BaTiO_3基陶瓷介电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡(BaTiO_3)是一种具有钙钛矿结构(ABO_3)的介电材料,由于具有铁电、压电、高介电常数和正温度系数效应等优异的电学性能,是高介电陶瓷电容器的主要原材料。并且钛酸钡系列的弛豫铁电陶瓷由于其极高的介电常数、相变温度和弛豫化的相变行为等优良特性,成为多层陶瓷电容器必不可少的介质材料。因此,研究具有弛豫性能的BaTiO_3陶瓷已引起人们极大的研究兴趣。
     本论文采用固相反应法制备了Ba(Ti_(0.91)Zr_(0.09))O_3陶瓷,结合实验结果探讨了掺杂对Ba(Ti(0.91)Zr_(0.09))O_3陶瓷的烧结特性、介电弛豫特性、相变特性以及材料的铁电、压电性质的影响。主要内容为:
     1.研究了CuO-BaO混合物的液相烧结特性。研究发现,无论在预烧前和预烧后添加CuO-BaO(Cu/Ba=2.5)混合物能有效降低陶瓷烧结温度,但是预烧前加入发现在斜方-四方相变峰处有弛豫现象出现。改变Cu/Ba比,斜方-四方、四方-立方相变峰变得平坦,弛豫现象更加明显。电滞回线呈现典型弛豫铁电体的特征,压电性能研究发现陶瓷的压电系数随晶粒尺寸的增大而增大。
     2.研究了不同氧化物(A位:Bi_2O_3,Li_2O.B位:CuO,MoO_3,Al_2O_3)掺杂对Ba(Ti_(0.91)Zr_(0.09))O_3陶瓷的介电性能的影响。根据电荷平衡,A位或B位异价掺杂会导致缺陷的产生。研究发现,当掺杂量较大时,陶瓷材料出现了明显的频率色散和弥散相变,因此它们属于弛豫铁电体,并且随着掺杂量的增加,弛豫的程度也加大。弛豫的原因是异价掺杂离子的电价、离子半径,极化率的不同导致材料内部无序度增加,产生局域应变,局域应变又诱发极性微区形成的。
     3.研究了AB位共掺(Bi-Al,Li-Mo)对Ba(Ti_(0.91)Zr_(0.09))O_3陶瓷的介电性能的影响。发现共掺后,陶瓷更容易从正常铁电体转变为弛豫铁电体,原因是A,B位同时掺杂后,A位,B位及AB位协同作用将增加无序的程度,更容易诱发极性微区形成弛豫现象。
Barium titanate(BaTiO_3) is a dielectric material, with a perovskite (ABO_3) structure, it is the primary material for high dielectric constant ceramic capacitors due to its excellent electronic performance, such as ferroelectric, piezoelectric, high dielectric constant and positive temperature coefficient effect, etc. And relaxor ferroelectrics based on BaTiO_3 are important dielectric of multilayer ceramics capacitor because of their large permittivity, phase transition temperature and relaxor phase transition behavior. Therefore, for its many applications in electronic devices, the study of relaxor property on BaTiO_3 ceramic has attracted a considerable amount of researchers' interesting.
     In this thesis, Ba(Ti_(0.91)Zr_(0.09))O_3 ferroelectric ceramics are prepared by a traditional solid phase reaction. Sintering characteristic, phase transition and ferroelectric, piezoelectric properties of Ba(Ti_(0.91)Zr_(0.09))O_3 ceramics doped with additive have been investigated. The main results are as follows:
     1. Sintering characteristic of Ba(Ti_(0.91)Zr_(0.09))O_3 ceramics are investigated for CuO-BaO mixture addition. The results showed that in spite of pre-calcined or post-calcined Ba(Ti_(0.91)Zr_(0.09))O_3, CuO-BaO additives can lower the sintering temperature, but dielectric relaxor properties is observed at orthorhombic -tetragonal phase transition point for pre-calcined Ba(Ti_(0.91)iZr_(0.09))O_3 with CuO-BaO addition. With increasing of Cu/Ba ratio, orthorhombic-tetragonal and tetragonal-cubic dielectric phase transition peak becomes flat, relaxation phenomenon is obviously observed. The polarization hysteresis loops exhibits a typical relaxor ferroelectric behavior. The research on piezoelectric properties discovers that piezoelectric coefficients increase with increasing grain size.
     2. The effect of doped with diversity oxide (A-site: Bi_2O_3, Li_2O, B-site: CuO, MoO_3, Al_2O_3) on dielectric property of Ba(Ti_(0.91)Zr_(0.09))O_3 ceramics are investigated. According to charge balance principle, the defects are induced by A-site or B-site heterovalent substitute for Ba(Ti_(0.91)Zr_(0.09))O_3 ceramics. The results show that the samples became relaxor ferroelectric when rather large doping contents. And with the increasing of doping content, the phase transition became more relaxed. The different valence, radius and polarization of heterovalent ion substitution in the material lead to increase disorder and create local-strain. This could be attributed to polar nanoregions which are brought by local-strain.
     3. The effect of cationic substitution of A and B-site (Bi-Al, Li-Mo) for Ba(Ti_(0.91)Zr_(0.09))O_3 ceramics on dielectric property are investigated. The evolution from a normal ferroelectric to a relaxor ferroelectric is easily observed for A and B-site codoped. The more polar nanoregions induced by A and B-site co-doping, the more easily relaxor property occurred,
引文
[1] 杨邦朝,蒋明,蓬勃发展的无源元件,电子元件与材料,(2000)10,1-2
    
    [2] Duan X, Luo W, Wu W, et al, Dielectric response of ferroelectric relaxors, Solid StateCommunication, (2000)114,597-600
    
    [3] Sanjiv Kumar, Raju V S, Kutty T R N, Investigations on the chemical state of sinteredbarium titanate by X-ray photoelectron spectroscopy, Applied Surface Science, (2003)206,250-261
    
    [4] Bastow T J, Whitfield H J, Ba and Ti NMR: Electric Field Gradients in Non-cubic phase ofBaTiO_3, Solid State Communications, (2001)117,483-488
    
    [5] Shuvolov L A, Physics properties of ferroelectric, Journal of Physics Society Japan,Supplement (1970)24, 38
    
    [6] 孙目珍,电介质物理基础,广州:华南理工大学出版社,(2000)3,196-197
    
    [7] 李标荣,莫以豪,王筱珍等,北京:国防工业出版社,(1980)1,230-265
    
    [8] 钟维烈,铁电体物理学,北京:科学出版社,(1998)2,366~367
    
    [9] Thakur O P, Chandra Prakash, Agrawal D K, Dielectric behavior of Ba_(0.95)Sr_(0.05)TiO_3 ceramics sintered by microwave, Materials Science and Engineering, (2002) B96,221-225
    
    [10] Tsau You-Ming, Chen Yi-Chun, Cheng Hsiu-Fung, Ferroelectric (Ba, Sr) TiO_3 and Ba (Zr, Ti)O_3 thin films prepared by pulsed laser deposition, Journal of the European Ceramic Society, (2001)21,1561-1564
    
    [11] 丁士文,李兰芬,王杏田,纳米Ba_(1-x)Ca_xTi_(1-y)Zr_yO_3的制备结构与介电性能,无机盐工业,(2004)36,21-23
    
    [12] Abicht H P, Voltzke D, Schmidt H, Preparation, characterization and sintering behavior of barium titanate powders coated with Ba-, Ca-, Si- and Ti-containing components, Materials Science and Engineering, (2004)54,57-81
    
    [13] Lin Ming-Hong, Lu Hong-Yang, Densification retardation in the sintering of La_2O_3-doped barium titanate ceramic, Materials Science and Engineering (A), (2002)323,167-176
    
    [14] 丁士文,王静,微波反应合成纳米Ba_(1-x)Zn_xTi_(1-y)Sn_yO_3介电材料及其结构能研究,化学学报,(2002)60,2141-2144
    
    [15] 卢艳,梁辉,掺杂Y~(3+),Dy~(3+)的BaTi_(0.91)Sn_(0.09)O_3陶瓷系统介电性能研究,硅酸盐通报,(2002)21,8-11
    
    [16] Sakabe Ken-ichi, Ferroelectric characteristics of Y-doped barium zirconium titanateceramics, Ceramics International, (2002)28, 657-661
    
    [17] Bahri F, Khemakhem H, Simon A, et al, Dielectric and pyroelectric studies on theBa_(1-3a)Bi_(2a)TiO_3 classical and relaxor ferroelectric ceramics, Solid State Science, (2003)5,1235-1238
    
    [18] Dobal P S, Dixit A, Katiyar R S, Micro-Raman scattering and dielectric investigations ofphase transition behavior in the BaTiO_3-BaZrO_3 system, Journal of Applied Physics, (2001)89,8086-8091
    
    [19] Straube U, Langhammer H T, Abicht H P, et al, Elastic behaviour of multiplayerpiezoceramic BaTi_(1-x)Sn_xO_3 in the lower MHz region, Journal of the European Ceramic Society,(1999)19,1171-1174
    
    [20]张孝文,黄勇,Ca~(2+)离子在BaTiO_3晶格中B位的固溶度,硅酸盐学报,(1987)30,372-380
    
    [21] 刘波,庄志强,王歆,铌钴镧掺杂对BaTiO_3陶瓷结构与介电性能的影响,电子元件与材料,(2006)24,36-38
    
    [22] Stojanovic B D, Foschini C R, Zaghete M A, Size effect on effect on structure anddielectric properties of Nb-doped Barium titanate, Journal of Materials Processing Technology,(2003)143, 802-806
    
    [23]Yung Park, Yoonho Kim, Dielectric temperature charactristic of additives modified bariumtitanate having core-shell structure ceramics, Journal of Materials Research, (1995)10,2770-2776
    
    [24]Yung Park, Se Ahn Song, Influence of core-shell structure grain on dielectric properties ofcerium-modified barium titanate, Journal of Materials Science: Materials in Electronics,(1995)6, 380-388
    
    [25]李弢,李龙土,桂治轮,CeO_2掺杂BaTiO_3基X7R材料的介温特性,功能材料增刊,(2000)31,55-56
    
    [26]Yung Park, Model of a diffuse domain wall, Solid State Communications, (2001)117,523-525
    
    [27]Yung Park, Se Ahn Song, Effect of grain size and external stress on dielectric temperaturecharacteristics of dysprosium modified barium titanate, Materials Science and Engineering B,??(1997)B47,28-32
    
    [28]Tao Li, Longtu Li, Yi Kou et al, Stable temperature dependence of dielectric properties inBaTiO_3-Nb_2O_5-Co_3O_4-Gd_2O_3 system, Journal of Materials Science Letters,(2000)19,995-997
    
    [29]Hiroshi Kishi, Noriyuki Kohzu, Junichi Sugino et al, Effect of rare-earth (La, Sm, Dy, Hoand Er) and Mg on the microstructure in BaTiO_3, Journal of European Ceramic Society,(1999)19,1043-1046
    
    [30]Hiroshi Kishi, Yoshikazu Okino, Mutsumi Honda et al, Effect of MgO and rare-earth oxideon formation behavior of core-shell structure in BaTiO_3, Japanese Journal of Applied Physics,(1997)36, 5954-5957
    
    [31] Walker B E, Rice R W, Pohanka R C, et al, Densification and strength of bariumtitanate(Ⅳ) with lithium fluoride and magnesium oxide additives, Am Ceram Soc Bull,(1976)55,174-176
    
    [32] Haussonne J M, Desgardin G, Bajolet P H, et al, Barium titanate perovskite sintered withlithium fluoride, J Am Ceram Soc, (1983)66, 801-807
    
    [33] Tolino D A, Blum J B, Effect of barium titanium radio on densification of lithiu(?)fluoride-fluxed barium titanate, J Am Ceram Soc, (1985)68,292-294
    
    [34] Wang S F, Yang T C, Liquid-phase sitering and chemical inhomogeneity in theBaTiO_3-BaCO_3-LiF system. J Mater Res, (2000)15,407-416
    
    [35] 王晓慧,蒋宁扬,赵玉芬等,磷掺杂钛酸钡陶瓷烧结过程及介电性能研究.功能材料,(1998)29,613-615
    
    [36] Qi Q, Gui Z L, Li W, et al, Temperature stable Ba_(1-x)Cd_xTiO_3 dielectric, Materials Letters, (2002)56,507-511
    
    [37] 范恩荣,促进陶瓷烧成的新途径,电瓷避雷器,(2002)186,6-9
    
    [38] 王晓慧,陈任政,桂治轮等,超高介电常数、温度稳定型多层陶瓷电容器材料及其制备方法,CN1:397957
    
    [39] Cross L E, Relaxor ferroelectrics: an overview, Ferroelectrics, 1994,151, 305-320
    
    [40] Ye Z G, Relaxor ferroelectric complex perovskites: structure, properties and phase transitions. Key Engineering Material, (1998)155, 81-122
    
    [41] Zhang Q M, Bharti V, Zhao X, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluo roethylene), copolymer Science, (1998)280, 2101-2104
    
    [42] Smolensky G A, Physical phenomena in ferroelectrics with diffuse phase transition, Journal of Physics Society Japan, Supplement (1970)28,26-37
    
    [43] Smolenskii G A, Bokov V A, Isupov V A, et al, The Physics Theory of Ferroelectric Properties, Nauka Leningrad, (1985)5,456-503
    
    [44] Burfoot J G, Taylar G W, Isupov V A, Some Problems of diffuse ferroelectric phase transition, Ferroelectrics, (1989)90,113-118
    
    [45] Tiwari V S, Pandy D, Structure and properties of (Ba, Ca)TiO_3 ceramics prepared using (Ba, Ca)CO_3 precursors: II diffuse phase transition behavior, Journal of American Ceramics Society, (1994)77,1819-1824
    
    [46] Stenger C GF, Burggraaf AJ, Order-disorder reactions in the ferroelectric perovskites Pb(SC_(1/2)Nb_(1/2))O_3 and Pb(Sc(1/2)Ta_(1/2))O_3: II Relation between ordering and properties, Physics State Solid A, (1980)61,653-664
    
    [47] Yao Xi, Chen Zhili, Cross L E, Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics, Journal of Applied Physics, (1983)54,3399-3403
    [48] Yin Z W, Diffuse phase transitions of ferroelectrics, Ferroelectrics, (1988)87,85
    [49] Westphal V, Kleemann W, Glinchuk M D, Diffuse phase transitions and randomfield induced domain states of the relaxor ferroelectric PbMg_(1/3)Nb_(2/3)O_3, Physics Review Letters, (1992)68, 847-850
    
    [50] Kleeman W, Klossner A, Glassy and domain states in random dipolar systems, Ferroelectrics, (1993)150, 35-45
    
    [51] Kleemann W, Random-field induced antiferromagnetic, ferroelectric and structural domain states, Int J Mod Phys B, (1993)7,2469-507
    
    [52] Qian H, Bursill L A, Random-field Potts model for the polar domains of lead magnesium niobate and lead scandium tantalite, Int J Mod Phys B, (1996)10,2027-2047
    [53] Qian H, Burlsill L A, Phenomenological theory of the dielectric response of lead magnesium niobate and lead scandiumtantalate, Int J Mod Phys B, (1996)10, 2007-2025
    [54] Glazounov A E, Tagantsev A K, Bell A J, Evidence for domain-type dynamics in the ergodic phase of the PbMg_(1/3)Nb_(2/3)O_3 relaxor ferroelectric, Physics Review B, (1996)53,11281
    [55] Hennings D, Svhnell A, Simon G, Diffuse ferroelectric phase transitions in Ba(Zr_xTi_(1-x))O_3
    ceramics, J Am Ceram Soc, (1982)65, 539-544
    
    [56] Zheludev I S, Solid State Physics, New York: Academic press, 1971,429
    
    [57] Cady W G, Piezoelectricity, New York: McGraw-Hill Book Co, 1946, 57
    
    [58] 方俊鑫,殷之文,电介质物理学,北京:科学出版社,2000,1-11
    
    [59] Cohen R E, Theory of ferroelectrics: a vision for the next decade and beyond, Journal ofPhysics and Chemistry of Solids, (2000)61,139-146
    
    [60] Boyer L L, Cohen R E, Krakauer H, et al, First principles calculations for ferroelectrics-avision, Ferroelectrics, (1990)111,1-7
    
    [61] David Vanderbilt, First-principles based modeling of ferroelectrics, Solid State andMaterials Science, (1997)2,701-704
    
    [62] King-Smith R D, Vanderbilt D, First-principles investigation of ferroelectricity inperovskite compounds, Phys Rev, (1994)49, 5528-5844
    
    [63] Cohen R E, Krakauer H, Lattice dynamics and origin of ferroelectricity in BaTiO_3:linearized augmented plane wave total energy calculations, Phys Rev, (1990)42, 6416-6423
    
    [64] Zhong W, Vanderbilt D, Rabe K M, Phase transitions in BaTiO_3 from first principles,Phys Rev Lett, (1994)73,1861-1864
    
    [65] Zhong W, Vanderbilt D, Rabe K M, First-principles theory of ferroelectric phase transitionfor perovskites: the case of BaTiO_3, Phys Rev, (1996)52,13236-13246
    
    [66] Axe J D, Apparent ionic charges and vibrational eigenmodes of BaTiO_3 and otherperovskites, Phys Rev, (1997)157,429-435
    
    [67] Mazin I I, Cohen R E, Notes on the static dielectric response function in the densityfunction theory, Ferroelectrics, (1997)194, 263-270
    
    [68] Saghi-Szabo G, First-principles study of piezoelectricity in PbTiO_3, Phys Rev Lett,(1998)80,4321-4324.
    
    [69] Krakauer H, Saghi-Szabo G, First-principles study of piezoelectricity in tetragonal PbTiO_3and PbZr_(1/2)Ti_(1/2)O_3, Phys Rev Lett, (1999)42, 6416-6423
    
    [70] Cohen R E, Krakauer H, Electronic structure studies of the differences in ferroelectricbehavior of BaTiO_3 and PbTiO_3, Ferroelectrics, (1992)136, 65-84
    
    [71] Cohen R E, Origin of ferroelectricity in oxide ferroelectrics and the difference inferroelectric behavior of BaTiO_3 and PbTiO_3, Nature, (1992)358,136-138
    [72] Ghosez P, Cockayne E, Waghmare U V, et al, Lattice dynamics of BaTiO_3, PbTiO_3, and PbZrO_3: a comparative first-principles study, Phys Rev, (1994)49, 5528-5844
    
    [73] Gong Z, Cohen R E, Molecular dynamics study of PbTiO_3 using non-ernpirical potentials, Ferroelectrics, (1992)136,113-124
    
    [74] Yu R, Krakauer H, First-principles determination of chain-structure in stability in KNO_3, Phys Rev Lett, (1995)74,4067-4070
    
    [75] Singh D, Local density and generalized gradient approximation studies of KNbO_3 and BaTiO_3, Ferroelectrics, (1995)164,143-152
    
    [76] Comes R, Lambert M, Guinier A, The chain-structure of BaTiO_3 and KNbO_3, Solid State communications, (1998)6,715-719
    
    [77] Posternak M, Resta R, Baldereschi A, Roles of covalent bonding in the polarization of perovskite oxides: the case of KNbO_3, Phys Rev, (1994)50, 8911-8914
    
    [78] Bakker H J, Hunsche S, Kurz H, Quantum-mechanical description of the ferroelectric phase transition in LiTaO_3, Phys Rev, (1993)48, 9331-9335
    
    [79] Inbar I, Cohen R E, Comparison of the electronic structures and energetics of LiTaO_3 and LiNbO_3, Phys Rev, (1994)53,1193-1204
    
    [80] Huber J E, Fleck N A, Landis C M, et al, A constitutive model for ferroelectric polycrystals, Journal of the Mechanics and Physics of Solids, (1999)47,1663-1697
    
    [81] Jingquan Cheng, Biao Wang, Shanyi Du, A statistical model for predicting effective electroelastic properties of polycrystalline ferroelectric ceramics with aligned defects, International Journal of Solids and Structures, (2000)37,4763-4781
    
    [82] Chunlei Wang, David R Tilley, Model for a simple order-disorder ferroelectric superlattice, (2001)118,333-338
    
    [83] Kvyatkovskii O E, Theory of isotope effect in displacive ferroelectrics, Solid State Communications, (2001)117,455-459
    
    [84] Borstel G, Eglitis R I, Kotomin E A, et al, Modeling of defects and surfaces in perovskite, ferroelectrics, (2002)237, 687-693
    
    [85] Vincent Meyer, Jean-Michel Sallese, Pierre Fazan, et al, Modeling the polarization in ferroelectric materials: a novel analytical approach, Solid-State Electronics, (2003)47, 1479-1486
    
    
    [86] Wang Yuguo, Zhang Peilin, Qu Baodong et al, Oriented PbTiO_3 films from metalorganicprecursors, Journal of Applied Physics, (1992)71, 6121
    
    [87] Shieh J, Huber J E, Fleck N A et al, Selection of sensor, Progress in Materials Science,(2001)46,461-504
    
    [88] Toshio Ogawa, Domain structure of ferroelectric ceramics, Ceramics International,(2000)26,383-390
    
    [89] Shaoping Li, Eastman J A, Foster C M, et al, Size effects in nanostructured ferroelectrics,Physics Letters, (1996)212,341-346
    
    [90] Richard Martin M, Gerardo Ortiz, Recent developments in the theory of electricpolarization in solids, Solid State Communications, (1997)102,121-126
    
    [91] 干福熹,信息材料(Information Materials),天津:天津大学出版社,2000,508-524
    
    [92] Duan X, Luo W, Wu W, et al, Dielectric response of ferroelectric relaxors, Solid StateCommunications, (2000)114, 597-600
    
    [93] Boscolo I, Cialdi S, High dielectric constant ceramics for ion-electron sources, NuclearInstruments and Methods in Physics Research, (2002)489, 32-37
    
    [94] Zhong W, Vanderbilt D, Rabe K M, Phase transitions in BaTiO_3 from first principles,Phys Rev Lett, (1994)73,1861-1864
    
    [95] Lang S B, Sourcebook of Pyroelectricity, New York: Gordon and Breach, 1974,3-4
    
    [96] Hennings D, Mayr W, Thermal decomposition of (BaTi) citrates into barium titanate,Journal of Solid State Chemistry, (1978)26, 329-338
    
    [97] Cheng-Fu Yang, The Influence of CuO-BaO Mixture Addition on the Grain Growth andDielectric Characteristics of BaTiO_3 Ceramics, Ceramics International, (1998)24, 341-346
    
    [98] Roy R, Meikle S E, Role of discrete event simulation techniques in finite capacityscheduling, Journal of the Operational Research Society, (1995)46,1310-1321
    
    [99] Arlt G, Henning D, de with G, Dielectric properties of fine-grained barium titanate ceramic,J Appl Phys, (1985)58,1619-1625
    
    [100] 熊俊文,孙娟萍,夏丹等, Ba(Zr_xTi_(1-x))O_3弛豫铁电体的介电性能研究,武汉化工学院学报,(2006)28,32-34
    
    [101] Timothy R Armstrong, Laurie E Morgens, Alena K Maurice, Effect of Zirconia on microstructure and dielectric properties of Barium Titanate ceramics, J Am Ceram Soc,??(1989)72,605-611
    
    [102] 李标荣,无机介电材料,北京:国防工业出版社,1980,245
    
    [103] 陈建华,屈绍波,高坤华等,锰掺杂对(Na_(0.5)Bi_(0.5))TiO_3-BaTiO_3-(K_(0.5)Bi_(0.5))TiO_3陶瓷介电和压电性能的影响,(2006)35,1704-1707
    
    [104] Zhi Yu, Chen Ang, Ruyan Guo et al, Ferroelectric relaxor bahavior of Ba(Ti_(0.7)Zr_(0.3))O_3ceramics, Journal of Applied Physics, (2002)92,2655-2657
    
    [105] Shannon R D, Revised ejective ionic radii and systematic studies of interatomic distance in halides and chalcogenides, Acta Crystallogr, (1976)A32, 751
    
    [106] 李博,王晓莉,BaTi_(1-x)Sn_xO_3系铁电体的相变弥散与介电弛豫,硅酸盐通报,(2006)25,168-172
    
    [107]Yasuda N, Ohwa H, Asano S, Dielectric and phase transitions of Ba(Ti_xSn_(1-x))O_3 solidsolution, Jpn J Appl Phys Part 1, (1996)35,5099-5103
    
    [108] Zhi Y, Cheng A , Zhi J, et al, Dielectric properties of Ba(Ti, Ce)O_3 from 10~2 to 10~5Hz inthe temperature range 85-700 K, J Phys: Condens Matte, (1997)9, 3081-3088
    
    [109] Dobal P S, Dixit A , Katiyar R S, et al, Micro-Ram scattering and dielectric investigationof phase transition behavior in the BaTiO_3 -BaZrO_3 system, J Appl Phy, (2001)89, 8085-8091
    
    [110] Baskaran N, Chang H, Thermo-Raman and dielectric constant studies of Ca_xBa_(1-x)TiO_3ceramics, Mater Chem Phys, (2002)77, 889-894
    
    [111] Molokhia N M, Issa M A A, Nasser S A, Dielectric and X-ray diffraction studies ofbarium titanate doped with ytterbium, J Am Ceram Soc, (1984)67,289-291
    
    [112] Lemanov V V, Smirnova E P, Syrnikov P P, et al, Phase transitions and glasslikebehavior in Sr_(1-x)Ba_xTiO_3, Phys Rev B, (1996)54, 3151-3157
    
    [113] Kishi H, Kohzu N, Sugino J, et al, The effect of rare-earth (La, Sm, Dy, Ho and Er) andMg on the microstructure in BaTiO_3, J Eur Ceram Soc, (1999)3,1043-1046
    
    [114] Uchino K, Nomura S, Critical exponents of the dielectric constants in diffused phasetransitions crystals, Ferroelectrics Lett, (1982)44, 55-61
    
    [115] Shannon R D, Dielectric polarizabilities of ions in oxides and fluorides, Journal ofApplied Physics, (1993)73, 348-366
    
    [116] 林声和,压电陶瓷,北京:科学出版社,1979,74
    
    [117] Matjaz Valant, Danilo Suvorov, Robert C Pullar, et al, Amechanism for low-temperature??sintering,Journal of the European Ceramic Society,(2006)26,2777-2783
    
    [118] 崔爱莉,陈仁政,超细钛酸钡的表面改性,高等学校化学学报,(2001)12,2065-2067
    
    [119] 王守德,刘福田,程新,PZT掺杂Ba(Cu_(1/2)W_(1/2))O_3的压电陶瓷的性能研究,济南大学学报,(2004)18,189-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700