微弧氧化在船用柴油机铝合金活塞上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金活塞是内燃机中的重要部件,其工作条件极为复杂恶劣。微弧氧化技术可以在铝、镁、钛及其合金表面原位生长一层硬度高、耐磨、耐腐蚀和抗热冲击性能好的陶瓷膜层。本文利用微弧氧化技术在内燃机铝合金活塞表面原位生长一层致密的陶瓷层,大大提高了铝合金活塞的性能和使用寿命。
     本试验采用纯方波窄脉冲直流电源,降低了微弧氧化的能耗。采用正交试验设计的方法,得到了最佳的电解液配方:Na2SiO3:8g/L:KOH:2~3g/L;Na2WO4:2g/L;H2O2:2ml/L;EDTA2Na:2g/L。因为本试验采用的电源易于实现恒压控制,所以本试验将电压也作为正交试验的一个因素,电压的优化结果为500~550V。在电解液配方和电压大小优化好的基础上对电源频率、占空比和微弧氧化时间进行了优化,优化结果是频率为600Hz,占空比为1/20,微弧氧化时间为50min。在优化好的电解液和电参数条件下得到了质地均匀致密,厚度在20μm以上的陶瓷膜层,微弧氧化电流密度保持在1A/dm2左右。
     在优化好的电解液配方和电参数条件下,本试验在电解液中分别加入了二硫化钼微纳米颗粒和刚玉微纳米颗粒,得到了性能更为优越的微弧氧化膜层。
     最后对微弧氧化膜层的性能进行了测试,其中包括微弧氧化膜层的绝热性能、抗热冲击性能和耐磨损性能。绝热性测试结果表明经微弧氧化处理的活塞试样在相同热源的条件下另一侧的温度要比未处理的活塞试样低84℃。经过十次600℃到10℃的热冲击试验,微弧氧化膜层没有出现任何裂纹和脱落的现象。在摩擦磨损试验中分别对四种不同方法处理的试样进行耐磨性能检测。试验结果表明经过微弧氧化处理的试样无论是在干摩擦还是油润滑的条件下试样与对摩材料的摩擦系数、试样的磨损失重等都要远优于未经处理的铝合金活塞试样。而电解液中加入二硫化钼微纳米颗粒和刚玉微纳米颗粒后得到的改性膜层试样的耐磨损性能得到了进一步的提高,表现出极为优越的耐磨损性能。
The aluminum piston is a component in the four-stroke marine diesel engine and its working conditions are severe and complex. Micro-arc oxidation can generate dense ceramic membrane on aluminum, magnesium, titanium and their alloys to improve surface quality including high hardness, wear resistance, corrosion resistance and thermal shock resistance etc. In this paper, micro-arc oxidation is used to fabricate a layer of dense ceramic coating which can greatly improve performance and service life of aluminum alloy pistons.
     In this paper, the square-wave narrow pulses dc power is chosen to reduce the consumption of micro-arc oxidation. Adopting the orthogonal experiment method, the optimal formula of electrolyte are 8g/L forNa2Si03,2-3g/L for KOH,2g/L for Na2WO4, 2ml/L for H2O2 and2g/L for EDTA2Na. Because the power supply used in this test are easy to be realized the constant voltage control, the voltage is chosen as a factor of orthogonal experiment design. The optimal result for voltage is 500V~550V. Based on the optimal electrolyte formula and voltage, the optimal result is that frequency is 600Hz, duty cycle 1/20 and oxidation time 50 min. Under the optimal conditions, dense ceramic coating is got with its thickness which is more than 20μm and micro-arc oxidation current density remains at the level of 1 A/dm2.
     Superior ceramic coatings are got through adding nano-particles of molybdenum disulfide and alumina into the optimized electrolyte.
     The result of insulation test shows that, after micro-arc oxidation treatment, the sample of piston possesses good insulating properties. After thermal shock tests from 600℃to 10℃for ten times, micro-arc oxidation film remains intact without any cracks and shedding. The results of friction and wear test show that the samples treated by micro-arc oxidation have better properties in friction coefficient and weight loss than the untreated ones under the conditions of both dry friction and oil lubrication. The samples which are obtained in the electrolytes that are added nano-particles of molybdenum disulfide and alumina have much more excellent anti-wear properties than other samples.
引文
[1]周冬.活塞受热状况的具体分析[J].柴油机,2005,(02):1-3.
    [2]吕彩琴,苏铁熊,柴油机的热及惯性力耦合研究[J].柴油机设计与制造,2008,(02):2-4.
    [3]吕彩琴,苏铁熊.柴油机在复杂载荷条件下的强度研究[J].车辆与动力技术,2009,(02):1-4.
    [4]沈季胜.活塞热冲击与随机传热过程的研究[D].浙江大学,2002:45-50.
    [5]魏同波,田军.LY12铝合金微弧氧化陶瓷层的结构和性能[J].材料研究学报,2004,(02):2-3.
    [6]H.M. Nykyforchyn M.D. Klapkiv and V.M. Posuvailo. Properties of synthesised oxide-ceramic coatings in electrolyte plasma on aluminium alloys.Surface and Coatings Technology,1998, 100-101:219-221.
    [7]刘彩文,吴士军.铝合金表面微弧氧化技术的研究进展[J].内蒙古化工,2006,(06).2-4.
    [8]张萍.铝合金高硬度阳极氧化膜层的制备与研究[D].西华大学,2008:9-13.
    [9]郭鹤同,王为.铝阳极氧化的回顾与展望[J].材料保护,2000,(01).1-3.
    [10]崔昌军,彭乔.铝及铝合金的阳极氧化研究综述[J].全面腐蚀控制,2002,(06)
    [11]Wong C M, Moji Y, Method for anodizing aluminum.US489427.1990:6-16.
    [12]http://baike.baidu.com/view/1318251.htm?fr=ala0_1
    [13]丁毅.微弧氧化技术替代电镀硬铬应用研究[D].长安大学,2006:3-8.
    [14]李家柱,林安.取代重污染六价铬电镀的技术及应用[J].电镀与涂饰,2004,(04).2-5.
    [15]刘稳善,张天明.活塞表面等离子喷涂强化及耐磨性能研究[J].柴油机,2004,(05).3-4.
    [16]邹莉.等离子喷涂技术及应用[J].昆明冶金高等专科学校学报,2005,(05).1-2.
    [17]辛铁柱.铝合金表面微弧氧化陶瓷膜生成及机理研究[D].哈尔滨工业大学,2006:9-18.
    [18]刘杰.低能耗铝合金微弧氧化技术研究[D].大连海事大学,2008:4-12.
    [19]Yerokhin A L, Lyubimov V V, Ashitkov R V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminum alloys.Ceramics International,1998,24 (1):1-6.
    [20]张群.微弧氧化技术在铝制缸体内表面耐磨处理中的应用[D].西安理工大学,2006:6-11.
    [21]http://baike.baidu.com/view/1277.htm?fr=ala0_1_1
    [22]侯正全.ZL201铸造铝合金微弧氧化工艺研究[D].上海交通大学,2007:10-15.
    [23]崔丽华.铸造铝合金微弧氧化工艺及其优化[D].长安大学,2009:23-30.
    [24]钱思成.铝微弧氧化膜的制备及其性能研究[D].大连理工大学,2007:5-13.
    [25]庞磊.镁合金微弧氧化陶瓷膜的制备及其性能研究[D].吉林大学,2006:10-16.
    [26]Sundararajan G, Rama Krishna L. Mechanisms Underlying the Formation of Thick Aluminum Coatings through the MAO Coating Technology.Surface and Coatings Technology,2003, 167:269-277.
    [27]L. Wang, X. Nie. Silicon effects on formation of EPO oxide coatings on aluminum alloy. Thin Solid films.23-38.
    [28]Wang Y K, Sheng L, Xiong R E, et al. Effects of Additives in Electrolyte on Characteristic of Ceramic Coatings Formed by Microarc Oxidation.Surface Engineering,1999,15(2):109~ 111.
    [29]钟涛生.能量参数对铝合金微弧氧化陶瓷层形成的影响[D].西安理工大学,2005:21-27.
    [30]张淑芳,张先锋.溶液电导率对镁合金微弧氧化的影响[J].材料保护,2004(4).3-4.
    [31]http://baike.baidu.com/view/1380704.htm?fr=ala0_1_1
    [32]王永康.铝合金微弧氧化溶液中添加剂成份的作用[J].材料保护,2003(11).2-5.
    [33]http://baike.baidu.com/view/1634923.htm
    [34]http://baike.baidu.com/view/62637.htm?fr=ala0_1_1
    [35]徐俊.铝合金微弧氧化抗磨减磨涂层制备工艺研究[D].武汉理工大学,2006:17-22.
    [36]http://baike.baidu.com/view/1327975.htm
    [37]韩春霞.电参数对ZAlSi12Cu2Mg1合金微弧氧化陶瓷膜层形成的影响[D],内蒙古工业大学,2007:34-42.
    [38]徐佰明.工艺参数对镁合金微弧氧化膜层微观组织和性能的影响[D],吉林大学,2007.24-35.
    [39]李颂,刘耀辉,庞磊.电源频率对铸铝合金微弧氧化陶瓷层的影响[J].材料科学与工艺,2008(02).1-4.
    [40]王巧霞,马跃洲.脉冲宽度对镁合金微弧氧化的影响[J].材料保护,2009(03).2-3.
    [41]施元.钛合金微弧氧化电参数对成膜特性及表面性能的影响[D].哈尔滨工业大学,2007:28-35.
    [42]郑晶,李尧.电参数对铝合金微弧氧化陶瓷层结构特性的影响[J].西安工程大学学报,2008(04):1-5.
    [43]Xue Wenbin, Deng Zhiwei, Lai Yongchun, etal. Analysis of phase distribution for ceramic
    coatings formed by microarc oxidation on aluminum alloy.Journal of the American Ceramic Society.1998,81(5):1365.
    [44]SUNDARARAJAN G, RAMA KRISHNA L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology [J].Surface and Coatings Technology, 2003,167:269-277.
    [45]闫玉涛,胡广阳.纳米二硫化钼分体制备及其摩擦学性能[J].东北大学学报,2008(03).1-2.
    [46]Wong K C, Lu X, Cotter J, etal. Surface and Friction Characterization of MoS2 and WS2 Third body thin films under Simulated Wheel/rail Rolling sliding Contact[J].Wear,2008,264 (7-8):526-534.
    [47]李文学.陶瓷刚玉磨料的制备工艺及其性能研究[D].天津大学,2007:43-51.
    [48]韩冰.纳米刚玉磨料的制备[D].天津大学,2005:17-23.
    [49]http://baike.baidu.com/view/277549.htm?fr=ala0_1
    [50]阎殿然,武建军,何继宁.A1203陶瓷涂层抗高温热冲击性能的研究[J].河北工业大学学报,1994,(04).3-4.
    [51]Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property.Rare Metals,2006, (03):4.
    [52]Tongbo Wei, Fengyuan Yan, Jun Tian. Characterization and wear-and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy.Journal of Alloys and Compounds, 2005,389(1-2):169-176.
    [53]D.L.Boguta, V.S. Rudnev, P.S.Gordienko. Current mode effect on the composition and characteristics of anodic-spark coatings, Protection of metals,30,2004,40 (30):275-279.
    [54]DEARNLEY P A, GUMMERSBACH J, WEISSH, et al. The sliding wear resistance and frictional characteris-tics of surface modified aluminium alloys under extremepressure.Wear, 1999,225-229:127-134.
    [55]李金富,方克明,熊仁章,王永康.铝合金微弧氧化陶瓷层的耐磨性[J].北京科技大学学报,2003,(06).1-3.
    [56]Rabin B. H. Joining of fiber-reinforced SiC composites by insitu reaction methods [J].Material Science and Engineering,1990, A130 (1):1-5.
    [57]XUE Wenbin, WANG Chao, LI Yongliang, CHEN Ruyi, ZHANG Tonghe. Analyses of micro-arc oxidation coatings formed on Si containing cast aluminum alloy in silicate solution. ISIJ International,11,2002,42 (11):1273-1275.
    [58]吕维玲,马颖.氧化时间对AZ91D镁合金微弧氧化膜微观组织和性能的影响[J].中国有色金属学报,2009(08).3-4.
    [59]Timoshenko A V, Opara B K. Formation of protectivewear-resistant oxide coatings on aluminum alloys by the mi-croplasma methods form aqueous electrolyte solutions[J].Proc International Corrosion congress,1993,1(12):280-293.
    [60]CUI Shihai, HAN Jianmin, DU Yongping, et al. Corrosion resistanceand wear resistance of plasma electrolytic oxidation coatings on metalmatrix composites[J].Surf Coat Technol,2007, 201:5306-5309.
    [61]李均明.铝合金微弧氧化陶瓷层的形成机制及其磨损性能[D].西安理工大学,2008.56-77.
    [62]http://baike.baidu.com/view/110458.htm?fr=ala0_1_1
    [63]http://baike.baidu.com/view/751503.htm
    [64]韦斌,张顺先,蔡春喜.气缸套的种类及磨损情况[J].内燃机配件,2001(04).2-4.
    [65]武会民,曲贵龙.浅谈柴油机气缸套的损伤[J].内燃机配件,1998,(03).4-5.
    [66]徐久军,严立,王鹏,刘宗利.船舶柴油机缸套活塞环微观滑动接触模型研究[J].润滑与密封,1999,(05).1-4.
    [67]T E Stanton. The friction of pistons and piston rings. The Engineer.1925.70P.
    [68]Ma M T, Sherrington I and Smith E H. Analysis of Lubrication and Friction for a complete Piston - Ring Pack with an Improved Oil Availability Model:Part Ⅱ - Circumferentially Variable Film.Proc. Inst. Mech. Eng. Part J:Journal of Engineering Tribology.1997,211:17-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700