计算机硬盘磁头滑块的稳健设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机硬盘数据的读写操作是根据电磁反应原理,由记录数字子信息的磁介质(磁盘)和面向磁介质带有沟槽的小电磁体(磁头)的相对运动来完成的。由于磁盘的高速旋转使磁头和磁盘间隙中产生高速气流,该气流称为空气轴承,它产生的升力支撑磁头稳定的悬浮在磁盘上方。近年来,计算机的飞速发展,要求硬盘的存储密度越来越大。根据Wallence公式可知,降低磁头飞高对存储密度的提高影响很大。但随磁头飞高的降低,不可避免的造成磁头磁盘的碰撞及摩擦磨损。因此,设计合理的磁头滑块结构,提高磁头飞行稳定性迫在眉睫。
     本文首次把稳健设计思想引入到磁头滑块设计中,在上一届磁头滑块的优化设计基础上,对磁头滑块进行稳健设计。设计分为两部分:对飞行参数的稳健设计和对磁头滑块形状的稳健设计。本文以三体磁头滑块为例,以质量函数(力和力矩的残差平方和)为目标函数,加以设计变量和统计容差的约束,建立容差稳健设计模型并对其求解。目标函数也就是质量函数的确定是以指数函数为模型,利用气膜压强分布求值来拟合,然后用MATLAB软件对拟合函数进行仿真,并得到函数曲线对比图。在模型求解过程中,用FORTRAN语言进行编程,利用随机概率算法对其进行求解。结果表明,稳健设计后的磁头滑块飞行特性有了更大程度的改进,而且对磁存储技术的进一步发展有重要的现实意义。
Hard disk reading and writing operations is based on principles of electromagnetic respon-se. There is an air bearing between the head and disk, which support the head suspended above the stable. In recent years, the rapid development of the computer to require hard drive storage density is increasing. According to Wallence formula, lowering head flying high has a great influence on the increased storage density. Of course, it will increase the friction and wear between the head and the disk, so designing rational slider and improving flight stability is exigent.
     This is the first to introduce robust design into the design of magnetic head slider on the based of the optimal design of slider. The design is divided into two parts:the robust design of the flight parameters and the robust design of slider shape. In this article, takes the three-body slider as example and take the quality function as the objective function to build a tolerance model and restricting it and solving it. The objective function is simulated using the exponential function model. Then programming by the MATLAB software and getting the function curve comparison chart. In the model the solution process, using FORTRAN programming language and random probability algorithm to solve the model in the designing. The results show that the flight characteristic has a greater degree of improvement after the robust design of the slider, and also has important practical significance to the further development of magnetic storage technology.
引文
[1]Norio Tagawa, Noritaka Yoshioka,Atsunobu Mori. Effect of Ultra-Thin Liquid Films on Dynamics of Nano-Spacing Flying Head Sliders in Hard Disk Drives. ASME J. Triboligy,2004,126:565-572
    [2]Frank E.Talke. On Tribological Problems in Magnetic Disk Recording Technology. WEAR.1995,190:232-238
    [3]Du,X., and Chen,W., Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design, ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2002:1-10
    [4]Brian H. Thornton, David B.Bogy. A Numerical Study of Air-Bearing Slider Form-Factors. ASME J. Tribology,2004,126:553-558
    [5]Bo Liu,Jin Liu,Tow-Chong Chong. Slider design for sub-3-nm flying height head-disk systems.Journal of Magnetism and Magnetic Materials 2005,287:339-345
    [6]Gans RF. Lubrication theory at arbitrary Knudsen number. ASME Journal of Tribology.1985,107:431-433
    [7]Fukui S. Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation:first report-derivation of a generalized lubrication equation including thermal creep flow. ASME Journal of Tribology,1988,110:253-262
    [8]FukuiS. KanekoR. A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems.
    [9]Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. ASME Journal of Tribology,1993,115:289-194
    [10]Weidong Huang. Bogy D B.The effect of the accommodation coefficient on slider air bearing simulation. ASME Journal of Tribology.2002,122:427-435
    [11]White J W. Nigam A.A factored implicit scheme for the numerical solution of the Reynolds equation at very low spacing. ASME Journal of Lubrication Technology, 1980,102:80-85
    [12]Cha Ellis. Bogy D B.A numerical scheme for static and dynamic simulation of sub-ambient pressure shaped rail sliders. ASME Journal of Tribology.1995,117:36-46
    [13]Yong Hu. Bogy D B. Solution of the rarefied gas lubrication equation using an additive correction based multi-grid control volume method. ASME Journal of Tribology.1998,120:280-288
    [14]LinWu. Bogy D B. Unstructured triangular mesh generation techniques and a finite volume numerical scheme for slider air bearing simulation with complex shaped rails. IEEE Transactions on Magnetics.1999,35:2421-2423
    [15]LinWu Bogy D B. Numerical simulation of the slider air bearing problem of hard disk drives by two multidimensional upwind residual distribution schemes over unstructured triangular mesh. Journal of Computational Physics.2001.172:640-657
    [16]Kogue K. Fukui Y. Mitsuya Y.etal. Design of negative pressure slider for magnetic recording disks.ASME Journal of Lubrication Technology.1983,105:496-502
    [17]White J W. Flying characteristics of the "Zero-load" slider bearing. ASME Journal of Lubrication Technology.1983,105:484-490
    [18]Hsia Y-T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. ASME Journal of Lubrication Technology.1983,105:120-130
    [19]Mitsuya Y, Ohkubo T. High Knudsen number molecular rarefaction effects in gas-lubricated slider bearing for computer flying heads. ASME Journal of Tribology.1987,109: 276-282.
    [20]Ruiz O J. Bogy D B. A numerical simulation of the head-disk assembly in magnetic hard disk files:part Ⅰ-component models. ASME Journal of Tribology.1990,112:593-602.
    [21]Ruiz O J. Bogy D B. A numerical simulation of the head-disk assembly in magnetic hard disk files:part Ⅱ-component models. ASME Journal of Tribology.1990,112:603-613.
    [22]Peng J. Hardie C E. Characteristics of air bearing suction force in magnetic recording disks. ASME Journal of Tribology,1996,118:549-554.
    [23]Fukui S, Matsuda R, Kaneko R.On the physical meanings of and in molecular gas film lubrication problems. ASME Journal of Tribology,1996,118:364369.
    [24]Hsiao H S, Bhushan B, Hamrock B J. Ultrathin liquid lubrication of magnetic head-rigid disk interface for near-contact recording:part Ⅰ-a closed-form solution to the Reynolds equation. ASME Journal of Tribology.1996,118:388-395
    [25]Hsiao H S. Bhushan B. Hamrock B J. Ultra-thin liquid lubrication of magnetic head-rigid disk interface for near-contact recording:part Ⅱ-shear thinning and thermal thinning. ASME Journal of Tribology.1996.118:396-401
    [26]Streator J L. Head-disk interface performance with a starved liquid bearing analytical solution to Reynolds equation in the near-contact regime. ASME Journal of Tribology.1996, 118:492-497.
    [27]Wang-Long Li. Surface roughness effects in hydrodynamic lubrication involving the mixture of two fluids. ASME Journal of Tribology.1998.120:772-780.
    [28]Lin Wu, Bogy D B. A generalized compressible Reynolds lubrication equation with bounded contact pressure.Physics of Fluids.2001.13:2237-2244.
    [29]White J W. Surface roughness effects on the load carrying capacity of very thin compressible lubricating films. ASME Journal of Lubrication Technology,1980,12:445-451.
    [30]Mitsuya Y, Fukui S. Stokes roughness effects on hydrodynamic lubrication, part Ⅰ-comparison between incompressible and compressible lubricating films. ASME Journal of Tribology,1986,108:151158.
    [31]Mitsuya Y.Stokes roughness effects on hydrodynamic lubrication. part Ⅱ-effects under slip flow boundary conditions. ASME Journal of Tribology,1986,108:159-166.
    [32]Mitsuya Y,Hayashi T. Numerical study of film thickness averaging in compressible lubricating films incurring stationary surface roughness. ASME Journal ofTribology,1990,112: 230-237
    [33]F J Alexander. A L Garcia and B J Alder. Direct simulation Monte Carlo for thin-film bearings Phys. Fluids A 1994:6,38-54
    [34]Lin Wu. D B Bogy. Effect of the intermolecular forces on the flying attitude of sub-5nm flying height air bearing sliders in hard disk drives. ASME Journal of Tribology.2002,124:562-567.
    [35]Dong-Hoon Choi, Sang-Joon Yoon. Static analysis of flying characteristics of the head slider by using an optimization technique. ASME Journal of Tribology,1994,116:90-94.
    [36]Havard Stenberg, Michael H Wahl, F E Talke. Numerical Investigation of tri-pad sliders and comparison to other slider design. Wear,1997,207:107-111.
    [37]White J W. Flying characteristics of the "zero-load" slider bearing. ASME Journal of Lubrication Technology,1983,105:484-490.
    [38]Sha Lu, Yong Hu, Matthew O'Hara,etc. Air bearing design, optimization, stability analysis and verification for sub-25nm flying. IEEE Transaction on Magnetics,1996,32(1): 103-109.
    [39]Sang-Joon Yoon, Dong-Hoon Choi. Design optimization of the taper-flat slider positioned by a rotary actuator. ASME Journal of Tribology,1995,117:588-593.
    [40]Hiromu Hashimoto, Yasuhisa Hattori. Improvement of the static and dynamic characteristics of magnetic head sliders by optimum design. ASME Journal of Tribology,2000,122:280-287.
    [41]Wang Yujuan, Chen Yunfei, Yue Zhenxing, etc. Configuration optimization of two-rail sliders on dynamic characteristic. Journal of Southeast University,2002,18(2): 114-118.
    [42]王玉娟,陈云飞,岳振兴,颜景平.高密度硬盘磁头形状的动态优化设计.东南大学学报(自然科学版),2002,32(4):1-4.
    [43]Chung-Jen Lu, Tai-Kuo Wang. New designs of HDD air-lubricated sliders via topology optimization. ASME Journal of Tribology,2004,126:171-176.
    [44]Hong Zhu, D B Bogy. Hard disc drive air bearing design:modified DIRECT algorithm and its application to slider air bearing surface optimization. Tribology International,2004,37:193-201.
    [45]Matthew A O'Hara, Yong Hu, D B Bogy. Effects of slider sensitivity optimization. IEEE Transaction on Magnetics,1996,32(5):3744-3746.
    [46]Masaaki Matsumoto,Yoshinori Takeuchi and Hiroshi Agar. Design and Performance of Novel Air Bearing Slider. IEEE Transactions on Magnetics,1994,30(6):4158-4160
    [47]Matthew A. O' Hara and D. B. Bogy. Robust Design Optimization Techniques for Ultra-Low Flying Sliders. IEEE Transactions on Magnetics,1995,31(6):2955-2957
    [48]Kiyoshi Hashimoto and Hidekazu Kohira. Flying Characteristics of Advanced Step Sliders
    [49]段传林、王玉娟等.PZT微驱动器磁头的动特性研究.传感技术学报,2006,19(5):2255-2259
    [50]傅现罗、孙征.超薄膜磁头滑块气动力特性.力学学报,1993,25(1):8-15
    [51]马纲、徐万孚等.建立雷诺方程的一种新概念.润滑与密封,2006(9):36-40
    [52]贺锋涛、冯晓强等.计算机硬盘磁头飞行高度实时监测及控制研究.西安文理学院学报,2007,10(4):53-56
    [53]段传林、王玉娟等.采用模拟退火算法对皮米磁头进行形状优化.机械工程学报,2007,43(12):217-221
    [54]陈慧敏、谭晓兰等人.磁头滑块压强分布的一种数值求解方法.润滑与密封,2009,34(5):47-50
    [55]陈立周等,稳健设计.北京:机械工业出版社,1999.11-14
    [56]陈立周等,稳健设计.北京:机械工业出版社,1999:197-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700