Wnt信号通路在肾母细胞瘤发生发展过程中作用的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景肾母细胞瘤是儿童最常见的肾脏原发性恶性肿瘤,约占儿童所有恶性肿瘤的8%,目前被认为是一种胚胎发育性肿瘤。Wnt信号通路是一条在生物进化中极为保守的通路,参与了胚胎发育过程中的诸多领域,受到严格的调节。近年来研究发现,Wnt信号通路在肿瘤的发生中也具有重要的意义,在众多人类肿瘤发生中均存在Wnt信号通路的广泛活化,Wnt信号通路与肿瘤的关系正日益受到众多学者的关注。因此,从调控胚胎发育和肿瘤发生的共同途径Wnt信号通路研究入手,能否揭示肾母细胞瘤发生的可能机制?能否在Wnt信号通路中寻找到新的抗癌分子靶位以提高肾母细胞瘤治疗的临床疗效?这些研究对寻找新的治疗方法和提高肾母细胞瘤患儿的生存率,具有重要的临床价值和意义,而目前国内外尚未见相关报道。
     研究目的本研究通过体外培养肾母细胞瘤细胞株SK-NEP-1,检测Wnt信号通路相关基因及蛋白在肾母细胞瘤中的表达情况;观察不同浓度的sFRP-1(secreted Frizzled Related Protein-1)干预Wnt信号通路对细胞增殖的影响;通过RNAi技术敲减Wnt信号通路中β-catenin基因,观察对SK-NEP-1细胞生长及Wnt信号通路的影响;检测17β-雌二醇(E2)和双酚A(Bisphenol A,BPA)干预对SK-NEP-1细胞生长及Wnt信号通路的影响;本实验将初步探讨Wnt信号通路在肾母细胞瘤发生发展过程中的作用及可能机制,为肾母细胞瘤靶向治疗寻找新的靶点并提供科学理论依据。
     材料与方法
     一、SK-NEP-1的培养鉴定及sFRP-1蛋白干预对细胞增殖的影响:在含15%胎牛血清和1%青链霉素的McCoys 5A培养基中培养肾母细胞瘤SK-NEP-1细胞,观察细胞形态,绘制生长曲线;采用Envision两步法检测细胞中Vimentin、β-catenin、WT1、CK蛋白的表达;RT-PCR方法检测Wnt信号通路中WNT4、sFRP1、CTNNB1、CCND1、MYC基因的表达,并与肾脏胚胎细胞293细胞比较;观察不同浓度sFRP-1干预Wnt通路对SK-NEP-1增值的影响:将SK-NEP-1常规培养扩增后分为:对照组;低剂量组sFRP-1(100~500ng/mE);高剂量组sFRP-1(10μg/mL);低剂量sFRP-1抗体组(100~500ng/mL);高剂量sFRP-1抗体组(10μg/mL),分别在干预后0、24、48、72hr用CCK-8试剂检测比较各组光吸收度值(AV)。
     二、β-catenin特异性siRNA对SK-NEP-1生长的影响及与Wnt通路的关系:采用HiPerFect转染试剂,经转染优化实验,将Qiagen设计的两种不同序列β-catenin特异性siRNA(small interfering RNA)瞬时转染到SK-NEP-1细胞中,实验分为4组:未转染组(UT);阴性对照组(NS);siRNA1组(S1);siRNA2组(S2),分别在转染后0、24、48、72hr用CCK-8试剂检测比较各组光吸收度值(AV);在转染24hr后检测各组中CTNNB1、CCND1、MYC基因的表达水平;转染48hr后免疫荧光法检测各组中βcatenin表达水平;转染48hr后流式细胞仪AnnexinV-FITC/PI双染法检测各组细胞凋亡率差异。
     三、E2、BPA对SK-NEP-1生长的影响及与Wnt通路的关系:将SK-NEP-1细胞常规培养扩增后分为:对照组;加不同浓度17β-雌二醇组(E2);加不同浓度双酚A组(BPA),分别在干预后48hr用CCK-8检测比较各组光吸收度值(AV);干预48hr后real time PCR检测各组中CTNNB1、CCND1、MYC的基因表达水平;干预48hr后免疫荧光法检测各组中β-catenin表达水平;流式细胞仪AnnexinV-FITC/PI双染法检测无血清培养24hr各组细胞凋亡率差异。
     结果
     一、SK-NEP-1的培养鉴定及sFRP-1蛋白干预对细胞增殖的影响:SK-NEP-1为悬浮细胞,半贴壁生长,细胞倍增时间大约为24小时;免疫组化结果显示SK-NEP-1中Vimentin、WT1、β-catenin、CK均呈阳性表达;RT-PCR显示SK-NEP-1中sFRP1;CTNNB1;CCND1;MYC基因均有表达,且CTNNB1呈现高表达状态,提示SK-NEP-1细胞中有Wnt通路的激活。与胚胎细胞293相比较,两种细胞中sFRP-1均呈现高表达,而WNT4无明显表达。外源性sFRP-1蛋白干预Wnt通路的结果显示:低浓度sFRP-1(100~500ng/mL)及高浓度sFRP1抗体干预SK-NEP-1对细胞增殖无明显作用,而sFRP-1在高浓度(10μg/mL)时,干预24小时后对照组AV值为干预组的1.23倍,p<0.05;干预48小时后对照组AV值为干预组的1.25倍,p<0.05,干预组对细胞增殖有明显抑制作用,而在干预72小时后抑制作用减弱,对照组AV值为干预组的1.1倍,p>0.05。
     二、β-catenin特异性siRNA对SK-NEP-1生长的影响及与Wnt通路的关系:转染优化实验表明,SK-NEP-1细胞浓度在4.0×10~5/mLL~1.0×10~6/mL之间,24孔板体系每孔100ul transfection complexes含6ul Hiperfect转染试剂可以获得满意的转染效率,而β-catenin特异性siRNA1和siRNA2干预浓度在100nmol/L时可以获得有效的抑制效应。分别在SK-NEP-1细胞中瞬时转染100nmol/L的S1和S2后24hr,转染组细胞数量较对照组明显减少,CCK-8检测各组AV值,UT组的AV值分别是S1组和S2组的1.25倍(p<0.01)和1.23倍(p<0.01);48hr后UT组的AV值分别是S1组和S2组的1.48倍(p<0.01)和1.43倍(p<0.01);72hr后UT组的AV值分别是S1组和S2组的1.27倍(p<0.05)和1.1倍(p>0.05),转染24、48hr,细胞增殖明显受到抑制。转染24hr后S1和S2组β-catenin的mRNA分别被敲减了67%和73%,S1、S2组与UT组比较,下游基因CCND1、MYC的mRNA表达水平也明显下调,CCND1组间比较p<0.01;MYC组间比较p<0.05;而UT组与NS组比较,β-catenin、CCND1、MYC基因的p值均>0.05(Oneway,Bonferroni法)。转染48hr后免疫荧光检测各组中β-catenin表达,采用积分光密度/面积(IOD/Area)值分析比较各组β-catenin荧光强度,S1、S2组较UT、NS组明显减少,p<0.01(Nemenyi-Wilcoxson-Wilcox法)。干预48hr后流式细胞仪AnnexinV-FITC/PI双染法检测各组细胞凋亡率,S1、S2组凋亡率较NS组增加,p<0.05。
     三、E2、BPA对SK-NEP-1生长的影响及与Wnt通路的关系:免疫组化检测SK-NEP-1中无明显雌激素受体(ER)表达。CCK-8检测对照组与不同浓度E2、BPA干预组光吸收度值(AV)结果显示,5nmol/L的17β-雌二醇及5μmol/L的双酚A对SK-NEP-1有促增殖作用(p<0.05)。检测干预48hr后各组β-catenin及下游基因CCND1、MYC的mRNA的表达差异,各组间均无区别(p>0.05),免疫荧光检测干预48hr后β-catenin在各组细胞中表达,采用积分光密度/面积(IOD/Area)分析比较各组β-catenin荧光强度,各组之间无明显区别(p>0.05)。流式细胞仪Annexin V-FITC/PI双染法检测各组细胞凋亡率无明显区别(p>0.05)。
     结论
     1.肾母细胞瘤细胞株SK-NEP-1中存在Wnt通路的激活,其中sFRP-1、β-catenin基因在mRNA水平高表达,而Wnt-4基因无明显表达。
     2.肾脏在发育过程中,后肾胚胎细胞在向上皮细胞分化过程中,Wnt通路调节异常,sFRP-1高表达抑制了Wnt-4的正常表达,导致后肾的间质细胞向上皮细胞转化障碍,持续增殖,可能是肾母细胞瘤发生机制之一。
     3.加入低浓度sFRP-1(100~500ng/mL)或高浓度的sFRP-1抗体(10μg/mL)对SK-NEP-1细胞增殖无影响,而加入高浓度sFRP-1(10μg/mL)可以抑制SK-NEP-1细胞的增殖,表明高浓度的sFRP-1对SK-NEP-1增殖起抑制作用。
     4.瞬时转染β-catenin特异性siRNA可以抑制SK-NEP-1细胞增殖,促进细胞凋亡,细胞β-catenin蛋白表达降低,通路下游相关基因MYC及CCND1表达下调,表明β-catenin的激活在肾母细胞瘤发生发展过程中起着重要作用。
     5.SK-NEP-1中无明显雌激素受体的表达,但是17β-雌二醇及环境内分泌干扰物双酚A可以促进SK-NEP-1细胞的增殖。
     6.17β-雌二醇及环境内分泌干扰物BPA干预SK-NEP-1对Wnt通路β-catenin及下游基因的表达均无明显影响。
Backgrounds Nephroblastoma is the most common primary malignant tumor of kidney in children.It accounts for about 8 percent of all pediatric malignant tumors and it is confirmed as a kind of embryonal tumor.Wnt signal pathway is a conservative pathway in organic evolutions.It participates in the embryonal development of many organs and is accommodated strictively.In recent years,wnt signal pathway has been found to play a key role in tumorigenesis.The extensive activation of wnt signal pathway is common in many tumors and the relationship between wnt signal pathway and tumor is becoming more and more attractive. Therefore,wnt signal pathway,the common pathway of embryonal development and tumorigenesis,maybe become the clue to reveal the mechanism of nephroblastoma.If any new anticancer target would be found in wnt signal pathway,it could be significant to improve the therapeutic effect and survival rate of nephroblastoma.Up to now,such kind of research has not been reported in the world.
     Purpose We cultured nephroblastoma cell line SK-NEP-1 in vitro and detected the expression of wnt related genes and proteins to confirm the activation of wnt signal pathway.After that,we investigated the effect of sFRP-1 on the proliferation of SK-NEP-1 and the role of siRNAs againstβ-catenin on the proliferation and apoptosis of SK-NEP-1 respectively.The expression level of downstream genes and proteins concerned with wnt signal pathway in each group was detected by real time PCR to explor the relationship ofβ-catenin and the proliferation of nephroblastoma.We also observed the effect of 17β-estradiol and bisphenol A on the proliferation and apoptosis of SK-NEP-1 and detected the expression change of downstream genes and proteins concerned with wnt signal pathway.We would try to explore the role of wnt signal pathway on nephroblastoma cell line SK-NEP-1 and its possible mechanism.It would conduce to find new targets for targeted therapy of Wilms'tumor and provide the scientific evidence.
     Materials and Methods
     1.Nephroblastoma cell line SK-NEP-1 culture and detection of wnt signal pathway's activation:SK-NEP-1 cell line was cultured in McCoys 5A medium with 15%fetal bovine serum and 1%mycillin under routine condition.Growth curve of SK-NEP-1 was obtained by viable cell counting at each time-point with hemocytometer and trypan blue exclusion.The expression of Vimentin,β-catenin, WT1 and CK in cell line were tested by Envision immunohistochemistry.The RT-PCR was applied to detect the mRNA level of WNT4、sFRP1、CTNNB1、CCND1、MYC genes in SK-NEP-1 and 293 cells respectively.The effect of sFRP-1 on Wnt signal pathway and the proliferation of SK-NEP-1 cells was tested by CCK-8 kit.Cells were divided into control group,low-dose group of sFRP-1(100~500ng/mL),high-dose group of sFRP-1(10μg/mL),high-dose group of Anti sFRP-1 (10μg/mL).The sFRP-1 at different concentrations were added to complete growth medium and the absorbance value(AV) was tested at 0、24、48、72hours after interference respectively.
     2.Transient transfection with siRNAs againstβ-catenin into SK-NEP-1 cell: Transfecection of siRNA againstβ-catenin was implemented by HiPerFect Transfection Reagant according to the manufacturer's instructions.Cells were typically seeded in six-well plates(400,000 cells per well) before transfection. Transfection complexes were prepared in serum-flee medium(McCoys 5A). Immediately before transfection,complete growth medium was removed from all wells,and wells were rinsed with PBS.Cells were typically exposed to transfecion complexes for 6 hours before replacement of complete growth medium depending on the particular experiment.The concentration of each siRNAs within HiPerFect is indicated in each experiment.Cells were divided into four groups:no transfection group(UT),negative control group(NS),siRNA1 group(S1),siRNA2 group (S2).The effect of siRNAs againstβ-catenin on the proliferation and apoptosis of SK-NEP-1 were tested by CCK-8 kit and flow cytometry at each time-point respectively.The change of wnt signal pathway were detected by real time PCR and immunofluorescence.
     3.The effect of 17β-estradiol and bisphenol A on wnt signal pathway and the proliferation of SK-NEP-1 cells:Cells were divided into three groups and different concentrations of 17β-estradiol and bisphenol A were added into each group respectively.The AV value at 48 hours was tested to discriminate the effective concentration of 17β-estradiol and bisphenol A on the proliferation of SK-NEP-1. Their effect on apoptosis of SK-NEP-1 was tested by flow cytometry.The change of wnt signal pathway was detected by real time PCR and immunofluorescence.
     Results
     1.Nephroblastoma cell line SK-NEP-1 culture and detection of wnt signal pathway's activation:SK-NEP-1 cell line was suspension cell and its double time was about 24 hours.The expression of Vimentin,β-catenin,WT1 and CK were all detected by Envision immunohistochemistry.The RT-PCR confirmed the activation of Wnt signal pathway and that the mRNA level of WNT4 in SK-NEP-1 was very low whereas sFRP-1 and CTNNB1 were extremely high,which were similar to 293 cell line.The result of sFRP-1 on wnt signal pathway and proliferation of SK-NEP-1 cells showed that sFRP-1 at low concentrations of 100 to 500 ng/mL and Anti sFRP-1 at high-dose concentration had no effect on proliferation.Whereas sFRP-1 at high concentrations of 10ug/mL could inhibit the growth of SK-NEP-1.The AV value of control group was 1.23 times more than sFRP-1 group at 24 hours time-point(p<0.05) and at 48 hours time-point it was 1.25 times(p<0.05).72hours later the AV value between groups had no difference((P>0.05,Oneway,respectively).
     2.Transient transfection with siRNAs againstβ-catenin into SK-NEP-1 cell: Optimization of transfection indicated that the satisfactory transfection efficiency (>70%) could be obtained with cell density at 4.0×10~5/mL~1.0×10~6/mL and 6ul Hiperfect Transfection Reagant per 100ul transfection complexes in 24 orifice plate system.Growth inhibition was obvious when the working concentration of siRNAs againstβ-catenin reached 100 nM.24 hours after transfection,the AV value of UT was 1.25 times of S1 and 1.23 times of S2 respectively(p<0.01)and after 48 hours it was 1.48 times of S1 and 1.43 times of S2 respectively(p<0.01).72hours later the AV value of UT was 1.27 times of S1(p<0.05) and 1.1 times of S2(P>0.05,Oneway, respectively).100 nM siRNA1 and siRNA2 againstβ-catenin at 24hours inhibited theβ-catenin mRNA by 67%and 73%(P<0.05,Oneway,respectively).Real time PCR showed the down-regulated expression of CCND1 and MYC in S1 and S2 groups compared with UT group(p<0.05).Immunofluorescence disclosed the shutdown ofβ-catenin translation in siRNA groups.48hours after transfection,IOD/Area analysis showed the decrease value of S1 and S2 groups compared with UT and NS group (p<0.01).Apoptosis of SK-NEP-1 increased in siRNA1 and siRNA2 groups compared with UT group(p<0.05).
     3.The effect of estradiol and bisphenol A on proliferation of SK-NEP-1 cells and wnt signal pathway:The expression of ER was negative in SK-NEP-1 detected by Envision immunohistochemistry.17β-estradiol at concentration of 5 nM,and bisphenol A at concentration of 5μM had effect on the proliferation of SK-NEP-1 cells(P<0.05,Oneway,respectively).Real time PCR showed that the expression of CCND1 and MYC had no difference between groups(P<0.05,Oneway,respectively). Immunofluorescence found a stable level ofβ-catenin in three groups.IOD/Area analysis showed no difference between goups(p>0.05).There was also no difference of apoptosis between groups(p>0.05).
     Conclusions
     1.There is activation of wnt signal pathway in SK-NEP-1 cell line.The expression level of sFRP-1 andβ-catenin is high and Wnt-4 is not obvious in SK-NEP-1 cell.
     2.During the differentiation from embryonic cell to epithelial cell in human metanephron,malmoduration of wnt signal pathway would be probably one of the mechanism leading to the tumorigenesis.That means the inhibition of Wnt-4 would lead to dysdifferentiation.The activation of sFRP-1 andβ-catenin would result in the continuous proliferation of SK-NEP-1 cell.
     3.The addition of low-dose sFRP-1 and high-dose Anti sFRP-1 has no effect on the proliferation and downstream gene regulation,but high concentration of sFRP-1 can inhibit the proliferation of SK-NEP-1 cell.This implicate that high-dose sFRP-1 would be the inhibitor of wnt signal pathway.
     4.Growth inhibition and down-regulated expression of CCND1 and MYC are the result of siRNAs againstβ-catenin,and it also promotes the apoptosis of SK-NEP-1 cell.The activation ofβ-catenin act as a key role in the development of nephroblastoma.
     5.No estradiol receptor(ER) is expressed in SK-NEP-1.17β-estradiol at concentrations of 5 nM and bisphenol A at concentration of 5 uM have effect on the proliferation of SK-NEP-1 cell.
     6.There is no change of the wnt signal pathway after the interference of estradiol and bisphenol A.
引文
[1]Ward A.Beck-Wiedemann syndrome and Wilms' tumour[J].Mol Hum Reprod,1997,3(2):157 168.
    [2]李凯,高解春,陈莲等.肾母细胞瘤和肾发育过程中端粒酶的原位表达[J].中华小儿外科杂志,2004,25(1):21-24.
    [3]Kuure S,Vuolteenaho R,Vainio S.Kidney morphogenesis:cellular and molecular regulation[J].Mech Dev,2000,92(1):31 45.
    [4]Lechner MS,Dressier GR.The molecular basis of embryonic kidney development[J].Mech Dev,1997,62(2):105-120.
    [5]Conacci-Sorrell M,Zhurinsky J,Ben-Ze'ev A.The cadherin-catenin adhesion system in signaling and cancer[J].J Clin Invest,2002,109(8):987-991.
    [6]Nis Giladi,Hadas Dvory-Sobol,Eyal Sagiv,et al.Gene therapy approach in prostate cancer cells using an active Wnt signal[J].Biomedicine &Pharmacotherapy,2007,61:527-530.
    [7]Xiao X,Hong L,Sheng M.Promoting effect of estrogen on the proliferation of hemangioma vascular endothelial cells in vitro[J].Journal of Pediatric Surgery,1999,34(11):1603-1605.
    [8]蒋学之.环境雌激素对人类健康的潜在影响[J].中国公共卫生,1997,13(4):251-252.
    [9]Carolyn MK.Estrogen receptor interaction with estrogen response elements [J].Nucleic Acids Res,2001,29:2905-2919.
    [10]Stoica GE,Franke TF,Wellstein A,et al.Estradiol rapidly activates Akt via the ErbB2 signaling pathway[J].Molecular Endocrinology,2003,17(5):818-830.
    [11]Watters JJ,Campbell JS,Cunningham MJ,et al.Rapid membrane effects of steroids in neuroblastoma cells:effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription [J].Endocrinology,1997,138(9):4030-4033.
    [12]Matsuda T,Yamamoto T,Muraguchi A,Saatcioglu F.Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3[J].Journal of Biological Chemistry,2001,276(46):42908-42914.
    [13]Xiao X,Liu J,Sheng M.Synergistic effect of estrogen and VEGF on the proliferation of hemangioma vascular endothelial cells[J]. Journal of Pediatric Surgery, 2004, 39(7): 1107-1110.
    [14] Kirikoshi H, Katoh M. Expression and regulation of WNT 1 OB in human cancer: up-regulation of WNT10B in MCF-7 cells by P-estradiol and down-regulation of WNT10B in NT2 cells by retinoic acid [J]. Int J Mol Med, 2002, 10(4): 507-511.
    [15] He TC, SparksAB, RagoC, et al. Identification of c-MYC as a target of the APC pathway [J]. Science, 1998, 281(5382): 1509 1512.
    [16] ShtutmanM, ZhurinskyJ, Simcha I, et al. The cyclin D1 gene is a target of the p-catenin/LEF-1 pathway [J] . Proc Natl Acad Sci U S A, 1999, 96(10):5522 5527.
    [17] Tetsu O, McCormick F. p-catenin regulates expression of cyclin D1 in colon carcinoma cells [J] .Nature, 1999, 398: 422 426.
    [18] DasGupta R, Kaykas A, Moon RT, et al. Functional genomic analysis of theWNT-wingless signaling pathway [J]. Science, 2005,308 (5723) : 826-833.
    [ 19] Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway[J]. J Cell Sci, 2003, (116) : 2627 2634.
    [20] Yoshino K, Rubin JS, Higinbotham KG, et al. Secreted Frizzled-related proteins can regulate metanephric development [ J ] . Mechanisms of Development, 2001, (102) : 45-55.
    [2l]Mattii L, Bianchi F, Da Prato I, et al. Renal cell cultures for the study of growth factor interactions underlying kidney organogenesis [J] . In Vitro Cell DevBiolAnim, 2001, 37(4): 251-258.
    [22] Rulifson EJ, Wu CH, Nusse R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless [J] . Mol Cell, 2000, 6: 117 126.
    [23] Cook D, Fry MJ, Hughes K, et al. Wingless inactivates glycogen synthase kinase-3 via an intracellular signaling pathway which involves a protein kinase C [J] . EMBOJ, 1996, (15): 4526 4536.
    [24] Behrens J, Von Kries JP, Kuhl M, et al. Functional interaction of P-catenin with the transcriptional factor LEF-1 [J]. Nature, 1996, (382): 638 642.
    
    [25] Hay E, Faucheu C, Suc-Royer I, et al. Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway[J]. J Biol Chem, 2005, (280)13616 13623.
    [26] Kleber M, Sommer L. Wnt signaling and the regulation of stem cell function [J]. Curr Opin Cell Biol, 2004, 16: 681 687.
    [27] Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases [J]. Gene, 2004, (341): 19 39.
    [28] Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome [J]. Cell, 1982 , (31): 99 109.
    [29] Moon RT, Kohn AD, De Ferrari GV, et al. WNT and p-catenin signalling: diseases and therapies[ J ]. Nat Rev Genet, 2004, 5 (4): 691- 701.
    [30] Vainio SJ, Uusitalo MS . A road to kidney tubules via the Wnt pathway[J]. Pediatr Nephrol, 2000, (15)151 156.
    [31] Vainio SJ. Nephrogenesis regulated by Wnt signaling [J]. JNephrol, 2003, (16): 279 285.
    [32] Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney [J]. Development, 1998, 125; 4225 4234.
    [33] Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney [J]. Development, 1998, 125: 4225-4234.
    [34] Reya T, Clevers H. Wnt signalling in stem cells and cancer [J] . Nature, 2005, 434(2): 843-850.
    [35] Mikami I, You L, He B, et al. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells[J]. BMC Cancer, 2005, 5(1): 53.
    
    [36] Park CH, Hahm ER, Lee JH, et al. Ionomycin downregulates p-catenin/Tcf signaling in colon cancer cell line [J]. Carcinogenesis, 2005, (26) :1929 1933.
    [37] Bordonaro M, Lazarova DL, Sartorelli AC. The activation of p-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors [J]. Exp Cell Res, 2007, (313): 1652-1666.
    [38] Lazarova DL, Bordonaro M, Carbone R, et al. Linear relationship between WNT activity levels and apoptosis in colorectal carcinoma cells exposed to butyrate [J]. Int J Cancer, 2004, (110) : 523 531.
    [39] Tell S, Yi H, Jockovich ME, et al. The Wnt signaling pathway has tumor suppressor properties in retinoblastoma [J]. Biochem Biophys Res Commun,2006, (349): 261 269.
    [40] Damalas A, Ben-Ze'ev A, Simcha I, et al. Excess β-catenin promotes accumulation of transcriptionally active p53 [J]. EMBO J, 1999, (18):3054 3063.
    [41] Albuquerque C, Breukel C, van der Luijt R, et al. The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the P-catenin signaling cascade [J]. Hum Mol Genet, 2002,11: 1549 1560.
    [42] Koesters R, Ridder R, Kopp-Schneider A, et al. Mutational activation of the P-catenin proto-oncogene is a common event in the development of Wilms' tumors [J]. Cancer Res, 1999, 59: 3880 3882.
    
    [43] Polakis, P. Wnt signaling and cancer [J]. Genes Dev, 2000, 14: 1837 1851.
    [44] Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway [J]. J Cell Sci, 2003, 116: 2627 2634.
    [45] Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities [ J]. Nature, 1999, 398:431 436.
    [46] Mao B, Wu W, Davidson G, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/βcatenin signalling [J]. Nature, 2002, 417: 664 667.
    [47] You L, He B, Xu Z, Uematsu K, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth [J]. Cancer Res, 2004, 64: 5385 5389.
    [48] Nagayama S, Fukukawa C, Katagiri T, et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas [J]. Oncogene, 2005, 24: 6201 6212.
    [49] Katoh M, Kirikoshi H, Terasaki H, et al. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT-p-catenin-TCF signaling pathway [J]. Biochem Biophys Res Commun, 2001, 289:1093 1098.
    [50] Kirikoshi H, Sekihara H, Katoh M. Expression of WNT14 and WNT14B mRNAs in human cancer, upregulation of WNT 14 by IFNγ and up-regulation of WNT14B by β-estradiol [J]. IntJ Oncol, 2001, 19: 1221 1225.
    [51] Caldwell GM, Jones C, Gensberg K, et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis [J]. Cancer Res, 2004, 64: 883 888.
    [52] Suzuki H, Watkins DN, Jair KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer [J]. Nature Genet,2004, 36: 417 422.
    [53] DeAlmeida VI, Miao L, Ernst JA, et al. The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo[J]. Cancer Res, 2007, 67: 5371 5379.
    [54] Uren A, Reichsman F, Anest V, et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling [ J]. J Biol Chem, 2000, 275: 4374 4382.
    [55] Cho SW, Her SJ, Sun HJ, et al. Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts[J]. Biochem Biophys Res Commun, 2008, 367:399 405.
    [56] Bodine PV, Zhao W, Kharode YP, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice [J]. Mol Endocrinol, 2004, 18: 1222 1237.
    [57] Ko J, Ryu KS, Lee YH, et al. Human secreted frizzled-related protein is downregulated and induces apoptosis in human cervical cancer [J], Exp Cell Res, 2002, 280: 280 287.
    [58] Bodine PV, Billiard J, Moran RA, et al. The Wnt antagonist secreted frizzledrelated protein-1 controls osteoblast and osteocyte apoptosis[J]. J Cell Biochem, 2005, 96: 1212 1230.
    [59] Chung YS, Baylink DJ, Srivastava AK, et al. Effects of secreted frizzled-related protein 3 on osteoblasts in vitro [J]. J Bone Miner Res, 2004, 19: 1395 1402.
    [60] Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells [J]. Nature, 2006, 441(7097): 1176.
    
    [61 ] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature, 2001,411. 494-498.
    [62] Veeratnachaneni NK, Kubokura H, Lin L, et al. Down-regulation of β-catenin inhibits the growth of esophageal carcinoma cells[J]. J Thorac Cardiovasc Surg, 2004, 127(1): 92-98.
    [63] Sangkhathat S, Kusafuka T, Miao J, et al. In vitro RNA interference against p catenin inhibits the proliferation of pediatric hepatic tumors[J]. Int J Oncol,2006, 28(3): 715-722.
    [64] Cong F, Zhang J, Pao W, et al. A protein knockdown strategy to study the function of β-catenin in tumorigenesis[J]. BMC Mol Biol, 2003, 4: 10.
    
    [65] Kapitanovic S, Cacev T, Andca M, et al. Effect of indomethacin on E-cadherin and β catenin expression in HT-29 colon cancer cells[J]. Exp Mol Pathol, 2006, 80(1): 91-96.
    [66] Rao AS, Kremenenevskaja N, von Wasielewski R, et al. Wnt/p catenin signaling mediates antineoplastic effects of imatinib mesylate(gleevec) in anaplastic thyroid cancer[J]. J Clin Endocrinol Metab, 2006, 91(1): 159-168.
    [67] Lewis DL, Hagstrom JE, Loomis AG, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice [J]. Nat Genet, 2002, 32:107-108.
    [68] NcCaffrey AP,Meuse L,Pham TT,et al. RNA interference in adult mice [J] Nature, 2002, 418: 38-39.
    [69] Haitao Zhu, Xianmin Xiao, Jicui Zheng, et al. Growth-promoting effect of bisphenol A on neuroblastoma in vitro and in vivo. Journal of Pediatric Surgery, 2009, 44: 672 680.
    [70] Kushner PJ, Agard DA, Greene GL, et al. Estrogen receptor pathways to AP-1 [J]. J Steroid Biochem Mol Biol, 2000, 74: 311 317.
    [71] Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-kappaB [J]. Trends Endocrinol Metab, 2005, 16: 46 52.
    [72] Mermelstein PG, Becker JB, Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor [J]. J Neurosci, 1996,16: 595 604.
    [73] Takizawa S. Influence of sex hormones on kidney tumors induced in rats with N-butylnitrosourea [J]. Gann, 1976, 67(1): 33-40.
    [74] Dhandapani KM, Brann DW. Protective effects of estrogen and selective estrogen receptor modulators in the brain [J]. Biol Reprod, 2002, 67: 1379 1385.
    [75] Pap M., Cooper GM . Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway [J]. J Biol Chem,1998, 273: 19929 19932.
    [76]Mendez P,Wandosell F,Garcia-Segura LM.Cross-talk between estrogen receptors and insulin-like growth factor-Ⅰ receptor in the brain:Cellular and molecular mechanisms[J].Front Neuroendocrinol,2006,27:391 403.
    [77]Cardona-Gomez P,Perez M,Avila J,et al.Estradiol inhibits GSK3 and regulates interaction of estrogen receptors,GSK3,and β-catenin in the hippocampus[J].Mol Cell Neurosci,2004,25:363 373.
    [78]Hou X,Tan Y,Li M,et al.Canonical Wnt signaling is critical to estrogen-mediated uterine growth[J].Mol Endocrinol,2004,18(12):3035-49.
    [79]Katayama S,Ashizawa K,Fukuhara T,et al.Differential Expression Patterns of Wnt and b-Catenin/TCF Target Genes in the Uterus of Immature Female Rats Exposed to 17a-Ethynyl Estradiol[J].Toxicol Sci,2006,91(2):419 430.
    [1]Beatson G.On the treatment of inoperable cases of the carcinoma of the mamma:suggestions for a new method of treatment,with illustrative cases[J].The Lancet,1896,2:104 7.
    [2]Holinka CF,Hata H,Kuramoto H,et al.Responses to estradiol in a human endometrial adenocarcinoma cell line(Ishikawa)[J].J Steroid Biochem,1986,24:85-89.
    【3】 蒋学之.环境雌激素对人类健康的潜在影响[J].中国公共卫生,1997,13(4):251-252.
    [4]Kuiper GG,Enmark E,Pelto-Huikko M,et al.Cloning of a novel receptor expressed in rat prostate and ovary[J].Proc Natl Acad Sci USA,1996,93:5925 5930.
    [5]Mosselman S,Polman J,Dijkema R.ER β:identification and characterization of a novel human estrogen receptor[J].FEBS Lett,1996,392:49 53.
    [6]Pearce ST,Jordan VC.The biological role of estrogen receptors α and β in cancer [J].Crit Rev Oncol Hematol,2004,50:3 22.
    [7]Aten RF,Dickson RB,Eisenfeld AJ.Estrogen recepter in adult male rat liver [J].Endocrinology,1978,103:1629-35.
    [8]Murono EP,Kirdani RY,Sandberg AA.Specific estradio-17βbinding component in adult rat kidney[J].J Steroid Biochem,1979,11:1347-51.
    [9]Jensen EV.Basic guides to the mechanism of estrogen action[J].Recent Proc Horm,1962,18:387.
    [10]Mowa CN,Iwanaga T.Differential distribution of oestrogen receptor-alpha and -β mRNAs in the female reproductive organ of rats as revealed by in situ hybridization[J].J Endocrinol 2000;165:59-66.
    [11]Savaskan E,Olivieri G,Meirer F,et al.Hippocampal estrogen β-receptor immunoreactivity is increased in Alzheimer's disease[J].Brain Res,2001,908:113 119.
    [12]Kruijver FP,Balesar R,Espila AM,et al.Estrogen receptor-alpha distribution in human hypothalamus in relation to sex and endocrine status[J].J Comp Neurol,2002,454:115 139.
    [13]Carolyn MK.Estrogen receptor interaction with estrogen response elements [J].Nucleic Acids Res,2001,29:2905-2919.
    [14]Tsai MJ,O'Malley BW.Molecular mechanisms of action of steroid/thyroid receptor superfamily members[J].Annu Rev Biochem,1994,63:451 486.
    [15]Hall JM,McDonnell DP.The estrogen receptor β-isoform(ERβ) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens[J].Endocrinology,1999,140(12):5566-5578.
    [16]Lobenhofer EK,Huper G,Iglehart JD,et al.Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis[J].Cell Growth Differ,2000,11:99 110.
    [17]Campbell RA,Bhat-Nakshatri P,Patel NM,et al.Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α:a new model for anti-estrogen resistance[J].J Biol Chem,2001,276:9817 9824.
    [18]Martin MB,Franke TF,Stoica GE,et al.A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor Ⅰ[J].Endocrinology,2000,141:4503 4511.
    [19]Stoica GE,Franke TF,Wellstein A,et al.Estradiol Rapidly Activates Akt via the ErbB2 Signaling Pathway[J].Molecular Endocrinology,2003,17(5):818-830.
    [20]Alroy I,Yarden Y.The ErbB signaling network in embryogenesis and oncogenesis:signal diversification through combinatorial ligand-receptor interactions[J].FEBS Lett,1997,410:83 86.
    [21]Filardo EJ,Quinn JA,Bland KI,et al.Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog,GPR30,and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF[J].Mol Endocdnol,2000,14:1649 1660.
    [22]Endoh H,Sasaki H,Maruyama K,et al.Rapid activation of MAP kinase by estrogen in the bone cell line[J].Biochem Biophys Res Commun,1997,235:99 102.
    【23】杨德启,王杉,王殊,等.有丝分裂原激活蛋白激酶信号传导通路在三苯氧胺非雌激素拮抗肿瘤中的作用[J].中华医学杂志,2002,82(18):1232-1234.
    [24]Watters JJ,Campbell JS,Cunningham MJ,et al.Rapid Membrane Effects of Steroids in Neuroblastoma Cells:Effects of Estrogen On Mitogen Activated Protein Kinase Signalling Cascade And c-fos Immediate Early Gene Transcription[J].Endocrinology,1997,138(9):4030-33.
    [25]Matsuda T,Yamamoto T,Muraguchi A,et al.Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3[J].J Biol Chem,2001,276(46):42908-14.
    [26]Wu L,Wu Y,Gathings B,et al.Smad4 as a transcription corepressor for estrogen receptor alpha.J Biol Chem,2003,278(17):15192-200.
    [27]Marugo M,Molinari F,Fazzuoli L,et al.Estradiol and prosgesterone receptors in normal and pathologic colonic mucosa in humans[J].J Endocrinol Invest,1985,8(2):117-9.
    【28】王利瑛,等.食管细胞癌的雌激素和孕激素受体研究[J].中华肿瘤杂志,1991,13(1):23-25.
    [29]Brandenberger AW,Tee MK,Jaffe RB.Estrogen receptor alpha(ER-alpha) and β(ER-β) mRNAs in normal ovary,ovarian serous cystadenocarcinoma and ovarian cancer cell lines:down-regulation of ER-β in neoplastic tissues[J].J Clin Endocrinol Metab,1998,83:1025-8.
    [30]Leygue E,Dotzlaw H,Watson PH,et al.Altered estrogen receptor alpha and βmessenger RNA expression during human breast tumorigenesis[J].Cancer Res,1998,58:3197-201.
    [31]Lindner V,Kim SK,Karas RH,et al.Increased expression of estrogen receptor-βmRNA in male blood vessels after vascular injury[J].Circ Res,1998,83:224-9.
    [32]Foley EF,Jazaed AA,Shupnik MA,et al.Selective loss of estrogen receptor β in malignant human colon[J].Cancer Res,2000,60:245-8.
    [33]Weihua Z,Saji S,M(a|¨)kinen S,et al.Estrogen receptor(ER) β,a modulator of ERalpha in the uterus[J].Proc Natl Acad Sci USA,2000,97:5936-41.
    [34]Kostantinopoulos PA,Kominea A,Vandoros G,et al.Oestrogen receptor β is abundantly expressed in normal colonic mucosa,but declines in colon adenocarcinoma paralleling the tumors dedifferentiation[J].Eur J Cancer,2003,39:1251 12458.
    [35]Speirs V.Oestrogen receptorβin breast cancer:good,bad or still too early to tell [J]? J Pathol,2002,197:143 147.
    [36]Chang WY,Prins GS.Estrogen receptor-β:implications for the prostate gland[J].Prostate,1999,40:115 124.
    [37]Pettersson K,Gustafsson JA.Estrogen receptor β acts as a dominant regulator of estrogen signalling[J].Oncogene,2000,19:4970 4978.
    [38]Pettersson K,Gustafsson JA.Role of estrogen receptor β in estrogen action[J]. Annu Rev Physiol,2001,63:165 192.
    [39】曾畿生,王德芬.现代儿科内分泌学—基础与临床[M].上海:上海科学技术文献出版社,2001.
    [40]Sasaki GH,Pang CY,Wittliff JL.Pathogenesis and treatment of infant skin strawberry hemangiomas:clinical and in vitro studies of hormonal effects[J].Plast Reconstr Surg,1984,73(3):359-70.
    [41]Xiao X,Hong L,Sheng M.Promoting effect of estrogen on the proliferation of hemangioma vascular endothelial cells in vitro[J].J Pediatr Surg,1999,34(11):1603-5.
    [42]Xiao X,Liu J,Sheng M.Synergistic effect of estrogen and VEGF on the proliferation of hemangioma vascular endothelial cells[J].J Pediatr Surg,2004,39(7):1107-10.
    [43]Green PS,Bishop J,Simpkins JW.17a-Estradiol Exerts Neuroprotective Effects on SK-N-SH Cells[J].J Neurosci,1997,17(2):511 515.
    [44]Lee YS,Wurster RD.Dual effects of estrogen and antiestrogens on the growth of SK-N-MC human neuroblastoma cells[J].Cancer Letters,1994,86(1):119-25.
    [45]Kirby M,Zsamovszky A,Belcher SM.Estrogen receptor expression in a human primitive neuroectodermal tumor cell line from the cerebral cortex:estrogen stimulates rapid ERK1/2 activation and receptor-dependent cell migration[J].Biochem Biophys Res Commun,2004,319(3):753-8.
    [46】刘江斌,肖现民,盛民立.雌激素和血管内皮细胞生长因子促进血管瘤增殖的体外实验研究[J].中华小儿外科杂志,2004,25(3):231-234.
    [47]Couldwell WT,Hinton DR,Sumock AA,et al.Treatment of recurrent malignant gliomas with chronic oral high-dose tamoxifen[J].Clin Cancer Res,1996,2:619-622.
    [48]Puchner MJ,Giese A,Zapf S,et al.Tamoxifen sensitivity-testing of glioblastomas:comparison of in vitro and in vivo results[J].Acta Neruochir(Wien),2001,143:563-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700