非均匀环境下STAP方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时自适应信号处理(STAP)的理论研究已渐趋成熟,研究的热点已转向STAP的工程实现。现阶段的研究表明,雷达所面临的实际环境中存在着大量的非均匀因素,常规STAP的性能在非均匀环境中会受到严重影响。
     本文首先研究了几种常见的非均匀现象:杂波功率非均匀、干扰目标和孤立干扰,分别分析了这几种非均匀现象对STAP性能的影响,并对其进行了仿真研究。
     针对杂波功率非均匀,本文对典型的功率选择法(PST)进行了介绍和研究,并针对功率选择法在强备选样本数不足时,杂波功率估计过低的问题提出了改进措施,仿真及实测数据的处理结果验证了改进措施的有效性。针对干扰目标,介绍了几种常见的非均匀检测器;对抑制孤立干扰的频域替代法进行了研究,针对其存在干扰目标信号残余的问题,对其进行了改进,仿真及实测数据的处理结果都验证了改进方法的有效性。
     在研究各种非均匀现象及其抑制方法的基础上,本文对可以抑制各种非均匀现象的综合型STAP方法进行了深入研究。分析了直接数据域方法的原理及其优缺点。对先验知识STAP进行了探索性研究,提出了基于先验SAR图像的非均匀STAP方法,该方法通过对SAR图像上的相似区域进行区域平均抑制杂波功率非均匀和干扰目标的影响,打破了常规STAP以距离单元回波做统计平均的做法,仿真结果显示了方法的有效性。本文还提出一种结合距离-多普勒域沿迹干涉(RD-ATI)技术的非均匀STAP方法,该方法将RD-ATI技术与改进的PST法和频域替代法进行结合,RD-ATI技术作为干扰运动目标检测器,用来发现干扰目标和孤立干扰,为后续的动目标检测提供先验信息,提高动目标检测的针对性,改进的PST法用来抑制杂波功率非均匀的影响,改进的频域替代法用来抑制孤立干扰。实测数据的处理结果表明该方法能有效抑制各种非均匀现象,大大减少了STAP搜索动目标的运算负担,是一种适合实际应用的非均匀STAP方法。
Space time adaptive processing (STAP) is a leading technology candidate for improving detection performance of next generation airborne radar. The performance of STAP is greatly affected in non-homogeneous clutter environments. New STAP algorithms for this problem are studied widely.
     Three common non-homogeneous factors are researched firstly in this paper, they are: power non-homogeneity、interference target and discrete interference. Then, the influence to STAP caused by nonhomogeneous clutter environment is analyzed and simulated.
     For power non-homogeneity, the typical method called power selected training (PST) is researched. It is shown that when there are not enough strong secondary data for selected, the PST method can’t work well, so the improvement of the PST method is proposed, and the result of simulation and real data shows its effectiveness. For interference target, Non-homogeneous Detector (NHD) is introduced. For discrete interference, substitution method is used and improved. Besides, the range-Doppler domain ATI (RD-ATI) technique is used to detect interference moving target and provide important information to STAP.
     Based on the research of methods for non-homogeneous clutter environments, at the end of the paper, integrative STAP approach is researched. The direct-data domain (DDD) method is introduced. To research the knowledge-based STAP, a non-homogeneous STAP method based on priori SAR image is proposed and simulated. Furthermore, a Non-homogeneous STAP Approach Combined with RD-ATI Technique is proposed, in which RD-ATI technique is used as a NHD to provide prior knowledge of moving targets, PST method is employed to restrain clutter power non-homogeneous, and Frequency Domain Substitution (FDS) method used to eliminate the discrete interference. The approach improves conventional STAP performance significantly and greatly reduces computational burden, which has a great practical value. The result of real data from a three-channel SAR/GMTI system shows efficiency of the approach.
引文
[1]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社, 2000.
    [2] M.O.Little and W.P.Berry. Real-time multichannel airborne radar measurements. IEEE Proc. Int. Conf. Radar Syracuse, New York, 1997
    [3] Ward J. Space-time adaptive processing for airborne radar. Technical Report 1015, MIT Lincoln Laboratory, 1994.
    [4] L.E.Brennan, J.D.Mallett, and L.S.Reed. Theory of adaptive radar. IEEE Tran. AES-9(2), 1973:237-251.
    [5] Brennan L E, Mallete J D, Reed I S. Adaptive arrays in airborne MTI radar. IEEE Trans on AP, 1976, 24(5): 566-571
    [6] R.Klemm. Adaptive airborne MTI: An auxiliary channel approach. IEE proc. Vol.134, 1987, No3, 269-276
    [7] Wang H. An adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. On AES. 1994, 30(3):660-670
    [8] E. C. Barile, R. L. Fante, J. A. Torres. Some limitations on the effectiveness of airborne radar. IEEE Trans. On AES. 1992, 28(4):1015-1023
    [9] P. Richardson. Relationships between DPCA and adaptive space-time processing techniques for clutter suppression. Int. Cof. On Radar, Paris. 1994:295-300
    [10] Dipietro R. Extended factored space-time processing for airborne radar systems. Proceedings of the 26th Asilomar Conference on Signals, Systems and Computing. Pacific Grove, CA, 1992. 425-430
    [11] Farina A, Saverione A. The MVDR vectorial lattice applied to space-time processing for AEW radar with large instanoueous bandwidth. IEEE Proc. Radar Sonar and Navigation, 1996, 143(1): 41-46
    [12] Farina A, Graziano R, Lee F. Adaptive space-time processing with algorithm: experimental results using recorded live data. Proc. Of 1995 IEEE Int. Conf, Alexandria, VA, 1995, 595-602
    [13] Liu Q G, Peng Y L. Analysis of array errors and a short-time processor in airborne phased array radars. IEEE Trans on AES, 1996, 32(2): 587-597
    [14]王永良,保铮,彭应宁.空时二维自适应处理的统一理论模型与局域处理方法.电子学报, 1996,24(9): 64-69
    [15]王永良.新一代机载雷达的空时二维自适应信号处理. [博士学位论文];西安:西安电子科技大学; 1994
    [16] L E Brennan, D J Piwinski, M F Standaher. Comparison of space-time adaptive processing approaches using experimental airborne radar data. The Record of 1993 IEEE National Radar Conf. Massachusetts, USA, 1993:176-181
    [17] R Brown, M Wicks, Y Zhang, etc. A space-time adaptive processing approach for improved performance and afford ability. 1996 IEEE National Radar Conf., MI, USA, 1996:321-326
    [18] H Wang, Y Zhang, Q Zhang. An improved and Affordable Space-Time Adaptive Processing Approach. 1996 CIE Int. Conf on Radar, Beijing, 1996:72-77
    [19] A Heimovich. The eigencanceler: Adaptive radar by eigenanalysis methods. IEEE Trans. On AES, 1996, 32(2):532-542
    [20] A. Heimovich, M. Berin. Eigenanalysis based space-time adaptive radar performance analysis. IEEE Trans. On AES, 1997, 33(4):1170-1179
    [21] J S Goldstein, I S Reed. Subspace selection for partially adaptive sensor array processing. IEEE Trans, on AES, 1997, 33(2):988-996
    [22] Guerci, J.R. Knowledge-aided sensor signal processing and expert reasoning. In Proceedings of 2002 Knowledge-Aided Sensor signal Processing and Expert Reasoning (KASSPER) Workshop, Washington, Dc, 2002
    [23] Melvin W L. Eigenbased modeling of nonhomogeneous airborne radar environments. Proc of the IEEE National Radar Conf, Dallas, TX, USA, 1998, 171-176
    [24] Melvin W L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans on AES, 2000, 36(2): 621:633
    [25] Melvin W L, Guerci J R, Callahan M J. Design of adaptive detection algorithms for surveillance radar. Proc of the IEEE int. Radar conf, Alexandria, VA, USA, 2000, 608-613
    [26]王永良,李天泉.机载雷达空时自适应信号处理技术回顾与展望.中国电子科学研究院学报, 2008年06月,第三期:271-275
    [27] D. J. Rabideau, A.O. Steinhardt. Power Select Training for False Alarm Mitigation in Airborne Radar. Adaptive sensor array processing workshop, MIT Lincoln Laboratory, 1996
    [28] Rabideau D J, Steinhardt A O. Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training. Proc of the 30th Asilomar Conf on Signals, Systems and Computers, Pacific Grove, CA, USA, 1996: 75-79
    [29] Rabideau D J, Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans on AES, 1999, 35(3):879-891
    [30] Guerci J R. Space-time adaptive processing for radar. Boston, London: Artech House, 2003.
    [31] Guerci J R, Bergin J S. Principal components covariance matrix tapers and the subspace leakage problem. IEEE Trans on AES, 2000, 38(1): 152-162
    [32] Guerci J R. Theory and application of covariance matrix tapers for robustadaptive beamforming. IEEE Trans on SP, 1999, 47(4): 977-985
    [33] Guerci J R, Bergin J S. Principal components, covariance matrix tapers and the interference modulation problem. Proc of the Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, MA, USA, 1999
    [34] Chang H H. Improving space-time adaptive processing radar performance in non-homogeneous clutter. Doctor Dissertation, Syracuse University, 1997
    [35] Melvin W L, Wicks M C, Chen P. Non-homogeneity detection method and apparatus for improved adaptive signal processing. USA Patent Pending, Application Number 694, 577, filed 9 August 1996.
    [36] Braham Himed, Yassir Salama, James H. Improved detection of close proximity targets using two-step NHD. IEEE international radar Conf, 2000: 781-786
    [37] Wang Y L, et al. Robust space-time adaptive processing for airborne radar in non-homogeneous clutter environments. IEEE Trans on AES, 2003, 39(1):70-81
    [38] William L. Melvin, Michael C. Wicks. Improving Practical Space-Time Adaptive Radar. IEEE National Radar Conference 1997:48-53
    [39] Sarkar T K, Wang H, Park S. A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans on AP, 2001, 49(1):91-103
    [40] Adve R S, Hale T B, Wicks M C. A two stage hybrid space-time adaptive processing algorithm. Proc of the IEEE National Radar Conf, Boston, MA, April 1999:279-294
    [41] Adve R S, Hale T B, Wicks M C. Practical joint domain localized adaptive processing in homogeneous and non-homogeneous environments. Part 2:Non-homogeneous environments. IEE Proc-Radar, 2000, 147(2):66:74
    [42] Borsari G K. Mitigating effects on STAP processing caused by an inclined array. Proc of the IEEE National Radar Conf, Dallas, TX, May 1998:135-140
    [43] Kreyenkamp O, Klemm R. Doppler compensation in forward-looking STAP radar. IEE Proc. Radar, Sonar, 2001, 148(5):253-258
    [44] Pearson F, Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars. Proc. Of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, 2001
    [45] Lapierre F D, Droogenbroeck M V, Verly J G. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. ICASSP, April, 2003:73-76
    [46] Lapierre F D, Verly J D, Droogenbroeck M V. New solutions to the problem of range dependence in bistatic STAP radars. Proc of the IEEE national radar Conf, the Huntsville Marriott, Huntsville, AL, USA, 2003:452-459
    [47] Parker P, et al. Space-time autoregressive filtering for matched subspace STAP. IEEE Trans on AES, 2003, 39(2):510-519
    [48] Michel S J, et al. Evaluation of the normalized parametric adaptive matched filterSTAP test in airborne radar clutter. Proc of the IEEE International Radar conf, Washington D C, USA, 2000:769-774
    [49] Guerci J R, Baranoski E J. Knowledge-aided adaptive radar at DARPA. IEEE signal processing magazine, 2006:41-50
    [50] Melvin M L, Guerci J R. Knowledge-Aided Signal Processing: A new paradigm for radar and other advanced sensor. IEEE transactions on aerospace and electronic systems, VOL 42, No 3, 2006:983-996
    [51] Melvin M L, Michael W, et al. Knowledge-based Space-Time Adaptive Processing for Airborne Early Warning Radar. IEEE AES Systems Magazine, April 1998:37-42
    [52] Melvin W L. A STAP Overview. IEEE A&E Systems Magazine, Vol.19, No.1, January 2004, Part 2:19-35
    [53] Richmond C D. Statistical performance analysis of the adaptive sidelobe blanker detection algorithm. Proc 31st Annu. Asilomar Conf Signals, Systems, computers, 1997
    [54] Melvin W L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Tran AES, Vol. 36, No. 2, April 2000: 621-633
    [55] Wang Yongliang, Li Tianquan. Overview and Outlook of Space Time Adaptive Signal Processing for Airborne Radar. Journal of CAEIT. Vol. 3 No.3, Jun 2008
    [56]谢文冲,王永良.非均匀杂波环境STAP方法研究.自然科学进展,第17卷,第4期, P513- P 519, 2007年04月.
    [57]刘聪锋,廖桂生.基于相对距离准则的STAP协方差矩阵估计算法.系统工程与电子技术,第30卷,第2期, P244-P248, 2008年02月.
    [58]刘聪锋,廖桂生.基于Bayes准则的STAP协方差阵估计算法.西安电子科技大学学报(自然科学版),第35卷,第2期, P223-P227, 2008年04月.
    [59] Wenchong Xie, Jianwen Chen, and Yongliang Wang. Study on STAP in Non-homogeneous Clutter Environment. IEEE, 2008
    [60] Ting Shu, Jin He, and Xingzhao Liu. Robust STAP in Non-Gaussian Clutter via Infinity-norm Snapshot-normalization. IEEE, 2008
    [61] Melvin W L, Wicks M C. Improving practical space-time adaptive radar. Proc. of the IEEE National Radar Conf, Syracuse, NY, USA, 1997: 48-53.
    [62] Adve R S, Hale T B, Wicks M.C. Transform domain localized processing using measured steering vectors and non-homogeneity detection. Proc. of the IEEE National Radar Conf, Boston, MA, USA, 1999: 285-190
    [63]吴仁彪,机载相控阵雷达时空二维自适应滤波的理论与实现,[博士学位论文],西安电子科技大学,1993.12。
    [64] Richmond C. D., The theoretical performance of a class of space-time adaptive detection and training strategies for airborne radar. Proc. Thirty-Second AsilomarConf. Signals, Systems, Compute, Vol.2, 1998: 1327-1331.
    [65] Fabrizio G. A. and Turley M. D., An advanced STAP implementation for surveillance radar systems, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001: 134-137
    [66] William L. Melvin and Michael C. Wicks. Improving Practical Space-Time Adaptive Radar. IEEE National Radar Conference, P48-53, 1997
    [67]董瑞君,机载雷达非均匀STAP方法及其应用,[博士学位论文],西安电子科技大学,2002.09
    [68] Guerci, J.R. Knowledge-aided sensor signal processing and expert reasoning. In Proceedings of 2002 Knowledge-Aided Sensor signal Processing and Expert Reasoning (KASSPER) Workshop, Washington, Dc, 2002
    [69] William L.Melvin, Joseph R. Guerci. Knowledge-Aided Signal Processing: A New Paradigm for Radar and Other Advanced Sensors. IEEE Transactions on Aerospace and Electronic Systems, Vol.42, No. 3 July 2006
    [70] Prashanth R. Gurram, Nathan A. Goodman, Spectral-Domain Covariance Estimation with A Priori Knowledge. IEEE Transactions on Aerospace and Electronic Systems, Vol.42, No. 3 July 2006, P1010-1020
    [71] William L.Melvin, Gregory A. showman. An Approach to Knowledge-Aided Covariance Estimation. IEEE Transactions on Aerospace and Electronic Systems, Vol.42, No. 3 July 2006
    [72] Shannon D.Blunt, Karl Gerlach, Muralidhar Rangaswamy. STAP using Knowledge-Aided Covariance Estimation and the FRACTA Algorithm. IEEE Transactions on Aerospace and Electronic Systems, Vol.42, No. 3 July 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700