腺病毒介导重组人源化ING4基因抑制非小细胞肺癌NCI-H460细胞生长机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:重组构建人源化ING4腺病毒表达载体,并探究其对非小细胞肺癌NCI-H460细胞株体内外生长抑制作用及其相关分子机制。
     方法:运用定点突变技术,在已成功克隆mING4(鼠ING4)的基础上,根据hING4(人ING4)氨基酸序列,进行重组构建。设计两对突变引物P1、P2和P3、P4及全长ING4上下游引物P5、P6,通过四轮PCR,将mING4基因序列进行人源化改造,获得了编码hING4氨基酸的基因序列(简称ING4)。将获得酶切目的基因片段,连接到转移载体pAdTrack-CMV上,形成重组转移载体pAdTrack-CMV-ING4。重组转移载体经PmeI酶切后与pAdEasy-1腺病毒载体在BJ5183大肠杆菌中同源重组,得到重组腺病毒载体pAdeasy-1-pAdTrack-CMV-ING4,经PacI酶切后脂质体转染QBI-293A包装细胞,获得重组腺病毒Ad-ING4。通过类似的方法获得了重组空载体病毒Ad-null。将获得同源重组Ad-ING4病毒感染非小细胞肺癌NCI-H460细胞(p53野生型),运用RT-PCR及荧光显微镜检测ING4基因在H460细胞中表达及对H460细胞毒作用(CPE);运用MTT法、细胞集落形成试验及流式细胞仪检测Ad-ING4对肿瘤细胞生长抑制及诱导凋亡作用;运用激光共聚焦显微镜及透射扫描电镜检测H460细胞经ING4基因作用后形态学改变;运用RT-PCR、Western-blotting检测分析Ad-ING4诱导肿瘤细胞凋亡可能分子机制;运用RT-PCR和ELISA方法检测ING4基因对肿瘤主要血管生成相关基因VEGF的作用;在nu/nu裸鼠皮下建立NCI-H460肺癌荷瘤鼠模型,观察Ad-ING4基因对肿瘤生长抑制作用及对血管生成影响。
     结果:基因序列检测和RT-PCR结果证实获得重组人源化ING4基因,并成功构建重组人源化ING4腺病毒表达载体。RT-PCR和荧光显微镜检测证实ING4基因可以在H460细胞中稳定表达并对H460细胞产生细胞毒作用(CPE);MTT检测和细胞集落形成试验结果表明较对照组(Ad-null组, PBS组)相比,ING4基因可以明显抑制基因治疗组肿瘤细胞生长;流式细胞仪检测证实Ad-ING4可诱导肿瘤细胞凋亡;激光共聚焦显微镜和透射扫描电镜检测显示H460细胞经ING4基因作用后可发生细胞凋亡形态学改变,并出现凋亡小体;RT-PCR、Western-blotting检测结果提示Ad-ING4基因以p53依赖方式诱导肿瘤细胞上调p21和Bax基因表达,下调Bcl-2和Survivin基因表达来诱导肿瘤细胞凋亡;RT-PCR和ELISA检测提示ING4基因可以抑制肿瘤主要血管生成相关基因VEGF表达;体内试验表明Ad-ING4基因可以抑制肿瘤生长并抑制肿瘤体内血管生成。
     结论:运用定点突变技术对mING4进行了人源化改造,并成功重组构建了人源化ING4腺病毒表达载体;经RT-PCR和荧光显微镜检测证实腺病毒Ad-ING4可以在非小细胞肺癌NCI-H460细胞株中稳定表达;腺病毒Ad-ING4在非小细胞肺癌NCI-H460细胞株中表达可致肺癌细胞产生细胞病变(CPE),并主要通过诱导细胞凋亡和抑制肿瘤血管生成来抑制肿瘤细胞增殖;腺病毒Ad-ING4诱导非小细胞肺癌NCI-H460细胞凋亡的主要分子机制是以p53依赖方式上调促凋亡因子Bax表达,下调Bcl-2、Survivin表达,诱导肿瘤细胞凋亡;腺病毒Ad-ING4同时通过促进p53反应基因p21表达,上调Bax表达,并改变Bax/Bcl-2比例,促进肿瘤细胞凋亡;腺病毒Ad-ING4可以抑制肿瘤主要血管生成相关基因VEGF的表达,并在体内抑制肿瘤血管生成;腺病毒Ad-ING4注射可以抑制H460实体瘤肿瘤生长。
Objective: To construct a recombinant hING4 adenovirus vector and to explore the potential mechanisms of ING4 gene in suppressing non-small cell lung cancer NCI-H460 cells growth in vitro and in vivo.
     Methods: Using site-specific mutagenesis technique, mING4 gene was changed into hING4 gene after fourth cycle PCR. hING4 cDNA was introduced into the shuttle plasmid pAdTrack-CMV, the recombinant shuttle plasmid (pAdTrack-CMV-ING4) and the backbone plasmid(pAdEasy-1) were linealized with PmeI digestion and then under co-transformation in bacteria E. coil BJ5183.Then, the newly recombinant plasmid pAdEasy-1-pAdTrack-CMV-ING4 was linearized with Pac I and was transferred into QBI-293A cells to form Ad-ING4.The control virus Ad-null with GFP was constructed in the same manner.The recombinant adenoviruses were amplified in QBI-293A cells, and viruses were purified from these cells to obtain viral stock.Non-small cell lung cancer NCI-H460 cells were transfected with Ad-ING4, RT-PCR and fluorescent microscopy were used to detect ING4 expression in H460 cells, Cytotoxicity assay and colony formation assay were used to evaluate the role of ING4 on cell growth, Flow cytometry was used to evaluate the role of ING4 in inducing apoptosis, Laser scan confocal microscope(LSCM) and transmission electron microscope were used to observe the morphology change of H460 cell. RT-PCR and Western-blotting were used to explore the potential mechanism of ING4 gene in inducing apoptosis. RT-PCR and ELISA were used to evaluate the role of ING4 on angiogenesis related gene vascular endothelial growth factor (VEGF), the effect and mechanism of Ad-ING4 in vivo was observed through the H460 subcutaneous model in nu/nu mice.
     Results: Sequencing and RT-PCR results proved that recombinant hING4 gene was constructed successfully. ING4 gene was also proved expression in Ad-ING4 transfected H460 cells by RT-PCR and fluorescent microscopy. Cytopathic effect (CPE) was found in Ad-ING4 transfected H460 cells. Cytotoxicity assay and colony formation assay results show that the viability and growth of Ad-ING4 transfected H460 cells were significantly inhibited compared with Ad-null and PBS control groups. RT-PCR and Western-blotting results proved that apoptosis related gene Bax was up-regulted expression whereas Bcl-2 and Survivin were down-regulated expression in Ad-ING4 transfected H460 cells. p53-responsive gene p21 was also up-regulated in Ad-ING4 transfected H460 cells. RT-PCR and ELISA result show that ING4 gene can reduce the expression of VEGF in Ad-ING4 transfected H460 cells. Tumor growth and tumor vessel formation were repressed in H460 subcutaneous model.
     Conclusion: The recombinant adenovirus hING4 vector was constructed successfully, and Ad-ING4 can express in H460 cells which cause obviously CPE in ING4 transfected cells compared with control group cells. Ad-ING4 can repress H460 cells growth in vitro and vivo mainly through inducing apoptosis and inhibiting angiogenesis. Ad-ING4 induced H460 cells apoptosis via up-regulation Bax expression and down-regulation Bcl-2 and Survivin expression in a p53 dependent manner, accompanied by p53-responsive gene p21 up-regulation which might promote the expression of Bax, subsequently change the ratio of Bax/Bcl-2,leading to the apoptosis of H460 cells. RT-PCR and ELISA results proved that the expression of VEGF was significantly reduced in Ad-ING4 transfected H460 cells compared with Ad-null and PBS groups. In mice bearing tumors, intratumoral injections of Ad-ING4 significantly inhibited tumor growth.
引文
1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol, 2001, 2 (9):533-543.
    2. Stat bite. global cancer incidence 2000. J Natl Cancer Inst, 2003, 95(12):847.
    3. Schiller JH, Harrington D, belani CP, et al. Comparison of four chemot herapy regimens for advanced non-small cell lung cancer. N Engl J Med, 2002,346 (2): 92-98.
    4. Poulsen TT,Pedersen N,Poulsen HS.Replacement and suicide gene therapy for targeted treatment of lung cancer. Clin Lung Cancer, 2005, 6(4): 227-236.
    5. Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer.Cancer Gene Ther, 1999, 6(2):113-138.
    6. Word WS, Doronin K, Toth K, et al. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic. Curt Opin Immuno1, 1999, 11 (4): 380-386.
    7. Roy L, Holle W, Song E, et al. Efficient translocation and apoptosis induction by adenovirus encoded VP22-p53 fusion protein in human tumor cells in vitro. Anticancer Res, 2002, 22: 3185–3189.
    8. J L, Bramson M, Hitt J, et al. Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Ther, 1997, 4: 1069–1076.
    9. He TC, Zhou SB, Luis T, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A, 1998, 95: 2509–2514.
    10. Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family. Trends Cell Biol, 2002, 12 (11):532-538.
    11. Garkavtsev I, Grigorian IA, Ossovkaya VS, et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 1998, 391(6664): 295-298.
    12. Oren M, Damalas A, Gottlieb T, et al. Regulation of p53: Intricate loops and delicate balances. Biochem Pharmacol, 2002, 64(5/6): 865-871.
    13. Leung KM, Po LS, Tsang FC, et al. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Res, 2002, 62(17):4890-4893.
    14. Nagashima M, Shiseki M, Miura K, et al. DNA damage-inducible gene p331NG2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci U S A, 2001, 98: 9671-9676.
    15. Nagashima M, Shiseki M, Pedeux RM, et al. A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene, 2003, 22 (3):343-350.
    16. Shiseki M, Nagashima M, Pedeux RM, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res, 2003, 63(10): 2373-2378.
    17. Hu RM, Han ZG., Song HD, et al. Gene expression profiling in the human hypothalamus–pituitary–adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci U S A, 2000, 97: 9543–9548.
    18. Gunduz M, Nagatsuka H, Demircan K, et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene, 2005, 356:109–117.
    19. Kim S, Chin K, Gray JW, et al. A screen for genes that suppress loss of contact inhibition: Identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A, 2004, 101:16251–16256.
    20. Zhang X, Xu LS, Wang ZQ, et al. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Letters, 2004,570:7–12.
    21. Zhang X,Wang KS, Wang ZQ, et al. Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Bioph Res Co, 2005, 331:1032–1038.
    22. Ozer A, Bruick RK. Regulation of HIF by prolyl hydroxylases recruitment of the candidate tumor suppressor protein ING4. Cell Cycle, 2005, 4 (9):1153-1156.
    23. Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature, 2004, 428: 328–332.
    1.王金志,缪竞诚,盛伟华,等。ING4基因真核表达载体的构建及其功能。解剖学杂志, 2005, 28(4): 383-386。
    2.章春花,张海峰,盛伟华,等。mING4基因的腺病毒载体的构建与表达。苏州大学学报(医学版), 2006, 26(4): 547-549。
    3. Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer.Cancer Gene Ther, 1999, 6(2):113-138.
    4. Word WS, Doronin K, Toth K, et al. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic. Curt Opin Immuno1, 1999, 11(4):380-386.
    5. Roy L, Holle W, Song E, et al. Efficient translocation and apoptosis induction by adenovirus encoded VP22-p53 fusion protein in human tumor cells in vitro. Anticancer Res, 2002, 22: 3185–3189.
    6. Bramson JL, Hitt M, Gauldie J, et al. Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Ther, 1997, 4: 1069–1076.
    7. He TC, Zhou SB, Luis T, et al. A simplified system for generating recombinant adenoviruses. Proc. Natl Acad Sci USA, 1998, 95:2509–2514.
    1. Garkavtsev I, Kazarov A, Gudkov A, et al. Suppression of the novel growth inhibitor p33 (ING1) promotes neoplastic transformation. Nat Genet, 1996, 14: 415-420.
    2. Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family. Trends Cell Biol, 2002, 12:532-538.
    3. Garkavtsev I, Riabowol K. Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor, Mol Cell. Biol, 1997, 17: 2014-2019.
    4. Nagashima M, Shiseki M, Miura K, et al. DNA damage-inducible gene p331NG2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci U S A, 2001, 98: 9671–9676.
    5. Nagashima M, Shiseki M, Pedeux RM, et al. A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene, 2003, 22: 343-350.
    6. Shiseki M, Nagashima M, Pedeux RM, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res, 2003, 63: 2373–2378.
    7. He GH, Helbing CC, Wagner MJ, et al. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol, 2005,22 :104-116.
    8. Gunduz M, Ouchida M, Fukushima K, et al. Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene, 2002, 21: 4462–4470.
    9. Hu RM., Han ZG, Song HD, et al. Gene expression profiling in the human hypothalamus–pituitary adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci U S A, 2000, 97:9543–9548.
    10. Gunduz M, Nagatsuka H, Demircan K, et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cellcarcinomas.Gene, 2005, 356:109–117.
    11. Kim S, Chin K, Gray JW, et al, A screen for genes that suppress loss of contact inhibition: Identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc. Natl. Acad. Sci. U S A, 2004, 101: 16251–16256.
    12. Zhang X, Xu LS, Wang ZQ, et al. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Letters, 2004, 570:7–12.
    13. Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature, 2004, 428:328-332.
    14. Ozer A, Bruick RK. Regulation of HIF by prolyl hydroxylases recruitment of the candidate tumor suppressor protein ING4. Cell Cycle, 2005, 4 (9): 1153-1156.
    15. Garkavtsev I, Grigorian IA, Ossovkaya VS, et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 1998, 391 (6664): 295-298.
    16. Kataoka H, Bonnefin P, Vieyra D,et al. ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res, 2003, 63: 5785-5792.
    17. Kim S, Chin K, Gray JW, et al. A screen for genes that suppress loss of contact inhibition: Identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A, 2004, 101:16251-16256.
    18. Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993, 75: 805-816.
    1. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis.Microvasc Res, 1977, 14(1):53-65.
    2. Weidner N, Semphe JP,Welch WR, et al. Tumor angiogenesis and metastasis correlation in invasive breast carcinoma. N Eng J Med, 1991, 324(1):1-8.
    3. Nesbit M. Abrogation of tumor vasculature using gene therapy. Cancer Metastasis Rev, 2000, 19 (1-2):45-49.
    4. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and bloodvessel formation. Nature, 2000, 407: 242-248.
    5. Sasaki R. Microvessel count and vascular endothelial growth factor in renal cell carcinoma. Nippon Hinyokika Gakkai Zasski, 1996, 87: 1032-1040.
    6. Yano S, Goto H, Yamamoto A, et al. Angiogenesis in the progression of lung cancer. Intern Med, 2003, 42(3):3051-3056.
    7. Folkman J. Angiogenesis. Annu Rev Med, 2006, 57:1-18.
    8. Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature, 2004, 428:328–332。
    9. Byrne AM, Bouchier-Hayes DJ, Harmey JH.Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF).J Cell Mol Med,2005, 9:777-794.
    10. Cao Y . Tumor angiogenesis and therapy . Biomed and Pharmacother, 2005, 59:S340-S343.
    11. Auguste P, Lemiere S, Larrieu-Lahargue F, et a1. Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol, 2005, 54:53-61.
    12. Lee YM, Bae MH, Lee OH, et a1.Synergistic induction of in vivo angiogenesis by the combination of insulin-like growth factor-II and epidermal growth factor.Oncol Rep, 2004, 12:843-848.
    13. Arii S . Tumor angiogenesis and antiangiogenic therapy : current status and perspective.Int J Clin Oncol,2006, 11:71-72.
    14. Zhong H, Bowen JP.Antiangiogenesis drug design:multiple pathways targeting tumor vasculature.Curr Med Chem, 2006, 13: 849-862.
    15. Ponnazhagan S, Mahendra G, Kunlar S,et a1.Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy ; long-term effieacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor.Cancer Res, 2004,64:1781-1787.
    16. Tandle A ,Blazer DG ,Libutti SK.Antiangiogenic gene therapy of cancer:recentdevelopment.J Transl Med, 2004, 2:22-42.
    17. Lalani AS,Chang B,Lin J,et a1.Anti-tumor efficacy of human angiostatin using liver-mediated adeno-associated virus gene therapy.Mol Ther, 2004,9:56-66.
    18. Li YY, Qian GS, Huang GJ, et a1. Enhancement of antiangiogenic effects of human canstatin with a hypoxia-regulated transgene vector in lung cancer mode1. Cancer J, 2006, 12: 136-146.
    19. Chen L, Matsubara N, Yoshino T, et al.Genetic alterations of candidate tumor suppressor ING1 in human esophageal squamous cell cancer. Cancer Res, 2001, 61:4345-4349.
    20. Gunduz M, Ouchida M, Fukushima K, et al. Allellic loss and reduced of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene, 2002, 21:4462-4470.
    21. Gunduz M, Nagatsuka H, Demircan K, et al. Frequent deletion and down-regulate of ING4, a candidate tumor suppressor gene at 12p13, in head squamous cell carcinomas. Gene, 2005, 356:109-117.
    1. Garkavtsev I, Kazarov A, Gudkov A, et al. Suppression of the novel growth inhibitor p33 (ING1) promotes neoplastic transformation. Nat Genet, 1996, 14: 415–420.
    2. Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family, Trends Cell. Biol, 2002, 12 (11):532-538.
    3. Garkavtsev I, Riabowol K. Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor, Mol Cell Biol, 1997,17 (4):2014-2019.
    4. Nagashima M, Shiseki M, Miura K, et al. DNA damage-inducible gene p331NG2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci USA, 2001, 98: 9671–9676.
    5. Nagashima M, Shiseki M, Pedeux RM, et al.A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis, Oncogene,2003,22 (3):343-350.
    6. Shiseki M, Nagashima M, Pedeux RM, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res, 2003, 63:2373–2378.
    7. He GH, Helbing CC, Wagner MJ, et al. Phylogenetic analysis of the ING family of PHD finger proteins, Mol Biol Evol, 2005,22 (1): 104-116.
    8. Zeremski M, Horrigan SK, Grigorian IA, et al. Localization of the candidate tumor suppressor gene ING1 to human chromosome 13q34. Somat Cell Mol Genet, 1997, 23:233–236.
    9. Gunduz M, Ouchida M, Fukushima K et al. Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas. Cancer Research, 2000, 60(12):3143–3146.
    10. Shimada Y, Saito A, Suzuki M, et al. Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor. Cytogenet Cell Genet, 1998, 83:232–235.
    11. Kawaji H, Schonbach C, Matsuo Y, et al. Exploration of novel motifs derived from mouse cDNA sequences. Genome Res, 2002, 12: 367–378.
    12. Jager D, Stockert E, Scanlan MJ, et al. Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: characterization of tissue-specific ING1 transcripts and a homologue gene. Cancer Res, 1999,59: 6197–6204.
    13. Gong W, Suzuki K, Russell M, et al. Function of the ING family of PHD proteins in cancer.Int J Biochem Cell Biol, 2005,37:1054-1065.
    14. Scott JM, Boisvert FM, Vieyra D, et al.UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences.Nucleic Acids Res, 2001, 29 (10):2052-2058.
    15. Zhang X, Wang KS, Wang ZQ, et al. Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Bioph Res Co, 2005, 331:1032-1038.
    16. Garkavtsev I, Grigorian IA, Ossovkaya VS, et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 1998, 391 (6664):295-298.
    17. Oren M, Damalas A, Gottlieb T, et al. Regulation of p53: Intricate loops and delicate balances. Biochemical Pharmacology, 2002, 64(5/6):865-871.
    18. Leung KM, Po LS,Tsang FC, et al. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Research, 2002, 62(17):4890–4893.
    19. Vieyra D, Loewith R, Scott M, et al. Human ING1 proteins differentially regulate histone acetylation. The Journal of Biological Chemistry, 2002, 277(33): 29832–29839.
    20. Doyon Y, Selleck W, Lane WS, et al. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans, Mol Cell Biol, 2004, 24 (5):1884-1896.
    21. Doyon Y, Cayrou C, Ullah M, et al.ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation, Mol Cell, 2006,21 (1): 51-64.
    22. Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature, 2004,428:328–332.
    23. Ozer A, Bruick RK. Regulation of HIF by prolyl hydroxylases recruitment of the candidate tumor suppressor protein ING4. Cell Cycle, 2005,4 (9): 1153-1156.
    24. Kataoka H, Bonnefin P, Vieyra D,et al. ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res, 2003, 63 (18): 5785-5792.
    25. Cheung KJ, Mitchell D, Lin G, et al. The tumor suppressor candidate p33 (ING1) mediates repair of UV-damaged DNA.Cancer Res, 2001, 61 (13): 4974-4977.
    26. Sheikh MS, Hollander MC, Fornance AJ. Role of Gadd45 in apoptosis. Biochem Pharmacol, 2000, 59 (1): 43-45
    27. Kim S, Chin K, Gray JW, et al. A screen for genes that suppress loss of contactinhibition: Identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci USA, 2004,101:16251-16256
    28. Shinoura N, Muramatsu Y, Nishimura M, et al. Adenovirus-mediated transfer of p33 (ING1) with p53 drastically augments apoptosis in gliomas. Cancer Res, 1999, 59: 5521–5528.
    29. Gozani O, Karuman P, Jones D, et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell, 2003,114 (1):99-111.
    30. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 2005,120 (4):513-522.
    31. Pedeux R, Sengupta S, Shen JC, et al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol, 2005, 25 (15) : 6639-6648.
    32. Zhang X, Xu LS, Wang ZQ, et al. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Letters, 2004, 570:7-12.
    33. Chen L, Matsubara N, Yoshino T, et al.Genetic alterations of candidate tumor suppressor ING1 in human esophageal squamous cell cancer. Cancer Res, 2001, 61:4345-4349.
    34. Gunduz M, Ouchida M, Fukushima K, et al. Allellic loss and reduced of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene, 2002, 21:4462-4470.
    35. Gunduz M, Nagatsuka H, Demircan K, et al. Frequent deletion and down-regulate of ING4, a candidate tumor suppressor gene at 12p13, in head squamous cell carcinomas. Gene, 2005, 356:109-117.
    1. Garkavtsev I, Kazarov A, Gudkov A, et al. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet, 1996, 14(4): 415-420.
    2. Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family. Trends Cell Biol, 2002, 12 (11):532-538.
    3. Garkavtsev I, Riabowol K. Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol Cell Biol, 1997, 17(4):2014-2019.
    4. Shimada Y, Saito A, Suzuki M, et al. Cloning of a novel gene (ING1L) homologous tumor suppressor. Cytogenet Cell Genet, 1998, 83:232-235.
    5. Nagashima M, Shiseki M, Pedeux RM, et al. A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene, 2003, 22: 343-350.
    6. Shiseki M, Nagashima M, Pedeux RM, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res, 2003, 63(10):2373-2378.
    7. Garkavtsev I, Demetrick D, Riabowol K. Cellular localization and chromosome mapping of a novel candidate tumor suppressor gene (ING1). Cytogenet Cell Genet, 1997, 76:176-178.
    8. Zeremski M, Horrigan SK, Grigorian IA, et al. Localization of the candidate tumor suppressor gene ING1 to human chromosome 13q34. Somat Cell Mol Genet, 1997, 23: 233-236.
    9. Saito A, Furukawa T, Fukushige S, et al. p24/ING1-ALT1 and p47/ING1-ALT2, distinct alternative transcripts of p33/ING1. J Hum Genet, 2000, 45: 177-181.
    10. Jager D, Stockert E, Scanlan MJ, et al. Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: characterization of tissue-specific ING1 transcripts and a homologue gene. Cancer Res, 1999, 59: 6197-6204.
    11. Cheung KJ, Li G. The tumor suppressor ing1: structure and function. Exp Cell Res, 2001, 268:1–6.
    12. He GH, Helbing CC, Wagner MJ, et al. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol, 2005, 22(1): 104-116.
    13. Ha S, Park S, Yun CH, et al. Characterization of nuclear localization signal in mouse ING1 homolog protein. Biochem Biophys Res Commun, 2002, 293 (1):163-166.
    14. Scott M, Boisvert FM, Vieyra D, et al. UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Res, 2001, 29 (10):2052-2058
    15. Zeremski M, Hill JE, Kwek SS, et al. Structure and regulation of the mouse ing1 gene. Three alternative transcripts encode two phd finger proteins that have opposite effectson p53 function. J Biol Chem, 1999,274 (45):32172-32181.
    16. Bordoli L, Husser S, Luthi U, et al. Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity. Nucleic Acids Res, 2001, 29 (21):4462-4471.
    17. Kalkhoven E, Roelfsema JH, Teunissen H, et al. Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet, 2003, 12 (4):441-450.
    18. Kalkhoven E, Teunissen H, Houweling A, et al.The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol, 2002, 22 (7):1961-1970.
    19. Capili AD, Schultz DC, Rauscher FJ III, et al.Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains.EMBO J,2001, 20 (1-2):165-177.
    20. Pascual J, Martinez-Yamout M, Dyson HJ, et al. Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. J Mol Biol, 2000,304 (5):723-729.
    21. Matthews JM, Sunde M. Zinc fingers-folds for many occasions. IUBMB Life, 2002, 54(6):351-355.
    22. Nouman GS, Anderson JJ, Wood KM, et al. Loss of nuclear expression of the p33 (ING1b) inhibitor of growth protein in childhood acute lymphoblastic leukaemia, J Clin Pathol, 2002, 55(8):596-601.
    23. Tallen G, Kaiser I, Krabbe S, et al. No ING1 mutations in human brain tumours but reduced expression in high malignancy grades of astrocytoma, Int J Cancer, 2004, 109(3):476-479.
    24. Vieyra D, Senger DL, Toyoma T, et al. Altered subcellular localization and low frequency of mutations of ING1 in human brain tumors. Clin Cancer Res, 2003, 9:5952-5961.
    25. Zhang X, Wang KS, Wang ZQ, et al. Nuclear localization signal of ING4 plays a keyrole in its binding to p53. Biochem Bioph Res Co, 2005, 331(4):1032-1038.
    26. Garkavtsev I, Grigorian IA, Ossovkaya VS, et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 1998, 391 (6664): 295-298.
    27. Oren M, Damalas A, Gottlieb T, et al. Regulation of p53: Intricate loops and delicate balances. Biochemical Pharmacology, 2002, 64(5/6):865-871.
    28. Cheung KJ, Li G. p33ING1b enhances UVB-induced apoptosis in melanoma cells. Experimental Cell Research, 2002, 279:291-298.
    29. Leung KM, Po LS, Tsang FC, et al. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Research, 2002, 62(17):4890-4893.
    30. Kataoka H, Bonnefin P, Vieyra D, et al. ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Research, 2003, 63(18):5785-5792.
    31. Nagashima M, Shiseki M, Miura K, et al. DNA damage-inducible gene p331NG2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci U S A, 2001, 98: 9671-9676.
    32. Vieyra D, Loewith R, Scott M, et al. Human ING1 proteins differentially regulate histone acetylation. J Biol Chem, 2002, 277(33): 29832-29839.
    33. Doyon Y, Selleck W, Lane WS, et al. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans Mol Cell Biol, 2004, 24 (5):1884-1896.
    34. Doyon Y, Cayrou C, Ullah M, et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell, 2006, 21(1): 51-64.
    35. Scott M, Bonnefin P, Vieyra D, et al.UV-induced binding of ING1 to PCNA regulates the induction of apoptosis.J Cell Sci,2001,114:3455-3462.
    36. Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor proteinING4 regulates brain tumour growth and angiogenesis. Nature, 2004, 428(6980): 328-332
    37. Ozer A, Wu LC, Bruick RK. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A, 2005, 102(21): 7481-7486.
    38. Ozer A, Bruick RK. Regulation of HIF by prolyl hydroxylases: recruitment of the candidate tumor suppressor protein ING4. Cell Cycle, 2005, 4(9):1153-1156.
    39. Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993, 75: 805-816.
    40. Cheung KJ, Mitchell D, Lin G, et al. The tumor suppressor candidate p33 (ING1) mediates repair of UV-damaged DNA.Cancer Res, 2001, 61 (13):4974-4977.
    41. Sheikh MS, Hollander MC, Fornance AJ. Role of Gadd45 in apoptosis. Biochem Pharmacol, 2000, 59 (1): 43-45.
    42. Kim S, Chin K, Gray JW, et al. A screen for genes that suppress loss of contact inhibition: Identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A, 2004, 101:16251-16256.
    43. Wagner MJ, Gogela-Spehar M, Skirrow RC, et al. Expression of novel ING variants is regulated by thyroid hormone in the Xenopus laevis tadpole. J Biol Chem, 2001, 276: 47013-4702.
    44. Shinoura N, Muramatsu Y, Nishimura M, et al. Adenovirus-mediated transfer of p33 (ING1) with p53 drastically augments apoptosis in gliomas. Cancer Res, 1999, 59:5521-5528.
    45. Shimada H, Liu TL, Ochiai T, et al. Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33(ING1) in T.Tn human esophageal carcinoma cells. Oncogene, 2002, 21: 1208-1216.
    46. Gozani O, Karuman P, Jones D, et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell, 2003,114 (1):99-111.
    47. Wang Y, Li G. ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells. J Biol Chem, 2006, 281(17):11887-11893.
    48. Han X, Berardi P, Riabowol K. Chromatin modification and senescence: linkage by tumor suppressors? Rejun Res, 2006, 9(1): 1549-1684.
    49. Campisi J, Toussaint O, Medrano EE, et al. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol, 2000, 35 (8): 927-945.
    50. Frippiat C, Chen QM, Remacle J, et al. Cell cycle regulation in H(2)O(2)-induced premature senescence of human diploid fibroblasts and regulatory control exerted by the papilloma virus E6 and E7 proteins.Exp Gerontol,2000, 35 (6-7):733-745.
    51. Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 2003, 113 (6): 703-716.
    52. Serrano M, Lin AW, Mccurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997, 88(5):593-602.
    53. Cancer and ageing: rival demons? Nat Rev Cancer, 2003, 3(5):339-349.
    54. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 2005,120 (4):513-522.
    55. Pedeux R, Sengupta S, Shen JC, et al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol, 2005, 25 (15):6639-6648.
    56. Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell, 2002,109 (suppl): S81-S96.
    57. Karin M, Cao Y, Greten FR, et al. NF-kB in cancer: from innocent bystander to major culprit. Nature Rev Cancer, 2002, 2: 301-310.
    58. Zhang X, Xu LS, Wang ZQ, et al. ING4 induces G2/M cell cycle arrest and enhancesthe chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Letters, 2004, 570:7-12.
    59. Chen L, Matsubara N, Yoshino T, et al. Genetic alterations of candidate tumor suppressor ING1 in human esophageal squamous cell cancer. Cancer Res, 2001, 61:4345-4349.
    60. Okano T, Gemma A, Hosoya Y, et al. Alteration in novel candidate tumor suppressor genes, ING1 and ING2 in human lung cancer. Oncol Rep, 2006, 15:545-549.
    61. Gunduz M, Ouchida M, Fukushima K, et al. Allellic loss and reduced of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene, 2002, 21: 4462-4470.
    62. Gunduz M, Nagatsuka H, Demircan K, et al. Frequent deletion and down-regulate of ING4, a candidate tumor suppressor gene at 12p13, in head squamous cell carcinomas. Gene, 2005, 356:109-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700