VHF频段雷电信号的时—频—空域特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类在气象、航空、航天及微电子领域的研究和长足发展,雷电灾害的影响面越来越广,其破坏力及造成的经济损失越来越大,从而研究更先进、更有效的闪电探测定位系统,特别是针对云闪的探测系统,就成了当务之急。
     云闪信号主要集中在VHF频带,因此本文首先将基于LABVIEW软件平台,就VHF频段内的雷电信号展开时域、频域及空域方面的研究,主要包括以下内容:关于VHF频段的雷电信号的时域和频域特性研究:介绍了VHF频段的雷电信号的接收和采集存储方法、雷电信号的时域特征提取方法、频域特征分析方法及概率分布特征分析方法的算法设计、软件实现、所得结论及应用分析。基于LABVIEW及MATLAB的算法仿真详细论述了雷电信号概率分布特征的统计结果,即验证了原始雷电信号的幅度服从高斯分布的特性;雷电信号的时域特征提取分别得到未滤波及两种标准滤波情况下的四种分类的雷电信号的时域波形图、功率及标准偏差的数值,并且总结出雷电信号时域特征的一个变化规律,即:采集的雷电信号辐射越强,时域波形图的幅度越大,功率及标准偏差的数值也越大,且滤波后的雷电信号的脉冲相比滤波前更尖锐;雷电信号的频域特征分析分别得到未滤波及两种标准滤波情况下的四种分类的雷电信号的功率谱图,并且总结出雷电信号频域特征的一个变化规律,即:采集的雷电信号辐射越强,功率谱越大,且典型有雷电情况下的功率谱比典型无雷电情况下的功率谱高出20dBm以上。
     关于VHF频段的雷电信号的空域特性研究:介绍了基于均匀圆阵的多重信号分类算法(MUSIC, Multiple Signal Classification)的LABVIEW软件实现方法。按照流程图的设计思想将整个二维测向算法分为四个模块,依次对各个模块进行软件实现,最后组合成一个完整的测向系统,并利用两个性能测试实验对其性能进行分析,从而初步实现了对雷电信号的二维空间谱估计。
With the research and rapid development of human in the field of meteorology, aviation, aerospace and microelectronics, the impact of lightning disaster has become increasingly widespread, and the damage and economic losses caused by it have been growing and growing. As the reasons above, the study of more advanced and more effective detection and positioning system of lightning comes to be an urgent affair.
     Inter-cloud lightning signal mainly concentrates in the VHF band. So in this thesis, we focus on the VHF frequency band when doing the research of lightning in time domain、frequency domain and space domain. The main contents of this research are as follows:
     1) The research of characteristics of VHF-Band lightning Signal in time-frequency domain.
     With the help of LABVIEW software platform, we establish the software system includes the data collection, the analysis of signal in time domain and frequency domain and the analysis of the probability distribution of lightning signal. LABVIEW and MATLAB based simulation of the algorithm discusses in detail the characteristics of the probability distribution of lightning signal, which validates the conclusion that the amplitude of original lightning signal fits the Gaussian distribution. The extraction of Four-classified lightning characteristics in time domain gains the wave graphs、the power and the standard deviation both with and without filters, which summarizes that the stronger the lightning is, the greater the amplitude of waveforms、signal power and standard deviation are. Moreover, the signal pulse of lightning is more intense pre-filter. The extraction of Four-classified lightning characteristics in frequency domain gains the power spectrum graphs both with and without filters, which summarizes that the stronger the lightning is, the greater the power spectrum is. Further more, the power spectrum of typical lightning signal is 20dBm higher than the power spectrum of typical non-lightning signal.
     2) The research of characteristics of VHF-Band lightning Signal in space domain.
     Based on the LABVIEW software platform, we investigate the estimation system of the MUSIC (Multiple Signal Classification) algorithm in the case of uniform circle array, which is divided into four modules. Furthermore, with the help of two experiments, we test the performance of this system, in order to achieve the initial simulation result of two-dimension spatial spectral estimation on lightning signal.
引文
[1]王道洪,郄秀书,郭昌明等.雷电与人工引雷[M].上海:上海交通大学出版社,2000.
    [2] Christian H J, Blakeslee R J, Boccippio D J., etal. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys., 2003. 108(D1) art. no. 4005
    [3] Reeve N, Toumi R. Lightning activity as an indicator of climate change. Q. J.R. Meteorol. Soc.,1999,125(555):893-903
    [4] Boccippio D J. Goodman S J, Heck S. Regional differences in tropical lightning distributions. J. Appl. Meteorol., 2000, 39(12):2231-2248
    [5] Orville RE. Spenceer DW. Global lightning Flash frequency[J]. Mon Weather rev. 1979:107,934-943
    [6] Price C. Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett., 1993, 20(13):1363-1366
    [7] Williams E R. The Schumann resonance: A Global thermometer. Science, 1992, 256(5060):1184-1187
    [8] Williams E R. Larger scale charge separation in thunderclouds. J. Geophys. Res., 1985, 90(D4):6013-6025
    [9] Goodman, S.J., and MacGorman, D.R. 1986. Cloud-to-ground lightning activity in mesoscale convective complexes. Mort. Wea. Rev. 114:2320-8
    [10]郄秀书,周筠,袁铁,等.卫星观测到的全球闪电活动及其地域差异.地球物理学报,2003,46(6):743-751.
    [11]袁铁,郄秀书.卫星观测到的我国闪电活动的时空分布特征[J].高原气象,2004,23(4):488-495
    [12]戴建华,秦虹,郑杰.用TRMM/LIS资料分析长江三角洲地区的闪电活动应用气象学报,2005,16(6):725-736
    [13] Turman B N. Detection of lightning superbolts. J Geophys Res, 1977, 82:2566-2568
    [14] Christian H J, Blakeslee R J, Goodman S J, et al. Algorithm Theoretical Basis Document(ATBD) for the lightning Imaging Sensor(LIS). NASA/Marshall Space Flight Center,2000
    [15]李南,魏鸣,姚叶青,安徽闪电与雷达资料的相关分析以及机理初探;热带气象学报,2006,22(3):265-272
    [16]中国科学院大气物理研究所集刊[M],科学出版社.1976第4号.雷暴探测和雷电物理研究:1-11
    [17]叶宗秀,陈倩,郭昌明等.冰雹云中的闪电频数特征及其在防雹中的应用[J].高原气象,2002,21(2):252-259
    [18]许小峰,郭虎.国外雷电监测和预报研究,北京,气象出版社,2003
    [19]董万胜,刘欣生,张义军,王怀斌.云闪放电通道发展及其辐射特征.高原气象,2003,03期
    [20]王彦辉,张广庶,张彤,曹冬杰.闪电甚高频宽频包络亚微秒辐射特征,中国电机工程学报, 2007, 27 (9): 46-51
    [21]陈渭民.雷电学原理[M].北京:气象出版社,2003.I27-I32.
    [22] Wilson, C.T.R.. On some determination of the sign and magnitude of electric discharge in lightning flashes[J]. Proc. Roy. Soc. Lond., A.1916,92:555-575
    [23] Wilson, C.T.R.. Investigations on lightning discharges and the electric field of thunderstorm[J]. Phil. Trans. Roy. Soc. Lond., A. 1920,221:75-115
    [24] Simpson, Sir G, and G.D. Robinson. The distribution of electricity in thunderclouds[J]. Proc. Roy. Soc. Lond., A. 1937, 161:309-352
    [25] Donald, R. Macgorman, W.David, Rust. The Electrical Nature of Storms[M]. New York: Oxford University Press, 1998
    [26]张敏锋,冯霞.我国雷暴天气的气候特征[J].热带气象学报,1998,14(2):155-162
    [27] [英]B.J梅森.云物理学[M].北京:科学出版社,1978.530-574
    [28]朱乾根,林锦瑞,寿绍文,等.天气学原理和方法(修订本)[M].北京:气象出版社,2000,402
    [29]吴璞三.雷电定向定位和时差定位系统[J].高电压技术,1995,21(3):3-7
    [30]江建军,刘继光.LabVIEW程序设计教程.电子工业出版社,2008.3
    [31]张凯,周陬,郭栋. LabVIEW虚拟仪器工程设计与开发,国防工业出版社,2004.6
    [32]王磊,陶梅.精通LABVIEW 8.X,电子工业出版社,2008.5
    [33]陈家宏,童雪芳,谷山强,李晓岚.雷电定位系统测量的雷电流幅值分布特征.高电压技术,2008年第09期
    [34]薛年喜. MATLAB在数字信号处理中的应用.清华大学出版社,2007.12
    [35]王永良,陈辉等.空间谱估计理论与算法,清华大学出版社,2004.11
    [36] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans., 1986, AP-34(3): 276-280.
    [37] Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Processing Magzine, 1996, 13(4): 67-94.
    [38] Chen Hui, Wang Yongliang. A Modified Method of Frequency and 2-D Angle Estimation. IEEE antennas and propagation society international symposium, Columbus, OH, USA, 22-27, Jun, 2003:920-923
    [39] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. of the IEEE, 1969, 57(8): 1408-1418.
    [40] Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estimation: a signal subspace approach. IEEE Trans. On AES, 1989, 25(1): 31-46.
    [41] Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves. IEEE Trans. On AES, 1983, 19(1): 134-139.
    [42] Stoica P, Nehorai A. MUSIC, Maximum likehood, and Cramer-Rao bound. In Proc. ICASSP, 1988, 2296-2299.
    [43] Ottersten B, Viberg M, Stoica P, Nehorai A. Exact and large sample ML techniques for parameter estimation and detection in array processing. IN Haykin, Litva, and shepherd, editors, Radar array processing, Spring-Verlag, Berlin, 1993,99-151.
    [44] Shan T J, Paulray A, Kailath T. On Smoothed Rand Profile Tests in Eigen structure Methods for Directions-of-Arrival Estimation. IEEE Trans. on ASSP, 1987,35(10):1377-1385
    [45] Di A. Multiple sources location-a matrix decomposition approach. IEEE Trans. on ASSP, 1985,33(4):1086-1091
    [46] Wu H T, Yang J, Chen F K. Source number estimation using transformed gerschgorin radii. IEEE Trans. on SP, 1995, 43(6):1325-1333
    [47] Wax M, Kailath T, Detection of Signals by Information Theoretic criteria. IEEE trans. on ASSP, 1985, 33(2):387-392
    [48] Wax M, Ziskind I. Detection of Number of Coherent Signals by the MDL Principle. IEEE trans. on ASSP, 1989, 37(8):1190-1196
    [49] Anderson T W. Asymptotic theory for principal component analysis. Ann. J. Math. Stat, 1963, 34:122-148
    [50] Rissanen J. Modeling by shortest data description. Automatica, 1978, 14:465-471
    [51] Akaike H. A new look at the statistical model identification. IEEE Trans. on AC, 1974, 19(6):716-723
    [52] Schwartz G. Estimation the dimension of a model. Ann. Stat, 1978, 6: 461-464
    [53] Zhao L C, Krishnaiah P R, Bai Z D. On detection of numbers of signals in presence of white noise. J. Multivariate Anal, 1986, 20:1-25
    [54] Zhao L C, Krishnaiah P R, Bai Z D. On detection of numbers of signals when the noise covariance matrix is arbitrary. J. Multivariate Anal, 1986, 20:26-49
    [55] Zhao L C, Krishnaiah P R, Bai Z D. Remarks on certain criteria for detection of numbers of signals. IEEE Trans. on ASSP, 1987, 35(1):129-132
    [56]陈辉,王永良.空间谱估计算法结构及仿真分析[J].系统工程与电子技术, 2001,23(8):76-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700