X. Guo and G.D. Shen, EBSD measurements of elastic fields in a GaN/Sapphire structure, Microelectronics Reliability,46 (2006) 178-182.
    [11]C. Trager-Cowan, S.K Manson-Smith, D.A Cowan, F Sweeney, D McColl, A Mohammed, R Timm, P.G Middleton, K.P O'Donnell, D Zubia and S.D Hersee, Characterisation of nitride thin films by electron backscattered diffraction, Mat. Sci. Eng. B-Solid,82 (2001) 19-21.
    [12]G. Nataf, B. Beaumont, A. Bouille, S. Haffouz, M. Vaille, P. Gibart, Lateral overgrowth of high quality GaN layers on GaN/Al2O3 patterned substrates by halide vapour-phase epitaxy, J. Cryst. Growth,192 (1998) 73-78.
    [13]F. C. Frank, and J. H. van der Merwe,, One-dimensional dislocations. Ⅱ Misfitting monolayers, Proc. Roy. Soc. London,1949, p198, p217.
    [14]J. W. Matthews, Coherent interfaces and misfit dislocations, in Epitaxial Growth, Part B, Academic Press, New York,1975, p560.
    [15]Lei Zhang, Yongliang Shao, Xiaopeng Hao, Yongzhong Wu, Shuang Qu, Xiufang Chen, Xiangang Xu, Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth, J. Cryst. Growth,334 (2011) 62-66.
    [16]C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, Ⅲ, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B,54 (1996) 17745-17753.
    [1]J.-M. Wagner and F. Bechstedt, Properties of strained wurtzite GaN and AIN:Ab initio studies, Phys. Rev., B 66 (2002) 115202.
    [2]V. Darakchieva, P. P. Paskov, T. Paskova, E. Valcheva, B. Monemar and M. Heuken, Lattice parameters of GaN layers grown on a-plane sapphire:Effect of in-plane strain anisotropy, Appl. Phys. Lett.,82 (2003) 703-705.
    [3]M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, Hans-Conrad zur Loye, G. Tamulaitis, A. Zukauskas, David J. Smith, D. Chandrasekhar and R. Bicknell-Tassius, Lattice and energy band engineering in AlInGaN/GaN heterostructures, Appl. Phys. Lett.,76 (2000) 1161.
    [4]Z. Pan, Y.T. Wang, L.H. Li, W. Zhang, Y.W. Lin, Z.Q. Zhou and R.H. Wu, X-ray double-crystal characterization of the strain relaxation in GaAs/GaNxAs1-x/GaAs (001) sandwiched structures, J. Cryst. Growth 217 (2000) 23-26.
    [5]D. Cherns, TEM characterisation of defects, strains and local electric fields in AlGaN/InGaN/GaN structures, Mater. Sci. Eng. B,91-92 (2002) 274-279.
    [6]C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, Ⅲ, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B,54 (1996) 17745-17753.
    [7]G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong and Hui Yang, Stress and its effect on optical properties of GaN epilayers grown on Si(111),6H-SiC(0001), and c-plane sapphire, Appl. Phys. Lett.,83 (2003) 677.
    [8]Huiyuan Geng, A Atsushi Yamaguchi, Haruo Sunakawa, Norihiko Sumi, Kazutomi Yamamoto and Akira Usui, Residual Strain Evaluation by Cross-Sectional Micro-Reflectance Spectroscopy of Freestanding GaN Grown by Hydride Vapor Phase Epitaxy, Jpn. J. Appl. Phys.50 (2011) 01AC01.
    [9]D. J. Dingley and V. Randle, Microtexture determination by electron back-scatter diffraction, J. Mater. Sci.,27 (1992) 4545-4566.
    [10]A. Gholinia, F. J. Humphreys, P. B. Prangnell, Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling, Acta. Mater.,50 (2002) 4461-4476.
    [11]J.F. Luo, Y. Ji, T.X. Zhong, Y.Q. Zhang, J.Z. Wang, J.P. Liu, N.H. Niu, J. Han, X. Guo and G.D. Shen, EBSD measurements of elastic fields in a GaN/Sapphire structure, Microelectronics Reliability,46 (2006) 178-182.
    [12]C. Trager-Cowan, S.K Manson-Smith, D.A Cowan, F Sweeney, D McColl, A Mohammed, R Timm, P.G Middleton, K.P O'Donnell, D Zubia and S.D Hersee, Characterisation of nitride thin films by electron backscattered diffraction, Mat. Sci. Eng. B-Solid,82 (2001) 19-21.
    [13]Siegfried Haussuhl, Physical Properties of Crystals:An Introduction, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,2007.
    [14]D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars and J. S. Speck, Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire, Appl. Phys. Lett.,67 (1995) 1541.
    [15]W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland and D. K. Gaskill, Microstructural characterization of a-GaN films grown on sapphire by organometallic vapor phase epitaxy, Appl. Phys. Lett.,66 (1995) 1252.
    [16]Weilie Zhou and Zhong Lin Wang, Scanning Microscopy for Nanotechnology Techniques and Applications (New York, Springer Science & Business Media, LLC,2006) p.48.
    [17]J. Edgar, in Properties of Group Ⅲ Nitrides, No.11 in EMIS Data reviews Series, ed. by J. Edgar (IEE INSPEC, London,1994), Sect.1.2, pp.7-21
    [18]G. Martin, A. Botchkarev, A. Rockett and H. Morkoc, Valence-band discontinuities of wurtzite GaN, AIN, and InN heterojunctions measured by X-ray, Appl. Phys. Lett.,68 (1996) 2541.
    [19]G. H. Olsen and M. Ettenberg, Calculated stresses in multilayered heteroepitaxial structures, J. Appl. Phys.48 (1977) 2543-2547.
    [20]G.H. Olsen and M. Ettenberg, Crystal Growth Theory and Techniques,Vol. Ⅱ., C. Goodman,1977.
    [21]Z. C. Feng and H. D. Liu, Generalized formula for curvature radius and layer stresses caused by thermal strain in semiconductor multilayer structures, J. Appl. Phys.54(1983)83-85.
    [22]C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, Ⅲ, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B,54 (1996) 17745-17753.
    [1]C. F. Lin, H. C. Cheng, G. C. Chi, M. S. Feng, J. D. Guo, J. Minghuang Hong, C. Y. Chen, Growth and characterizations of GaN on SiC substrates with buffer layers, J. Appl. Phys.,82 (1997) 2378-2382.
    [2]A. Kazimirov, N. Faleev, H. Temkin, M. J. Bedzyk, V. Dmitriev and Yu. Melnik, High-resolution x-ray study of thin GaN film on SiC, J. Appl. Phys.,89 (2001) 6092-6097.
    [3]M. E. Lin, B. Swerdlov, G. L. Zhou, H. Morkoc, A comparative study of GaN epilayers grown on sapphire and SiC substrates by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett.,62 (1993) 3479-3481.
    [4]I. P. Nikitina and V. A. Dmitriev, Inst. Phys. Conf. Ser.,141 (1994) 431-436.
    [5]Y. V. Melnik, I. P. Nikitina, A. E. Nikolaev, V. A. Dmitriev, Structural Properties of GaN Grown on SiC substrates by Hydride Vapor Phase Epitaxy, Diamond Relat. Mater.,6 (1997) 1532-1535.
    [6]陈治明,王建农.半导体器件的材料物理学基础,北京:科学出版社,2003。
    [7]Friedhelm Bechstedt, Peter Kackell, Heterocrystalline Structures:New Types of Superlattices? Phys. Rev. Lett.,75 (1995) 2180-2183.
    [8]San-huang Ke, Jian Zi, Kai-ming Zhang, Xi-de Xie, Electronic structures and band offsets of heterocrystalline superlattices (3C-AlN)3n/(2H-AlN)2n and (3C-SiC)3n/(2H-SiC)2n (n=1,2,3), Phys. Rev. B,54 (1996) 8789-8793.
    [9]A. Fissel, Artificially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties, Physics Reports,397 (2003) 149-255.
    [10]Hisaomi Iwata, Kohei M.Itoh, Donor and acceptor concentration dependence of the electron Hall mobility and the Hall scattering factor in n-type 4H-and 6H-SiC. J.Appl.Phys.,89 (2001) 6228-6234.
    [11]M. Bhatnagar, B. J. Baliga, Comparison of 6H-SiC,3C-SiC, and Si for power devices, IEEE Transactions on Electron Devices.,40 (1993) 645-655.
    [12]F. C. Frank, and J. H. van der Merwe,, One-dimensional dislocations. Ⅱ Misfitting monolayers, Proc. Roy. Soc. London,1949, p198, p217.
    [13]J. W. Matthews,, Coherent interfaces and misfit dislocations, in Epitaxial Growth, Part B, Academic Press, New York,1975, p560.
    [14]Lei Zhang, Yongliang Shao, Xiaopeng Hao, Yongzhong Wu, Shuang Qu, Xiufang Chen, Xiangang Xu, Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth, J. Cryst. Growth,334 (2011) 62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700