脉冲激光沉积Pr~(3+)掺杂SrTiO_3和CaTiO_3薄膜发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO薄膜是一种直接宽带隙半导体材料,具有较高的激子束缚能(60eV),即使在室温条件下激子也不会分解,具有多种用途,因此近年来对ZnO基半导体材料的研究越来越为人们所重视,为了研究沉积气压对磁控溅射制备Zno薄膜的结构与性能的影响,本文采用CS-400射频磁控溅射法在不同的沉积气压(0.5Pa-5Pa)下分别在Si(111)及石英基底上成功的制备了ZnO薄膜和25%N_2气氛下Zn_(0.975)Cu_(0.025)O薄膜,采用X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见分光光度计等分析测试手段,研究了样品的表面形貌、晶体结构、光学学性能等。重点研究了不同的沉积气压对ZnO薄膜结构和光学性质的影响。结果如下:
     一.采用CS-400型射频磁控溅射仪在Si(111)和石英基底上成功的制备了ZnO薄膜,对不同沉积气压下的ZnO膜进行了结构和光学性质的研究。XRD和SEM测试结果显示了在合适的沉积气压(>2.0Pa)下,制备出结晶良好,具有良好c轴择优取向的ZnO膜,随着沉积气压的上升,晶粒尺寸先变大再变小,结晶质量先变好再变差,同时通过计算发现薄膜的晶格常数c也随之增大,薄膜的(002)峰位向小角方向偏移。在ZnO薄膜的透射谱研究中,发现在可见光区域的平均透过率超过80%,陡峭的吸收边在380nm左右,所对应的光学带隙约为3.23eV-3.27eV,随着沉积气压的上升变化很小。我们认为所有的光学性质都来源于物质电子的电磁辐射作用,所以不同沉积气压下ZnO薄膜的PL谱大致类似。然而通过纯Ar气氛下制备的ZnO薄膜和25%N_2气氛下ZnO薄膜的对比,由于25%N_2气氛下ZnO薄膜的结构和光学性质和纯Ar气氛下制备的ZnO薄膜的结构和光学性质并无很大区别,我们认为当采用N_2作为掺杂源时,N_2并没有被激发成为活性氮,难以形成稳定的有效浓度的N掺杂ZnO。
     二.对25%N_2气氛不同沉积气压条件下制备的Zn_(0.975)Cu_(0.025)O和ZnO薄膜进行了结构对比。不同沉积气压下Zn_(0.975)Cu_(0.025)O薄膜样品具有良好c轴择优取向,Cu的掺杂提高了薄膜的C轴的择优取向;Zn_(0.975)Cu_(0.025)O薄膜的XRD衍射的(002)衍射峰在沉积气压为4.0Pa时最强,半高宽最窄和晶粒尺寸最大,ZnO薄膜在2.0Pa时衍射峰最强,半高宽最窄和晶粒尺寸最大;Zn_(0.975)Cu_(0.025)O薄膜的c轴晶格常数比ZnO薄膜样品的c轴晶格常数大,使得垂直于C轴的压应力偏大;随着沉积气压的升高Zn_(0.975)Cu_(0.025)O薄膜片状颗粒逐渐减少而较小的球状颗粒逐渐增多;样品中Cu元素的掺入,薄膜沉积的则优取向更明显,颗粒尺寸减小以及球状颗粒的增多,薄膜的致密性增强,薄膜的厚度受到影响。实验中采用N_2作为掺杂源时,没有检测到N-Cu键的存在,所以难以形成稳定的有效浓度的N掺杂ZnO。
ZnO films, a directly wide band gap semiconductor, has gained substantial interest because of its large exiton binding energy (60meV), which could lead to lasing action based exiton recombination even above room temperature. It have been actively studied because of its potential applications. 1D nanostruture material of ZnO such as aligned nanowires, nanobelts, nanorings and nanohelixes are discovered one after another in recent years. Owing to their unique photic, electrical, and magnetic properties, they have greatly attracted material scientists attentions. 1D ZnO nanostruturesbased devices like nanogenerators, field effect transistors, sensors, solar cells are p redicted to be effective solutions to the problems of energy, environment, biology, electronics, photoelectricity, spaces and so on. Specially, the studies for ZnO semiconductors have now attracted much attention of many researchers. To research the effects of different deposition pressure on the structure and optical properties of ZnO films, in this paper, we prepared ZnO films with different deposition pressure(0.5Pa-5.0Pa) by radio frequency (RF) magnetron sputtering. Surface morphology, crystal structure, optical and magnetic properties of ZnO based films were investigated by XRD, SEM, ultraviolet-visible spectrum photometer et al.and studied the characteristics and optical properties.
     The results are the following:
     1. ZnO films were prepared by the radio frequency magnetron sputtering technique (RF) on Si(111) and quartz glass substrates. The effect of different deposition pressure on the structural and optical properties of ZnO films and ZnO films under 25%N_2 were discussed in details. X-ray diffraction (XRD) pattern and SEM indicates that the films are single phase and had wurtzite structure with c-axis orientation under an acceptable deposition pressure(>2.0Pa). The SEM shows that the grain size of ZnO films increases with the increasing of deposition pressure and then decreases. The crystallation of samples were promoted with the increasing of deposition pressure and then become difference, With increasing of deposition pressure, lattice constant of ZnO films which calculated also increases and (002) diffraction peak position of ZnO films becomes smaller.In the study of transmittance spectra of the ZnO films, We find the transmittance spectra of the ZnO films are higher than 80% in the visible light range. The absorption edges are determined to be around 380nm, the corresponding optical band gaps increasing with the deposition pressure increasing, are about 3.23ev-3.27ev. There is no much differents between Transparency spectra and PL spectra of ZnO thin films with different deposition pressure because we think all optical properties are come from the effects of electromagnetic radiation in electrons. After compared with ZnO thin films and ZnO thin films under 25%N_2 , There is no much difference in the structural and optical properties between them. So we think when we used N_2 as a doped source, N~(3+) didn't doped into ZnO because it didn't actived, so it's very hard to form N doped ZnO thin films with effective concentration.
     2. The effect of different deposition pressure on the structural properties of Zn_(0.975)Cu_(0.025)O films under 25%N_2 were compared with ZnO thin films under 25%N_2 in details. Zn_(0.975)Cu_(0.025)O films under different deposition pressure grows with the c-axis(002) diffraction peak orientation. Cu doped enhanced the preferred orientation of c-axis of Zn_(0.975)Cu_(0.025)O films under 25%N_2. After compared with Zn_(0.975)Cu_(0.025)O thin films and ZnO thin films under 25%N_2, Zn_(0.975)Cu_(0.025)O films with 4.0Pa deposition pressure have the biggest diffraction peak, the biggest grain size and the smallest FWMH. But ZnO thin films under 25%N_2 with 2.0Pa deposition pressure have the biggest diffraction peak, the biggest grain size and the smallest FWMH. C-axis lattice constant of Zn_(0.975)Cu_(0.025)O films is bigger than ZnO thin films, so compress stress in Zn_(0.975)Cu_(0.025)O films perpendicular to the c-axis is bigger. With the increase of deposition pressure, sheet particles in Zn_(0.975)Cu_(0.025)O films under N_2 are decrease and spherical particles are increased at the same time. With Cu doped, The preferred orientation of c-axis of Zn_(0.975)Cu_(0.025)O films is more obvious, grain size decreased and spherical particles are increased. The density of films is increased and the thickness of Zn_(0.975)Cu_(0.025)O films are also influenced. When we used N_2 as doped sourced, there is N-Cu pairs in Zn_(0.975)Cu_(0.025)O films, so it's hard to form N doped ZnO thin films with effective concentration.
引文
[1] 郭常新,付竹西,施朝淑,等.阴极射线激发下ZnO薄膜室温紫外发光的超线性的增长规律[J].发光学报,1998,19(3):239-241.
    [2] 潘志峰,袁一方,王志坚.氧对纳米ZnO薄膜晶体结构和发光致光的影响[J].曲阜师范大学学报,2004,30(2):48-50.
    [3] 马勇,王万录,廖克俊,等.ZnO薄膜的发光致光[J].功能材料,2004,35(2):139-144.
    [4] 戴建明,冯建强,张瑞丽,等.不同衬底生长ZnO薄膜的结构与发光特性研究[J].淮北煤炭师范学院学报,2004,25(1):10-13.
    [5] Paul H Kasai. Electron sp in resonance studies of donors and acceptors in ZnO [J]. Physica 1 review, 1963,130(3): 989 - 995.
    [6] Hagemark K I. Defects in ZnO [J]. Journal of solid state chemistry, 1976,16: 293.
    [7] Hutson A R, Hall Effect Studies of Doped Zinc Oxide Single Crystals[J]. Phys Rev, 1967,108: 222 - 230.
    [8] 徐毓龙.氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社,1991.105-110.
    [9] Kroger FA. The chemistry of imperfect crystals [M].Amsterdam: North - Holland Publishing Company, 1964.691-710.
    [10] Mahan GD. Intrinsic defects in ZnO varistors[J]. Journal of applied physics, 1983, 54 (7): 3825 - 3832.
    [11] Kohan AF, Ceder G,Morgan D, et al. First - principles study of native point defects in ZnO[J]. Physica 1 ReviewB, 2000,61 (22): 15021.
    [12] Fumiyasu Oba, Shigeto R Nishitani, Seiji Isotani, et al.Energetics of native defects in ZnO [J]. Journal of applied physics, 2001,90 (2): 824 - 828.
    [13] Walle vande C C. Hydrogen as a Cause of Doping in ZincOxide[J]. Phys Rev Lett, 2000,85:1012-1015.
    [14] Cox S F J ,Davis EA, Cottrell S P, et al. [J]. Phys RevLett, 2001, 86: 2601 - 2604.
    [15] Cetin Kilic, Alex Zunger. n - type doping of oxides by hydrogen [J]. Applied Physics Letters, 2002, 81: 73 -75.
    [16] Auret FD, Goodman SA, HayesM, et al. Electrical characterization of 1. 8MeV p roton - bombarded ZnO [J]. Applied Physics Letters, 2001, 79 (19), 3074 - 3076.
    [17] Look DC, ReynoldsDC, Hemsky JW, et al. Production and annealing of electron irradiation damage in ZnO [J].Appl Phys Lett, 1999, 75: 811 - 813.
    [18] Coskun C, Look DC, Farlow G C, et al. Radiation hardness of ZnO at low temperatures [J]. Semicond Sc iTechnol, 2004,19: 752 - 754.
    [19] Kucheyev SO, Cagadish J, Williams J S, et al. Implant isolation of ZnO [J]. Journa 1 of Applied Physics, 2003,93 (5): 2972 - 2976.
    [20] Tang ZK, Wong G K L, Yn P. 1998, Appl. Phys Lett. 72: 3270.
    [21] Cho S, Ma J, Kin H.[J]. 1999, Appl Phy Lett, 75(18):2761-2763.
    [22] Srudenikin S A, Golego N [J]. 1998, J Appl Phys, 84(4):2287
    [23] Shionova S, Yen W M, Eds [M]. 1999, Phosphor Hand book. BocaRaton: CRC Press LCC
    [24] Z L Pei, et al. J Appl Phys, 2001, 90:3432
    [25] 吕敏峰,崔作林,等.材料科学与工程学报,2003,21:224
    [26] G D. Yuan, et al. Appl Phys Lett, 2005, 86:202106
    [27] Minami T, et al. [J ]. Thin Solid Films, 2000, 366 :63
    [28] Look D C, ReynoldsD C, Sizelove, Jones J , et al. Electricalp roperties of bulk ZnO [J]. Solid Sta te Commun ica tion s, 1998,105 (6) ,399-401.
    [29] Ohtomo A, Tamura K, Saikusa K, et al. Single crystalline ZnO films grown on lattice - matched ScAlMgO4( 0001)substrates[J]. Applied Physics Letters, 1999, 75 (17) :2635 - 2637
    [30] Tsukazaki A,Ohtomo A, KawasakiM. High - mobility electronic transport in ZnO thin films[J]. Applied PhysicsLetters, 2006, 88: 152106.
    [31] Albrecht J D, Ruden P P, L impijumnong S, et al. Highfield electron transport p roperties of bulk ZnO[J]. J ApplPhys, 1999,86 (12): 6864 - 6867.
    [32] Tang Z K, Wong G KL, Yu P, et al. Room - temperature ultraviolet laser emission from self- assembled ZnO microcrystallite thin films [J]. Appl Phys Lett, 1998, 72 (25): 3270 - 3272.
    [33] Hang Ju Ko, Yefan Chen, Soon Ku Hong, et al. MBEgrowth of high - quality ZnO films on epi - GaN [J].Journa 1 of Crysta 1 Growth, 2000,209: 816 - 821.
    [34] Zhang S B,Wei S - H, Zunger A. Overcoming doping bottlenecks in semiconductors and wide - gap materials[J]. Physica B, 1999,273 - 274: 976 - 980.
    [35] Zhang S B,Wei S - H, Zunger A. Intrinsic n - type versus p - type doping asymmetry and the defect physics of ZnO [J]. Physica 1 Review B, 2001, 63: 075205.
    [36] Fe Fei Zhuge. Preparation of Al - N codoped p - type ZnO thin films and fabrication of ZnO p - n homojunctions[D ].中国期刊网, 2005,17.
    [37] Look D C, Reynolds D C, Litton C W, et al. Character ization of homoep itaxial p -type ZnO grown by Molecularbeam epitaxy [J]. Applied physics letters, 2002, 81(10): 1830-1832.
    [38] Park C H, Zhang S B,Wei Su - Huai. Origin of p - typedoping difficulty in ZnO: The impurity perspective [J].Physica 1 Review B, 2001, 66: 073202.
    [39] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p - type doping and light- emitting diode based on ZnO [J]. Nature materia ls,2005, 5:42-46.
    [40] Xin - L i Guo, Hitoshi Tabata, Tomoji Kawai. p - Typeconduction in transparent semiconductor ZnO thin filmsinduced by electron cyclotron resonance N_2O p lasma [J].Optical Materials, 2002,19: 229 - 233.
    [41] Toru Aoki, Yoshinori Hatanaka, Look D C. ZnO diode fabricated by excimer - laser dop ing[J]. Applied physics letters , 2000, 76 (22): 3257 - 3259.
    [42] Ryu Y R, Lee T S,White H W. Properties of arsenic -doped p - type ZnO grown by hybrid beam deposition[J].Applied physics letters, 2003,83 (1): 87 - 89.
    [43] Kyoung - Kook Kim, Hyun - Sik Kim, Dae - KueHwang, et al. Realization of p - type ZnO thin films viaphosphorus doping and thermal activation of the dopant[J]. Appl Phys Lett, 2003,83 (1): 63 - 65.
    [44] Look D C, Renlund GM, Burgener II R H, et al. As -doped p - type ZnO p roduced by an evaporation / sputteringp rocess[J]. Appl Phys Lett, 2004, 85 (22) : 5269-5271
    [45] Limp ijumnong S, Zhang S B, Su - HuaiWei, et al. Doping byLarge - Size - Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony - Doped p - Type Zinc Oxide [J]. Physical review letters, 2004,92(15): 155504.
    [46] Sun H D,Makino T, Tuan N T, et al. Stimulated emission induced by exciton - exciton scattering in ZnO /ZnMgOmultiquantum wells up to room temperature [J]. Applied Physics Letters, 2000, 77 (26): 4250 - 4252.
    [47] Ryu Y R, Lee T - S, Lubguban J A, et al. Next generation of oxide photonic devices: ZnO - based ultravioletlight emitting diodes [J]. Appl Phys Lett, 2006, 88:241108.
    [48] Ryu Y R,Lubguban J A, Lee T - S, et al. Excitonic ultraviolet lasing in ZnO - based light emitting devices [J].Appl Phys Lett, 2007,90: 131115.
    [49] Wolf S A, Awschalom D D, Buhrman R A[J]. 2001, Science, 294:148
    [50] K. Ueda, H. Tabata, T. Kawai[J]. 2001, Appl Phys Lett, 79:988
    [51] Jung S W, An S J, Yi G C. 2002, Appl. Phys. Lett., 80(24): 4561-4563.
    [52] Kwang Joo Kima and Young Ran Park. J Appl Phys, 2004, 96:4150
    [53] T. Monteiro, C. Boemare, and M. J. Soares, J Appl Phys, 2003, 93:8995
    [1]吴自勤等[M].2001,薄膜生长,北京:科学技术出版社
    [2]任建新,《物理清洗》,化学工艺出版社。2000
    [3]Y. Liu, C. R. Gorla, S. Liang [J]. 2000, J. of Electronic Materials. 29(1),: 60
    [4]刘坤,季振国.氧化锌薄膜制备技术的评价[J].真空科学与技术,2002,22(4):282-286.
    [5]王兆阳,胡礼中,孙捷,等.激光分子束外延技术及其在氧化锌薄膜制备中的应用[J].中国稀土学报,2003,21(增刊):141-143.
    [6]汪雷.ZnO薄膜生长技术的最新研究进展[J].材料导报,2002,16(9):33-36.
    [7]汤乃云,硕士毕业论文,苏州大学物理系。
    [8]陆家和,陈长彦主编,现代分析技术,清华大学出版社,1995。
    [9]王建祺,吴文辉,冯大明编著,《电子能谱学(XPS/XAES/UPS)引论》,国防工业出版社,1992。
    [10]吴雪梅,博士毕业论文,苏州大学物理系。
    [11]钱苗根等著,《现代表面技术》,机械工业出版社,1999。
    [12]《真空沉积技术》,苏州大学物理系研究生教材。
    [13]许振嘉,《近代半导体材料的表面科学基础》,北京大学出版社,2002。
    [14]R.O.Dillon, J.A.Wollam and V.Katanant, Phys.Rev.B 1984,29,3482
    [15]王光伟,张建民,郑宏兴,杨斐,ZnO薄膜的制备方法、性质和应用,真空VACUUM,第45卷第5期2008年9月
    [16]欧阳桂仓,叶志清,吴木生,ZnO薄膜的物理性质与制备方法研究,江西科学,第26卷第1期,2008年2月
    [1] Jou J H, Han M Y, Cheng D J.[J].J. Appl. Phys, 1992,
    [2] 71:4333
    [3] 叶志镇,陈汉鸿,刘榕。[J].半导体学报,2001,22:1015
    [4] R. Lohmann, K. Thoma, et al., [M].Mater. Sci.Eng. A139 (1991) 259.
    [5] S.Maniv,W.DWestwood, E.J.Colombini,[J].Vac Sci Techno 1,1982,20 (2): 162
    [6] S.Maniv,W.D Westwood,E.J.Colombini,[J].Vac Sci Technol 1982;20(2):162
    [7] 袁洪,肖定全,朱建国,朱居木,张文.[J].薄膜科学与技术,1992,5(2):44
    [8] 营井秀郎.等离子体电子工程学[M].北京:科学出版社,2002
    [9] Meng X D, Lin B, Fu Z X, [J].Journal of Luminescence, 2007,126: 203
    [10] Zhang guobin ,Shi chaoshu ,Han Zhengfu , et al. [J] . Chin Phys Lett ,2001 ,19 (3):441.
    [11] Lin Bixia ,Fu Zhuxi ,Jia Yunbo. [J ]. Appl Phys Lett ,2001 ,79 (7) :943.
    [12] M. Ohring, [M].The Materials Science of Thin Films, printed in the United States of America, 1991, pp. 509-514.
    [13] T.Dietl,H.Ohno,F.Matsukura,et al. [J].Science, 2000,287: 1019-1022
    [1] 叶志镇,陈汉鸿,刘榕。[J].半导体学报,2001,22:1015
    [2] R. Lohmann, K. Thoma, et al., [M].Mater. Sci.Eng. A 139 (1991) 259.
    [3] S.Maniv,W.D Westwood,E.J.Colombini,[J].Vac Sci Technol 1982;20(2):162
    [4] S.Maniv,W.DWestwood, E.J.Colombini,[J].Vac Sci Techno 1,1982,20 (2): 162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700