锂离子电池正极材料Li-Ni-Mn-O体系的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电极材料,特别是廉价、高性能电极材料的研究和开发是制约引导电池工业发展的重要因素,虽然锂离子电池在体积比能量、平均工作电压、使用电压范围、循环寿命、自放电等各方面均优于其他可充电电池。但目前商品化的锂离子电池正极材料主要是LiCoO_2,由于钴在自然界的丰度很低,又是军备材料,价格极高而且又污染环境,因此人们一直没有停止对新材料的探索。以层状的锂镍锰氧为正极材料的锂离子电池电池由于其价格低廉、无毒、安全等性能正在受到广泛的青睐,正逐渐成为钴酸锂电池的替代者。在锂镍锰氧系列的电池当中,LiNi_(0.5)Mn_(0.5)O_2材料是最有吸引力的一个材料,不仅仅由于它的高理论容量280mAh g~(-1),而且现在在小电流放电下可以达到200mAh g~(-1)。但是,早期合成的LiNi_(0.5)Mn_(0.5)O_2往往含有Li_2MnO_3杂相,很难合成纯相的材料,少数的的方法可以合成纯相,如离子交换法、复合氢氧化物沉淀法、超声喷雾干燥法等,但是这些方法对于合成大量的产品来说步骤太过复杂,而且要消耗大量的试剂。另外,Mn~(2+)在空气中容易被氧化,需要在保护气中操作。即使这样,合成出的LiNi_(0.5)Mn_(0.5)O_2中Li/Ni混排现象依然严重,循环过程中容量衰减很快,并且在大电流放电情况下,容量保持率不高。因此,有必要研究新的合成方法,并对这种方法进行深入的研究,以提高材料的综合性能。
     第一章综述了锂离子电池正极材料的研究进展和LiNi_(0.5)Mn_(0.5)O_2正极材料的研究现状,提出了本论文的选题意义及需要解决的相关科学问题。
     第二章针对传统的高温固相法烧结Li/Ni混排严重等缺点,我们用Ni-Mn-O固态合金氧化物作为前驱物来制备高性能的LiNi_(0.5)Mn_(0.5)O_2。这种方法操作简单,不需要复杂的条件,并且在前驱物中,Ni、Mn已经在原子级别上很好的排列,因此制得的LiNi_(0.5)Mn_(0.5)O_2中Li/Ni混排程度小。并根据反应机理对这种合成LiNi_(0.5)Mn_(0.5)O_2的方法进行了优化,发现以5oC/min的升温速率在850oC下煅烧12h得到的LiNi_(0.5)Mn_(0.5)O_2具有最大的I_(003)/I_(104)峰强度比值,最明显的(006)/(102)和(108)/(110)衍射峰对分裂。结构精修表明,在此条件下合成的样品具有最小的Li/Ni混排程度。XPS和XAFS分析都表明在此条件下生成的样品中镍、锰分别是+2、+4价。另外,在此条件下合成的样品在20mAg~(-1)的小电流放电情况下首次放电容量达到199.8mAh g~(-1),循环140次后容量还保持在185mAh g~(-1),只有6.7%的容量衰减。另外,在6C的大电流放电下,容量达到118.8mAh g~(-1),在放电容量、循环性、大电流放电能力等方面具有很强的竞争力。
     在第三章中,利用不同配比的Ni/Mn固溶体前驱物制得不同Ni/Mn比的LiNi_xMn_(1-x)O_2。在前驱物中,除镍的含量为0.2的样品含有杂质外,其余的样品都是尖晶石结构的纯相。各个不同镍锰比例的化合物LiNi_xMn_(1-x)O_2都是层状α-NaFeO_2结构,但是六方相的质量随镍含量的升高先变好又变坏,I_(003)/I_(104)峰强度比值的变化规律也是先减小后增大。Rietveld精修结果表明,Li/Ni混排程度随着镍含量的升高先减小后增大,晶体结构参数增大。另外,XPS和XAFS分析表明,镍和锰的化合价也随着镍含量的不同而变化,镍含量少时,化合物中有Mn~(3+),镍含量多时,化合物中有Ni~(3+)。研究化合价和结构可以把化合物写成aLiNiO_2-bLiNi_(0.5)Mn_(0.5)O_2-cLiMnO_2的形式。电化学研究表明,当镍含量少时,Mn~(3+)在化合物中没有电化学活性存在,因此在化合物中的LiMnO_2不提供容量;当镍含量多时,Ni~(3+)在化合物中提供部分容量,但不是全部,因为LiNi_(0.5)Mn_(0.5)O_2的容量最高,LiNi_(0.7)Mn_(0.3)O_2次之,LiNi_(0.3)Mn_(0.7)O_2的容量最小。
     在第四章中,利用这种固溶体氧化物为前驱物来制备不同锂含量的LixNi_(0.5)Mn_(0.5)O_2,通过研究其XRD图发现,锂含量从0.5到1.5,除0.5的化合物还有少量的前驱物杂相外,其余的不同锂含量的化合物都是层状α-NaFeO_2结构,随着锂含量的增加,六方相的质量先变好后变坏,Li/Ni混排程度先减小后增大。XAFS研究表明,镍的化合价在锂含量增加的过程中先减小后不变,而锰的化合价是先增大后减小。锰和氧的软X射线分析也支持了这一结论。最后,对不同锂含量的化合物进行了电化学性能研究。发现在正极材料中锂离子的含量并不是越多越好,而是与Li/Ni的混排程度相关的。锂含量为1.5时的电化学性质不及1.0的容量高,循环性能也不如1.0的好。
     第五章继续利用这种固溶体氧化物为前驱物的方法进行钴掺杂的改性研究。在前驱物中除镍、钴和锰的比例为1:1:1的前驱物中有CoO杂相外,其余的前驱物都是尖晶石NiMn_2O_4结构的纯相的化合物,镍、钴和锰在原子级别上排列均匀。各个钴含量不同的化合物LiNi_(0.5-x)Mn_(0.5-x)Co_2xO_2都是层状α-NaFeO_2结构,随着钴含量的增加,结构参数和Li/Ni混排程度都是减小的。XPS分析表明镍、钴和锰的化合价主要分别为+2、+3和+4价,但由于电子转移的缘故,含有微量的Ni~(3+)、Co~(2+)和Mn~(3+)。电化学分析表明,LiNi_(0.49)Mn_(0.49)Co_(0.02)O_2具有最好的电化学性质,在2.5-4.4V以20mA g~(-1)的充放电速率循环50次后有86.1%的容量保持率。特别分析LiNi_(0.34)Mn_(0.33)Co_(0.33)的电化学性质之后发现,以1000mAg~(-1)的高速率放电只有63mAh g~(-1)的容量保留。这与其前驱物中含有CoO杂质是分不开的。
     第六章针对已有的文献中对Al~(3+)掺杂的效果的不一致性,继续利用这种固溶体氧化物的方法制备不同铝掺杂的LiNi_(0.5-x)Mn_(0.5-x)Al_(2x)O_2电池材料。与前面的固溶体化合物相同的是,不同铝含量的镍-锰-铝固溶体氧化物也是尖晶石型结构,镍、锰和铝在前驱物中达到原子级别的均匀混合。各个掺杂不同铝量的化合物LiNi_(0.5-x)Mn_(0.5-x)Al_(2x)O_2都是α-NaFeO_2层状结构,对制备条件和制备过程都做了优化。对在优化条件下生成的LiNi_(0.5-x)Mn_(0.5-x)Al_(2x)O_2进行结构精修后发现,随着铝含量的增加,层状结构变好,Li/Ni混排程度减小,但Ni~(2+)在3b位置上的量会减少。XPS分析研究表明,掺入铝后,镍、锰的化合价主要是+2、+4价,铝的存在降低了Ni~(2+)和Mn~(4+)之间的电子交换,因此Ni~(3+)和Mn~(3+)的量减少,但减少的量与铝的掺入量没有直接的关系。电化学性能测试研究表明,掺杂铝后能大大提高材料的容量和循环性能,氧化还原电位稍高。在不同铝含量的化合物中,LiNi_(0.475)Mn_(0.475)Al_(0.05)O_2的电化学性质最好,在20mA g~(-1)的电流放电下,初始容量达到206mAh g~(-1),循环30次后仍然有96%的容量保持,表现了良好的循环性能。另外,LiNi_(0.425)Mn_(0.425)Al_(0.15)O_2的循环性能最好,氧化还原电位差值较小,循环30次后有98%的初始放电容量保持,但由于在3b位置上的Ni~(2+)量少,容量不高。
     第七章对本论文的创新和不足作了简要总结,并对今后正极材料进行的后续研究方向提出了建议。
The research and development of electrode materials, especially low-cost,high-performance electrode materials are important factors constraining thedevelopment of battery industry, although the specific volume capacity, the averageoperating voltage, operating voltage range, cycle life, self-discharge and other aspectsof lithium-ion battery are better than other rechargeable batteries. Up to now, LiCoO_2is the main material used as commercial lithium-ion battery cathode. However,Li1-XCoO_2 has some disadvantages such as the cost, toxicity and safety. So mucheffort needs to be made to develop alternative lithium-insertion electrodes. Layeredlithium nickel manganese oxides are popular materials because of their low cost,non-toxic and safety performance. Series of lithium nickel manganese oxides arebecoming substitutes for lithium cobalt oxide. LiNi_(0.5)Mn_(0.5)O_2 is one of the mostattractive materials, not only because of its high theoretical capacity of 280 mAh g~(-1),but also now reaching 200 mAh g~(-1) at a low current discharge. However,LiNi_(0.5)Mn_(0.5)O_2 synthesized previously often contained impurity phase Li_2MnO_3. Itwas difficult to synthesize pure phase materials. Now a few of ways can producepure-phase LiNi_(0.5)Mn_(0.5)O_2, such as ion exchange, double hydroxide precipitation,ultrasonic spray thermal decomposition and so on. It is either too complex tosynthesize a large number of products with these methods or to consume largeamounts of reagents. In addition, because Mn~(2+) can be easily oxidized in the air, itneeds to be operated in the inert gas. Even so, the Li/Ni mixed degree of thesynthesized LiNi_(0.5)Mn_(0.5)O_2 remained serious, with fast capacity fading during cycling.Therefore, it is necessary to study new synthetic methods and make a study in depthof these methods to improve the durability of the materials.
     The first chapter reviews the progress of the lithium ion battery cathode materialsand the status of LiNi_(0.5)Mn_(0.5)O_2 cathode material. The topics meaning of this paperand the related to scientific issues needed to be addressed are also presented.
     In the second chapter, there are some shortcomings such as serious degree ofLi/Ni mixing with the traditional solid state method of high temperature sintering. Inorder to relieve these disadvantages, we prepared high-performanced LiNi_(0.5)Mn_(0.5)O_2with the Ni-Mn-O solid solution as precursors. This method is simple, and no complicated conditions. In the precursor, Ni and Mn have been homogeneouslymixied at the atomic level, so the degree of Li/Ni mixing is reduced in a small extentin the obtained LiNi_(0.5)Mn_(0.5)O_2 . And the reaction conditions were optimized based onthe reaction mechanism of this method. It was found that the LiNi_(0.5)Mn_(0.5)O_2 obtainedwith heating rate of 5oC/min calcined at 850oC for 12h was of the largest intensityratio of I_(003)/I_(104) and the most obvious splitting of (006)/(102) and (108)/(110)diffraction peaks. The structure refinement showed the sample under this conditions isof the smallest degree of Li/Ni cation mixing. XPS and XAFS analyses indicate thatthe valence states of nickel and manganese in the as-synthesized product under theconditions are +2, +4, respectively. In addition, under these conditions, the samplesynthesized has the initial discharge capacity of 199.8 mAh g~(-1) under the small currentdischarge of 20 mA g~(-1). The capacity remained 185 mAh g~(-1) after 140 cycle, with only6.7% of the initial capacity fading. Moreover, with the large current discharge of 6C,the capacity of 118.8 mAh g~(-1) has remained. So the product has a strong competitiveability with the discharge capacity, cycle life, high-current discharge capacity.
     In the third chapter, LiNi_xMn_(1-x)O_2 with different Ni/Mn ratio were synthesizedused Ni-Mn-O solid solution with different ratio of Ni/Mn as precursors. In theprecursor, except the precursor with nickel content of 0.2 contains impurity, the rest ofprecursors are pure phase with spinel structure. The LiNi_xMn_(1-x)O_2 with differentnickel contents are ofα-NaFeO_2 layered structure. With the increase of nickel content,the quality of the hexagonal firstly becomes better and then worse. Similarly, theintensity ratio of I_(003)/I_(104) increased firstly and then decreased. Rietveld refinementresults show that, with the nickel content increased, the degree of Li/Ni cation mixingand the crystal structure parameters are increased. In addition, XPS and XAFSanalyses showed that the valence states of nickel and manganese also varies with thenickel content. When nickel content is lower, the compounds contains Mn~(3+). Whennickel content is higher, compounds contains Ni~(3+). Based on the variation of valencestates and structures, the compounds can be written asaLiNiO_2-bLiNi_(0.5)Mn_(0.5)O_2-cLiMnO_2. The electrochemistry analysis shows that whenthe nickel content is smaller, Mn~(3+) of compounds provides no electrochemical activity.Therefore, the LiMnO_2 in the form of the compounds doed not have any capacity.When the nickel content is higher, Ni~(3+) of the compounds provides some capacitybecause LiNi_(0.5)Mn_(0.5)O_2 has the maximum capacity, LiNi_(0.7)Mn_(0.3)O_2 second,LiNi_(0.3)Mn_(0.7)O_2 smallest.
     In the fourth chapter, different lithium content of LixNi_(0.5)Mn_(0.5)O_2 weresynthesized with the precursor of solid solution oxide. By studying their XRDpatterns, it was found that with all the lithium content from 0.5 to 1.5, compounds areofα-NaFeO_2 layered structure with no impurity except a small amount of precursorcompounds are mixed in the material with the lithium content of 0.5. With the lithiumcontent increases, the quality of the hexagonal changed from better to worse, thedegrees of Li/Ni mixing firstly increased and then decreased. XAFS study shows thatwith the lithium content increasing, the valence states of nickel in the compoundsdecreased and then remained unchanged, while the valence states of Mn has oneinflection point at x=1.0. These point were also supported by the soft X-ray analysisof manganese and oxygen. Finally, the electrochemical properties of compounds withdifferent lithium content were studied. And it was found that the electrochemistryperformances of the cathode materials with higher lithium ion concentration were notbetter, but were related with the degree of Li/Ni cation mixing. The electrochemicalproperties with lithium content of 1.5 is not as good as the one in which lithiumcontent is 1.0, and cycling performance is also not as good.
     Chapter V continues using this method of solid solution as the precursor to studythe modification with cobalt doped. In the precursor, except the precursor of nickel,cobalt and manganese in the ratio of 1:1:1 has impurity of CoO, other precursors arepure phase with spinel structure of NiMn_2O_4. Nickel, cobalt and manganesesufficiently mixed at atomic level. LiNi_(0.5-x)Mn_(0.5-x)Co_2xO_2 of various cobalt content areofα-NaFeO_2 layered structure. With the increase of cobalt content, structureparameters and the degree of Li/Ni mixing were reduced. XPS analysis shows that thevalence states of nickel, cobalt and manganese were predominantly +2, +3 and +4,respectively, with traces of the Ni~(3+), Co~(2+) and Mn~(3+) because of the electron transition.Electrochemical analysis shows that, LiNi_(0.49)Mn_(0.49)Co_(0.02)O_2 has the bestelectrochemical properties in the 2.5-4.4V with 20 mA g~(-1). The capacity retention is86.1% after 50 cycles with the charge and discharge rate of 20 mA g~(-1). And theelectrochemical performance of LiNi_(0.34)Mn_(0.33)Co_(0.33) was studied as a priority. Thedischarge capacity reservations is only 63 mAh g~(-1) with the big discharge rate of 1000mA g~(-1). When the discharge rate returned to 20 mA g~(-1), the capacity re-changed backto 157 mAh g~(-1), which was related to the impurity of CoO in the precursor.
     For the inconsistencies of existing literature on the effects of Al~(3+) doped, ChapterVI continues with the method with the precursors of Ni - Mn - Al-O solid solution to prepare LiNi_(0.5-x)Mn_(0.5-x)Al_(2x)O_2 battery materials with different aluminum contents.Similar to the solid solution as mentioned above, Ni - Mn - Al-O solid solutions withdifferent aluminum contents are also of spinel structure, in which nickel, manganeseand aluminum sufficiently mixed in atomic level. All compounds ofLiNi_(0.5-x)Mn_(0.5-x)Al_(2x)O_2 with different aluminum contents are of layeredα-NaFeO_2structure and the conditions and processes of preparation were optimized. Structuralrefinement with synthesized LiNi_(0.5-x)Mn_(0.5-x)Al_(2x)O_2 in optimized conditions revealedthat the values of c/a increased, degree of Li/Ni cation mixing decrease, but theamount of Ni~(2+) in 3b location reduced with the increase of aluminum content. XPSanalysis shows that for the aluminum doped materials, the valence states of nickel andmanganese are mainly +2 and +4, respectively. The degree of electronic exchangebetween Ni~(2+) and Mn~(4+) are lower than that of aluminum undoped, so the amount ofNi~(3+) and Mn~(3+) reduced, but there was no direct relation with the amount of aluminum.Electrochemical performance test results show that, the capacity and cycleperformance of materials can greatly increase after aluminum doped and bothoxidation potential and reduction potential are slightly higher. Among the compoundswith different aluminum content, LiNi_(0.475)Mn_(0.475)Al_(0.05)O_2 has the best electrochemicalproperties. With the discharge current rate of 20mA g~(-1), the initial capacity is 206mAhg~(-1), and still 96% of initial capacity maintained after 30 cycles, indicating a goodcycling performance. In addition, LiNi_(0.425)Mn_(0.425)Al_(0.15)O_2 has the best cyclingperformance and lower redox potential. 98% of the initial discharge capacity retainedafter 30 cycles. But the capacity is not high because of the less amount of the Ni~(2+) in3b location.
     Chapter VII summarized the paper's innovations and weaknesses briefly, and thecathode material for future follow-up research are suggested.
引文
[1] J. M. Tarascon, M. Armand, Nature, 2001, 414, 359.
    [2] L. J. Ning, Y. P. Wu, S. B. Fang, et al., J. Power Sources, 2004, 133, 229.
    [3] M. S. Whittingham, Chem. Rev., 2004, 104, 4271.
    [4] D.W. Murphy, J. Broodhead, B.C. Steel, Materials for advanced batteries [M].NewYork: Plenum Press, 1980,145.
    [5] B. Scrosati, J.Electrochem.Soc.,1992,139, 2776-2781.
    [6] D. Guyomard, J.M.Tarascon, Solid State Ionics,1994,69, 222-237.
    [7] J. R. Dahn, U. Von Sacken, M. W. Juzkow, et al., J.Electrochem.Soc., 1991,138,2207-2211.
    [8] T. Nagaura, 4th International Rechargeable Batt. Seminar. Florida: 1990.
    [9] J. M. Tarascon,M. Armand,Nature,2001, 4 14, 359-367.
    [10]任学佑,锂离子电池及其发展前景,电池,1996,26, 38-40.
    [11] T. Nagaura,K. Tozawa,Prog.Batts.Sol.Cells,1990,9, 209-217
    [12]汪续强,陈立泉,雷永泉,新能源材料,天津:天津大学出版社,2000.
    [13]吴宇平,万春荣,姜长印等,锂离子二次电池,北京:化学工业出版社,2002.
    [14]吴宇平,戴晓兵,马军旗,程预江,锂离子电池-应用于实践,化学工业出版社,2004.[15 T. Takamura, Solid State Ionics, 2002, 152-153, 19-34.
    [16] J.O. Besenhard (Ed.), Handbook of Battery Materials, Wiley- VCH, Weinheim,1999, p. 47.
    [17]李阳兴等.锂离子电池的研究与开发,第四届中国国际电池技术交流会/展览会论文集[C].北京:1999, 200-202.
    [18] K. Miura, A. Yamada, M. Tanaka, Electrochimica Acta, 1996, 41, 249.
    [19]张胜利,余仲宝,韩周群,电池工业,1999, 4, 26.
    [20]周恒辉,慈云祥,刘昌炎,化学进展,1998, 10, 85.
    [21] N. Takami , T. Ohsaki , H. Hasebe , M. Yamamoto, J. Electrochem. Soc., 2002,149, A9.
    [22] M. G. S. R. Thomas, P. G. Bruce, J. B. Goodenough, Solid State Ionics, 1985, 17,13.
    [23] T. Ohzuku, A. Ueda, J. Electrochem. Soc., 1994, 141, 2972.
    [24] T. Ohzuku, A. Ueda, Solid State Ionics, 1994, 69, 201.
    [25] J. N. Reimers, J. R. Dahn, J. Electrochem. Soc., 1992, 139, 2091.
    [26] I. Nakai, K. Takahashi, Y. Shiraishi, T. Nagagome, F. Nishikawa, J. Solid StateChem., 1998, 140, 145.
    [27] J. N. Reimers, J. R. Dahn, J. Electrochem. Soc. 1993, 140, 2752.
    [28] O. Tsutomu, U. Atsushi, J. Electrochem. Soc. 1994, 141, 2972.
    [29] T. Nohma, H. Kurokawa, T. Suito, J. Power Sources, 1995, 54, 522.
    [30] R. J. Gummow, M. M. Thackcray, J. Electrochem. Soc., 1993, 140, 3365.
    [31] R. Yazami, N. Lbrum, M. Bonnesu, J. Power Sources, 1995, 54, 389.
    [32]刘汉三,杨勇,张忠如等,电化学,2001,7,145.
    [33]徐爱东,电池工业,1998, 3, 53.
    [34]徐爱东,电池工业,1998, 3, 184.
    [35]解晶莹,尹鸽平,史鹏飞,电源技术,1997, 21, 185.
    [36] C. Delmas, J. P. Pérès, A. Rougier, A. Demourgues, F. Weill, A. Chadwick, M.Broussely, F. Perton, Ph. Biensan, P. Willmann, J. Power Sources, 1997, 68, 120.
    [37] T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc., 1993, 140, 1862.
    [38] T. Ohzuku, A. Ueda, M. Kiughchi. J. Electrochem.Soc., 1995,142, 4033.
    [39] C. Chang, J. Y. Kim, P. N. Kumta, J. Electrochem. Soc., 2002, 149, A331.
    [40] C. Chang, J. Y. Kim, P. N. Kumta, J. Electrochem. Soc., 2002, 149, A1114.
    [41] A. R. Armstrong, P. G. Bruce, Nature, 1996, 381, 499.
    [42]康慨,戴受惠,万玉华,无机材料学报, 2001, 16, 586.
    [43] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, S. Colson, J.Electrochem. Soc., 1991, 138, 2895.
    [44] K. Mizushima, P. C. Jones, J. B. Goodenough, et al. Mater. Res. Bull., 1980, 15,783.
    [45] M. M. Thackeray, P. J. Johnson, J. B. Goodenough, et al. Mater. Res. Bull., 1984,19, 179.
    [46] D. Huang, Advanced Battery Technology, 1998, 11, 23.
    [47] A.S. Andersson, B. Kalska, L. Haggstrom et al. Solid State Ionics, 2001, 130, 41.
    [48] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 1997,144, 1188.
    [49] M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 2004,104, 4271–4301.
    [50] X. Shi, C. Wang, X. Ma, J. Sun, Mater. Chem. Phys., 2009, 113, 780–783.
    [51] D.G. Lee, R.K. Gupta, Y.S. Cho, K.T. Hwang, J. Appl. Electrochem., 2009, 39,671–679.
    [52] D. Li, Z. Peng, H. Ren, W. Guo, Y. Zhou, Mater. Chem. Phys., 2008, 107,171–176.
    [53] R. Baskaran, N. Kuwata, O. Kamishima, J. Kawamura, S. Selvasekarapandian,Solid State Ionics, 2009, 180, 636–643.
    [54] K. Sakamoto, M. Hirayama, N. Sonoyama, D. Mori, A. Yamada, K. Tamura, J.Mizuki, R. Kanno, Chem. Mater., 2009, 21, 2632–2640.
    [55] H.Y. Xu, Q.Y. Wang, C.H. Chen, J. Solid State Electrochem., 2008, 12, 1173–1178.
    [56] M. Jiang, B. Key, Y.S. Meng, C.P. Grey, Chem. Mater., 2009, 21, 2733–2745.
    [57] L. Wang, J. Li, X. He, W. Pu, C. Wan, C. Jiang, J. Solid State Electrochem., 2009,13, 1157–1164.
    [58] Y. Wu, A. Manthiram, J. Power Sources, 2008, 183, 749–754.
    [59] S.G. Stewart, V. Srinivasan, J. Newman, J. Electrochem. Soc., 2008, 155,A664–A671.
    [60] S.K. Martha, E. Markevich, V. Burgel, G. Salitra, E. Zinigrad, B. Markovsky, H.Sclar, Z. Pramovich, O. Heik, D. Aurbach, I. Exnar, H. Buqa, T. Drezen, G. Semrau,M. Schmidt, D. Kovacheva, N. Saliyski, J. Power Sources, 2009, 189, 288–296.
    [61] S.K. Martha, H. Sclar, Z.S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P.Sharon, E. Golik, B. Markovsky, D. Aurbach, J. Power Sources, 2009, 189, 248–255.
    [62] M.B. Sahana, C. Sudakar, C. Thapa, V.M. Naik, G.W. Auner, R. Naik, K.R.Padmanabh, Thin Solid Film,2009, 517, 6642-6651.
    [63] G. Li, S. Pang, L. Jiang, Z. Guo, Z. Zhang, J. Phys. Chem. B, 2006, 110,9383–9386.
    [64] C.Q. Feng, S.Y. Wang, R. Zeng, Z.P. Guo, K. Konstantinov, H.K. Liu, J. PowerSources, 2008, 184, 485–488.
    [65] V.M.Mohan, B. Hu,W.Qiu,W.Chen, J. Appl. Electrochem., 2009, 39, 2001-2006.
    [66] Y. Wang, K. Takahashi, K.H. Lee, G.Z. Cao, Adv. Funct. Mater., 2006, 16,1133–1144.
    [67] R. Benedek, M.M. Thackeray, L.H. Yang, Phys. Rev. B, 1997, 56, 10707–10710.
    [68] Y. Liu, X. Zhou, Y. Guo, Mater. Chem. Phys., 2009, 114, 915–919.
    [69] F. Wu, L. Wang, C. Wu, Y. Bai, F. Wang, Mater. Chem. Phys., 2009, 115,707–711.
    [70] J. Sun, L. Jiao, X. Wei, W. Peng. L. Liu, H. Yuan, J. Solid State Electrochem.,2010, 14, 615-619.
    [71] H. Liu, Y. Wang, K. Wang, Y. Wang, H. Zhou, J. Power Sources, 2009, 192,668–673.
    [72] A.K. Padhi, K.S. Nanjundaswamy, J. Goodenough, J. Electrochem. Soc., 1997,144, 1188–1194.
    [73] T. Shiratsuchi, S. Okada, T. Doi, J.-I. Yamaki, Electrochim. Acta, 2009, 54,3145–3151.
    [74] S.-W. Kim, J. Kim, H. Gwon, K. Kang, J. Electrochem. Soc., 2009, 156,A635–A638.
    [75] A.V. Murugan, T. Muraliganth, A. Manthiram, J. Electrochem. Soc., 2009, 156,A79–A83.
    [76] N.N. Bramnik, K. Nikolowski, D.M. Trots, H. Ehrenberg, Electrochem.Solid-State Lett., 2008, 11, A89–A93.
    [77] M.S. Whittingham, Chem. Rev., 2004, 104, 4271–4301.
    [78] X.-H. Liu, T. Saito, T. Doi, S. Okada, J.-I. Yamaki, J. Power Sources, 2009, 189,706–710.
    [79] Y. Zhang, C.S. Sun, Z. Zhou, Electrochem. Commun., 2009, 11, 1183–1186.
    [80] X.J. Wang, X.Q. Yu, H. Li, X.Q. Yang, J. McBreen, X.J. Huang, Electrochem.Commun., 2008, 10, 1347–1350.
    [81] K.-W. Nam, X.-J. Wang, W.-S. Yoon, H. Li, X. Huang, O. Haas, J. Bai, X.- Q.Yang, Electrochem. Commun., 2009, 11, 913–916.
    [82] X. Zhu, Y. Liu, L. Geng, L. Chen, H. Liu, M. Cao, Solid State Ionics, 2008, 179,1679–1682.
    [83] Q. Chen, J. Wang, Z. Tang, W. He, H. Shao, J. Zhang, Electrochim. Acta, 2007,52, 5251–5257.
    [84] Y. Sun, C.Y. Ouyang, Z. X. Wang, X. J. Huang, L. Q. Chen, J. Electrochem. Soc.,2004, 151, A504.
    [85] S. H. Pa rk, S. WOh,Y. K. Sun, J. Power Sources, 2005, 146, 622.
    [86] Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, J. Electrochem. Soc.2002, 149, A778
    [87] D. Guyomard, J. M .Tarascon, J. Electrochem. Soc., 1992, 139, 937.
    [88] Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R.Dahn, J.Electrochem. Soc., 2002, 149, A778.
    [89] P. Albertus, J. Christensen, J. Newman, J. Electrochem. Soc., 2009, 156,A606–A618.
    [90] G. Li, Z. Yang, W. Yang, J. Power Sources, 2008, 183, 741–748.
    [91] J.F. Whitacre, K. Zaghib, W.C. West, B.V. Ratnakumar, J. Power Sources, 2008,177, 528–536.
    [92] S.-B. Kim, K.J. Lee, W.J. Choi, W.-S. Kim, I.C. Jang, H.H. Lim, Y.S. Lee, J.Solid State Electrochem.,2010, 14, 919.
    [93] T.A. Arunkumar, E. Alvarez, A. Manthiram, J. Mater. Chem., 2008, 18, 190–198.
    [94] S. Sivaprakash, S.B. Majumder, R.S. Katiyar, J. Electrochem. Soc., 2009, 156,A328–A333.
    [95] M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A.Hackney, J. Mater. Chem., 2007, 17, 4012–4016.
    [96] C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey, M. M. Thackeray, Chem. Mater.,2008, 20, 6095–6106.
    [97] G.-Y. Kim, S.-B. Yi, Y.J. Park, H.-G. Kim, Mater. Res. Bull., 2008, 43,3543–3552.
    [98] X.-J. Guo, Y.-X. Li, M. Zheng, J.-M. Zheng, J. Li, Z.-L. Gong, Y. Yang, J. PowerSources, 2008, 184, 414–419.
    [99] S.-H. Kang, M.M. Thackeray, J. Electrochem. Soc., 2008, 155, A269–A275.
    [100] J. Gao, A. Manthiram, J. Power Sources, 2009, 191, 644– 647.
    [101] J.-H. Lim, H. Bang, K.-S. Lee, K. Amine, Y.-K. Sun, J. Power Sources, 2009,189, 571–575.
    [102] N. V. Kosova, E. T. Devyatkina, V. V. Kaichev, Russ. J. Electrochem., 2009, 45,277–285.
    [103] K.-W. Nam, W.-S. Yoon, H. Shin, K.Y. Chung, S. Choi, X.-Q. Yang, J. PowerSources, 2009, 192, 652–659.
    [104] S.K. Jeong, J.S. Shin, K.S. Nahm, T.P. Kumar, A.M. Stephan, Mater. Chem.Phys., 2008, 111, 213–217.
    [105] K.M. Kim, S.H. Lee, S. Kim, Y.-G. Lee, J. Appl. Electrochem., 2009, 39,1487–1495.
    [106] J. W. Fergus, Journal of Power Sources, 2010, 195, 939–954.
    [107] K.-S. Lee, S.-T. Myung, H. Bang, K. Amine, D.-W. Kim, Y.-K. Sun, J. PowerSources, 2009, 189, 494–498.
    [108] X.-R. Deng, G.-R. Hu, K. Du, Z.-D. Peng, X.-G. Gao, Y.-N. Yang, Mater. Chem.Phys., 2008, 109, 469–474.
    [109] J. Gao, J. Kim, A.Manthiram, Electrochem. Commun., 2009, 11, 84–86.
    [110] S. Stewart, P. Albertus, V. Srinivasan, I. Plitz, N. Pereira, G. Amatucci, J.Newman, J. Electrochem. Soc., 2008, 155, A253–A261.
    [111] H.E. Park, I.W. Seong, W.Y. Yoon, J. Power Sources, 2009, 189, 499–502.
    [112] J. Shu, J. Solid State Electrochem., 2009, 13, 1535–1539.
    [113] H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, J. Power Sources, 2009,189, 145–148.
    [114] H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, J. Electrochem. Soc.,2009, 156, A114–A119.
    [115] K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma,M. Osada, T.Sasaki, Solid State Ionics, 2008, 179, 1333–1337.
    [116] D.-Q. Liu, X.-Q. Liu, Z.-Z. He, Mater. Chem. Phys., 2007, 105, 362–366.
    [117] T.-F. Yi, J. Shu, Y.-R. Zhu, A.-N. Zhou, R.-S. Zhu, Electrochem. Commun.,2009, 11, 91–94.
    [118] H.-W. Lu, L. Yu, W. Zeng, Y.-S. Li, Z.-W. Fu, Electrochem. Solid-State Lett.,2008, 11, A140–A144.
    [119] C.P. Fonseca, M.A. Bellei, F.A. Amaral, S.C. Canobre, S. Neves, EnergyConvers. Manage., 2009, 50, 1556–1562.
    [120] G. Chen, J.D. Wilcox, T.J. Richardson, Electrochem. Solid-State Lett., 2008, 11,A190–A194.
    [121] J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park, Y.S. Lee, Mater. Lett., 2009,63, 581–583.
    [122] S.H. Ju, H.C. Jang, Y.C. Kang, Mater. Chem. Phys., 2008, 112, 536–541.
    [123] M.Y. Song, I.H. Kwon, J. Song, S. Shim, J. Appl. Electrochem., 2009, 39,617–625.
    [124] M. Y. Song, I. H. Kwon, J. Alloys Compd., 2009, 484, 591-596.
    [125] M. Tabuchi, Y. Nabeshima, K. Ado, M. Shikano, K.H. Kageyama, K. Tatsumi, J.Power Sources, 2007, 174, 554–559.
    [126] M. Tabuchi, Y. Nabeshima, M. Shikano, K. Ado, H. Kageyama, K. Tatsumi, J.Electrochem. Soc., 2007, 154, A638–A648.
    [127] S. Rajakumar, R. Thirunakaran, A. Sivashanmugam, J.-I. Yamaki, S.Gopukumara, J. Electrochem. Soc., 2009, 156, A246–A252.
    [128] J.D. Wilcox, S. Patoux, M.M. Doeff, J. Electrochem. Soc., 2009, 156,A192–A198.
    [129] R. Alcantara, G. Ortiz, J.L. Tirado, R. Stoyanova, E. Zhecheva, Sv. Ivanova, J.Power Sources, 2009, 194, 494–501.
    [130] M.V. Reddy, S. Sundar Manoharan, J. John, B. Singh, G.V.S. Rao, B.V.R.Chowdari, J. Electrochem. Soc., 2009, 156, A652–A660.
    [131] H. Wang, H. Xia, M.O. Lai, L. Lu, Electrochem. Commun., 2009, 11,1539–1542.
    [132] Y. Wang, Y. u Yang, X. Hu, Y. Yang, H. Shao, J. Alloys Compd., 2009, 481,590–594.
    [133] M.M. Ren, Z. Zhou, L.W. Su, X.P. Gao, J. Power Sources, 2009, 189, 786–789.
    [134]A. V. Churikov, E. I. Kachibaya, V. O. Sycheva, I. A. Ivanishcheva, R. I.Imnadze, T. V. Paikidze, A. V. Ivanishchev, Russ. J. Electrochem., 2009, 45, 175–182.
    [135] J.M. Amarilla, K. Petrov, F. Pico, G. Avdeev, J.M. Rojo, R.M. Rojas, J. PowerSources, 2009, 191, 591–600.
    [136] R.K. Katiyar, R. Singhal, K. Asmar, R. Valentin, R.S. Katiyar, J. Power Sources,2009, 194, 526–530.
    [137] M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, J. PowerSources, 2008, 185, 501–511.
    [138] T.-F. Yi, C.-Y. Li, Y.-R. Zhu, J. Shu, R.-S. Zhu, J. Solid State Electrochem.,2009, 13, 913–919.
    [139] Y. Kobayashi, Y. i Mita, S. Seki, Y. Ohno, H. Miyashiro, M. Nakayama, M.Wakihara, J. Electrochem. Soc., 2008, 155, A14–A19.
    [140] C.P. Grey, N. Dupre, Chem. Rev., 2004, 104, 4493–4512.
    [141] N.K. Karan, M. Balasubramanian, D.P. Abraham, M.M. Furczon, D.K. Pradhan,J.J. Saavedra-Arias, R. Thomas, R.S. Katiyar, J. Power Sources, 2009, 187, 586–590.
    [142] N.K. Karan, D.P. Abraham, M. Balasubramanian, M.M. Furczon, R. Thomas,R.S. Katiyar, J. Electrochem. Soc., 2009, 156, A553–A562.
    [143] L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem., 2009, 13,1381–1386.
    [144] S.Y. Zhan, C.Z. Wang, K. Nikolowski, H. Ehrenberg, G. Chen, Y.J. Wei, SolidState Ionics, 2009, 180, 1198–1203.
    [145] Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Electrochim. Acta, 2009, 54,5844–5850.
    [146] Y. Chen, R. Chen, Z. Tang, L. Wang, J. Alloys Compd., 2009, 476, 539–542.
    [147] A.Y. Shenouda, H.K. Liu, J. Alloys Compd., 2009, 477, 498–503.
    [148] N. Kitamura, H. Iwatsuki, Y. Idemoto, J. Power Sources, 2009, 189, 114–120.
    [149] R. Guo, P. Shi, X. Cheng, L. Sun, Electrochim. Acta, 2009, 54, 5796–5803.
    [150] J. Liu, A. Manthiram, Chem. Mater., 2009, 21, 1695–1707.
    [151] J. Liu, A. Manthiram, J. Electrochem. Soc., 2009, 156, A66–A72.
    [152] R. Singhal, M.S. Tomar, J.G. Burgo, R.S. Katiyar, J. Power Sources, 2008, 183,334–338.
    [153] B. Leon, C.P. Vicente, J.L. Tirado, Ph. Biensan, C. Tessier, J. Electrochem. Soc.,2008, 155, A211–A216.
    [154] X. Li, Y. Xu, J. Solid State Electrochem., 2008, 12, 851–855.
    [155] J. Eom, J. Cho, J. Electrochem. Soc., 2008, 155, A201–A205.
    [156] H. Tang, F. Zhao, Z.-R. Chang, X.-Z. Yuan, H. Wang, J.Electrochem. Soc., 2009,156, A478–A482.
    [157] M.Y. Song, S.N. Kwon, S.-D. Yoon, D.R. Mumm, J. Appl. Electrochem., 2009,39, 807–814.
    [158] J. Saint, A.S. Best, A.F. Hollenkamp, J. Kerr, J.-H. Shin, M.M. Doeff, J.Electrochem. Soc., 2008, 155, A172–A180.
    [159] J.A. Saint, M.M. Doeff, J. Wilcox, Chem. Mater., 2008, 20, 3404–3411.
    [160] L.J. Hardwick, J.A. Saint, I.T. Lucas, M.M. Doeff, R. Kosteckia, FTIR and J.Electrochem. Soc., 2009, 156, A120–A127.
    [161] G.Q. Liu, W.S. Yuan, G.Y. Liu, Y.W. Tian, J. Alloys Compd.,2009, 484,567-569.
    [162] S.-H. Wu, M.-S. Chen, C.-J. Chien, Y.-P. Fu, J. Power Sources, 2009, 189,440–444.
    [163] L. Wu, X.-H. Li, Z.-X. Wang, L.-J. Li, J.-C. Zheng, H.-J. Guo, Q.-Y. Hu, J.Fang, J. Power Sources, 2009, 189, 681– 684.
    [164] F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources, 2009, 191, 628–632.
    [165] J.M. Zheng, J. Li, Z.R. Zhang, X.J. Guo, Y. Yang, Solid State Ionics, 2008, 179,1794– 1799.
    [166] H.-H. Chang, C.-C. Chang, C.-Y. Su, H.-C. Wu, M.-H. Yang, N.-L. Wu, J.Power Sources, 2008, 185, 466–472.
    [167] Y. Takahashi, S. Tode, A. Kinoshita, H. Fujimoto, I. Nakane, S. Fujitani, J.Electrochem. Soc., 2008, 155, A537–A541.
    [168] S. Sivaprakash, S.B. Majumder, J. Alloys Compd., 2009, 479, 561–568.
    [169] H. Liu, C. Li, Q. Cao, Y.P. Wu, R. Holze, J. Solid State Electrochem., 2008, 12,1017–1020.
    [170] N. Meethong, Y.-H. Kao, S.A. Speakman, Y.-M. Chiang, Adv. Funct. Mater.,2009, 19, 1060–1070.
    [171] M. Wagemaker, B.L. Ellis, D. Lutzenkirchen-Hecht, F.M. Mulder, L.F. Nazar,Chem. Mater., 2008, 20, 6313–6315.
    [172] Y. Huang, J. Chen, J. Ni, H. Zhou, X. Zhang, J. Power Sources, 2009, 188,538–545.
    [173] S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang, R. Santhanam, J. PowerSources, 2009, 188, 564–569.
    [174] G.-Y. Kim, Y.J. Park, K.H. Jung, D.-J. Yang, J.W. Lee, H.G. Kim, J. Appl.Electrochem., 2008, 38, 1477–1481.
    [175] S. Lim, J. Cho, Electrochem. Commun., 2008, 10, 1478–1481.
    [176] S.B. Park, H.C. Shin, W.-G. Lee, W.I. Cho, H. Jang, J. Power Sources, 2008,180, 597–601.
    [177] T. Doi, J.-I. Kageura, S. Okada, J.I. Yamaki, J. Power Sources, 2008, 185,473–479.
    [178] W. Luo, J.R. Dahn, Electrochim. Acta, 2009, 54, 4655– 4661.
    [179] B. Zhang, G. Chen, P. Xu, C.C. Li, J. Power Sources, 2008, 176, 325–331.
    [180] S. Komaba, K. Yoshii, A. Ogata, I. Nakai, Electrochim. Acta, 2009, 54,2353–2359.
    [181] B. Zhang, G. Chen, Y. Liang, P. Xu, Solid State Ionics, 2009, 180, 398–404.
    [182] M.-R. Yang, W.-H. Ke, J. Electrochem. Soc., 2008, 155, A729–A732.
    [183] F. Zhou, X. Zhao, Z. Lu, J. Jiang, J.R. Dahn, Electrochem. Solid-State Lett.,2008, 11, A155–A157.
    [184] F. Zhou, X. Zhao, J. Jiang, J.R. Dahn, Electrochem. Solid-State Lett., 2009, 12,A81–A83.
    [185] J.D. Wilcox, M.M. Doeff, ECS Trans., 2008, 11, 27–33.
    [186] S.-W. Woo, S.-T. Myung, H. Bang, D.-W. Kim, Y.-K. Sun, Electrochim. Acta,2009, 54, 3851–3856.
    [187] Y.-K. Lin, C.-H. Lu, J. Power Sources, 2009, 189, 353–358.
    [188] T. Sasaki, T. Nonaka, H. Oka, C. Okuda, Y. Itou, Y. Kondo, Y. Takeuchi, Y.Ukyo,K. Tatsumi, S. Muto, J. Electrochem. Soc., 2009, 156, A289–A293.
    [189] S. Muto, Y. Sasano, K. Tatsumi, T. Sasaki, K. Horibuchi, Y. Takeuchi, Y. Ukyo,J. Electrochem. Soc., 2009, 156, A371–A377.
    [190] J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, J. Power Sources,2002, 112, 222–230.
    [191] K. Shizuka, C. Kiyohara, K. Shima, K. Okahara, K. Okamoto, Y. Takeda, ECSTrans., 2008, 11, 7–13.
    [192] N. Kosova, E. Devyatkina, A. Slobodyuk, V. Kaichev, Solid State Ionics, 2008,179, 1745–1749.
    [193] Y. Bai, Y. Yin, N. Liu, B. Guo, H. Shi, J. Liu, Z. Wang, L. Chen, J. PowerSources, 2007, 174, 328–334.
    [194] J. Xiang, C. Chang, L. Yuan, J. Sun, Electrochem. Commun., 2008, 10,1360–1363.
    [195] G.T.-K. Fey, C.-S. Chang, T.P. Kumar, J. Solid State Electrochem., 2010, 14,17-26.
    [196] H. Lee, H.-J. Kim, D. Kim, S. Choi, J. Power Sources, 2008, 176, 359–362.
    [197] J.-M. Chen, Y.-D. Cho, C.-L. Hsiao, G.T.-K. Fey, J. Power Sources, 2009, 189,279–287.
    [198] C.-Z. Lu, J.-M. Chen, Y.-D. Cho, W.-H. Hsu, P. Muralidharana, G.T.-K. Fey, J.Power Sources, 2008, 184, 392–401.
    [199] D. Arumugam, G.P. Kalaignan, P. Manisankar, J. Solid State Electrochem., 2009,13, 301–307.
    [200] X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao, J. Power Sources, 2008, 184,543–547.
    [201] C.N. Zaheena, C. Nithya, R. Thirunakaran, A. Sivashanmugam, S. Gopukumar,Electrochim. Acta, 2009, 54, 2877–2882.
    [202] J. Xiang, C. Chang, F. Zhang, J. Sun, J. Alloys Compounds, 2009, 475,483–487.
    [203] Y. Gu, D. Chen, X. Jiao, F. Liu, J. Mater. Chem., 2007, 17, 1767–1776.
    [204]J.-P. Yu, X.-H. Hu, H. Zhan, Y.-H. Zhou, J. Power Sources, 2009, 189, 697–701.
    [205] Y.-D. Cho, G.T.-K. Fey, H.-M. Kao, J. Solid State Electrochem., 2008, 12,815–823.
    [206] D. Li, Y. Huang, D. Jia, Z. Guo, S.-J. Bao, J. Solid State Electrochem.,2010, 14,889-895.
    [207] P. Ghosh, S. Mahanty, R.N. Basu, Electrochim. Acta, 2009, 54, 1654–1661.
    [208] Y. Liu, C. Mi, C. Yuan, X. Zhang, J. Electroanal. Chem., 2009, 628, 73–80.
    [209] A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, J.Electrochem. Soc., 2009, 156, A27–A32.
    [210] A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, Electrochem.Solid-State Lett., 2008, 11, A1–A3.
    [211] A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, J. PowerSources, 2009, 189, 530–627.
    [212] J. Morales, R. Trocoli, E. Rodriguez-Castellon, S. Franger, J. Santos-Pe?na, J.Electroanal. Chem., 2009, 631, 29–35.
    [213] Z. Wen, S. Huang, X. Yang, B. Lin, Solid State Ionics, 2008, 179, 1800–1805.
    [214] P. Ghosh, S. Mahanty, R.N. Basu, Mater. Chem. Phys., 2008, 110, 406–410.
    [215] R. Guo, P. Shi, X. Cheng, Y. Ma, Z. Tan, J. Power Sources, 2009, 189, 2–8.
    [216] D.P. Abraham, M.M. Furczon, S.-H. Kang, D.W. Dees, A.N. Jansen, J. PowerSources, 2008, 180, 612–620.
    [217] G.G. Amatucci, N. Pereira, J. Fluorine Chem., 2007, 128, 243–262.
    [218] T. Nakajima, J. Fluorine Chem., 2007, 128, 277–284.
    [219] G. Du, Y. NuLi, J. Yang, J. Wang, Mater. Res. Bull., 2008, 43, 3607– 3613.
    [220] K. Matsumoto, T. Fukutsuka, T. Okumura, Y. Uchimoto, K. Amezawa, M.Inaba,A. Tasaka, J. Power Sources, 2009, 189, 599–601.
    [221] Y.-S. He, L. Pei, X.-Z. Liao, Z.-F. Ma, J. Fluorine Chem., 2007, 128, 139–143.
    [222] L. Croguennec, J. Bains, M. Menetrier, A. Flambard, E. Bekaert, C. Jordy, P.Biensan, C. Delmas, J. Electrochem. Soc., 2009, 156, A349–355.
    [223] J. Li, L. Wang, Q. Zhang, X. He, J. Power Sources, 2009, 190, 149–153.
    [224] M.L. Marcinek, J.W. Wilcox, M.M. Doeff, R.M. Kostecki, J. Electrochem. Soc.,2009, 156, A48–A51.
    [225] H.-S. Kim, K. Kim, S.I. Moon, I.-J. Kim, H.-B. Gu, J. Solid State Electrochem.,2008, 12, 867–872.
    [226] B. Lin, Z. Wen, J. Han, X. Wu, Solid State Ionics, 2008, 179, 1750–1753.
    [227] T.J. Patey, R. Buchel, S.H. Ng, F. Krumeich, S.E. Pratsinis, P. Novak, J. PowerSources, 2009, 189, 149–154.
    [228] Z.-R. Chang, H.-J. Lv, H.-W. Tang, H.-J. Li, X.-Z. Yuan, H. Wang, Electrochim.Acta, 2009, 54, 4595–4599.
    [229] C.-Z. Lu, G.T.-K. Fey, H.-M. Kao, J. Power Sources, 2009, 189, 155–162.
    [230] J.L. Jones, J.-T. Hung, Y.S. Meng, J. Power Sources, 2009, 189, 702– 705.
    [231] H. Joachin, T.D. Kaun, K. Zaghib, J. Prakash, J. Electrochem. Soc., 2009, 156,A401–A406.
    [232] Y.-D. Cho, G.T.-K. Fey, H.-M. Kao, J. Power Sources, 2009, 189, 256–262.
    [233] H.H. Li, J. Jin, J.P. Wei, Z. Zhou, J. Yan, Electrochem. Commun., 2009, 11,95–98.
    [234] M. Maccario, L. Croguennec, B. Desbat, M. Couzi, F. Le Cras, L. Servant, J.Electrochem. Soc., 2008, 155, A879–A886.
    [235] M.M. Doeff, J.D. Wilcox, R. Yu, A. Aumentado, M. Marcinek, R. Kostecki,J. Solid State Electrochem., 2008, 12, 995– 1001.
    [236] Y.-H. Nien, J.R. Carey, J.-S. Chen, J. Power Sources, 2009, 193, 822–827.
    [237] X. Yan, G. Yang, J. Liu, Y. Ge, H. Xie, X. Pan, R. Wang, Electrochim. Acta,2009, 54, 5770–5774.
    [238] D. Rangappa, M. Ichihara, T. Kudo, I. Honma, J. Power Sources, 2009, 194,1036–1042.
    [239] B. Jin, H.-B. Gu, K.-W. Kim, J. Solid State Electrochem., 2008, 12, 105–111.
    [240] D. H. Jang, S. M. Oh, Electrochim.Acta, 1998, 43,1023.
    [241] L. Xiao, Y. Yang, Y. Zhao, X. Ai, H. Yang, Y. Cao, J. Solid State Electrochem.,2008, 12, 149–153.
    [242] C.-H. Lu, T.-Y. Wu, H.-C. Wu, M.-H. Yang, Z.-Z. Guo, I. Taniguchi, Mater.Chem. Phys., 2008, 112, 115–119.
    [243] B.J. Hwang, Y.W. Wu, M. Venkateswarlu, M.Y. Cheng, R. Santhanam, J. PowerSources, 2009, 193, 828–833.
    [244] S.W. Oh, H.J. Bang, S.-T. Myung, Y.C. Bae,.S.-M. Lee, Y.-K. Sun, J.Electrochem. Soc., 2008, 155, A414–A420.
    [245] J. Sun, K. Tang, X. Yu, H. Li, X. Huang, Thin Solid Films, 2009, 517,2618–2622.
    [246] K. Tang, J. Sun, X. Yu, H. Li, X. Huang, Electrochim. Acta, 2009, 54,6565–6569.
    [247] D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N.-H. Kwon,J.H. Miners, L. Poletto, M. Gratzel, J. Power Sources, 2009, 189, 624–628.
    [248] M.S. Whittingham, Chem. Rev. 2004, 104, 4271–4301.
    [249] H. Xia, H. Wang, W. Xiao, L. Lu, M.O. Lai, J. Alloys Compd., 2009, 480,696–701.
    [250] K. Dokko, N. Nakata, K. Kanamura, J. Power Sources, 2009, 189, 783–785.
    [251] C. Arbizzani, S. Beninati, M. Mastragostino, J. Appl. Electrochem., 2010, 40,7-11.
    [252] H.-L. Zhu, Z.-Y. Chen, S. Ji, V. Linkov, Solid State Ionics, 2008, 179,1788–1793.
    [253] S.H. Ju, Y.C. Kang, J. Power Sources, 2008, 178, 387–392.
    [254] H. Ren, Y. Wang, D. Li, L. Ren, Z. Peng, Y. Zhou, J. Power Sources, 2008, 177,439–444.
    [255] B.-J. Hwang, K.-F. Hsu, S.-K. Hu, M.-Y. Cheng, T.-C. Chou, S.-Y. Tsay, R.Santhanam, J. Power Sources, 2009, 194, 515–519.
    [256] E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou, Nano Lett., 2009, 9,1045–1051.
    [257] D.-H. Kim, J. Kim, Electrochem. Solid-State Lett., 2006, 9, A439–A442.
    [258] H. Gabrisch, J. Wilcox, M.M. Doeff, Electrochem. Solid-State Lett., 2008, 11,A25–A29.
    [259] C. Deng, S. Zhang, B. Wu, S.Y. Yang, H.Q. Li, J. Solid State Electrochem.,2010, 14, 871-875.
    [260] E. Rossen, C. D. W. Jones, J. R. Dahn, Solid State Ionics, 1992, 57, 311-318.
    [261] T. Ohzuku, Y. Makimura, Chem. Lett., 2001, 744-745.
    [262] Z. H. Lu, D. D. Macneil, J. R. Dahn, Electrochem. Solid-State Lett., 2001, 4,A191-A194.
    [263] Y. Koyama, Y. Makimura, J. Electrochem. Soc., 2004, 151, A1499-A1506.
    [264] W.-S. Yoon, M. Balasubramanian, J. Electrochem. Soc., 2004, 151, A246-A251.
    [265] Y. S. Meng, G. Ceder, C. P. Grey, Electron. Solid-State Lett., 2004, 7,A155-A158.
    [266] M. G. S. R. Thomas, P. G. Bruce, J. B. Goodenough, Solid State Ionics, 1986,18-19, 794.
    [267] K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science, 2006, 311,977-980.
    [268] S. B. Schougaard, J. Breger, M. Jiang, C. P. Grey, J. B. Goodenough, Adv.Mater., 2006, 18, 905.
    [269] J. Breger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shaohorn, G. Ceder, C.P. Grey, Chem. Mater., 2006, 18, 4768-4781.
    [270] K. K. Lee, K.-B. Kim, J. Electrochem. Soc., 2000, 147, 1715.
    [271] L. Croguennec, C. Pouillenc, C. Delmas, J. Electrochem. Soc., 2000, 147, 1314.
    [272] T. Ohzuku, Y. Majumura, Chem. Lett., 2001, 30, 744.
    [273] Y. Makimura, T. Ohzuku, J. Power Sources, 2003, 119–121, 156.
    [274] K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science, 2006, 311, 977.
    [275] Y. Hinuma, Y. S. Meng, K. Kang, G. Ceder, Chem. Mater., 2007, 19, 1790.
    [276] Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett., 2001, 4,A191.
    [277] Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, J.Electrochem. Soc., 2002, 149, A778.
    [278] J. Chou, Y. Kim, G. Kim, J. Phys. Chem. C., 2007, 111, 3192.
    [279] B. Zhang, G. Chen, P. Xu, Z. Lv, Solid State Ionics, 2007, 178, 1230.
    [1] J-M. Tarascon, M. Armand, Nature, 2001, 414, 359.
    [2] Y. Xia, H. Takeshige, H. Noguchi, M. Yoshio, J. Power Sources, 1995, 56, 61.
    [3] Z. Liu, W-L. Wang, X. Liu, M. Wu, D. Li, Z. Zhen, J. Solid State Chem., 2004,177, 1585.
    [4] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 1997,144, 1188.
    [5] T. Ohzuku, Y. Majumura, Chem. Lett., 2001, 30, 744.
    [6] Y. Makimura, T. Ohzuku, J. Power Sources, 2003, 119–121, 156.
    [7] K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science, 2006, 311, 977.
    [8] Y. Hinuma, Y. S. Meng, K. Kang, G. Ceder, Chem. Mater., 2007, 19, 1790.
    [9] Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett., 2001, 4, A191.
    [10] Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, J.Electrochem. Soc., 2002, 149, A778.
    [11] J. Chou, Y. Kim, G. Kim, J. Phys. Chem. C., 2007, 111, 3192.
    [12] B. Zhang, G. Chen, P. Xu, Z. Lv, Solid State Ionics, 2007, 178, 1230.
    [13] H. Xia, S. B. Tang, L. Lu, J. Alloys Compd., 2008, 449, 296.
    [14] X. L. Meng, S. M. Dou, W. L. Wang, J. Power Sources, 2008, 184, 489.
    [15] Y. J. Park, Y-S. Hong, X. Wu, M. G. Kim, K. S. Ryu, S. H. Chang, J. Electrochem.Soc., 2004, 151, A720.
    [16] S. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, J.Power sources, 1998, 74, 46.
    [17] Z. H. Lu, Z. H. Chen, J. R. Dahn, Chem. Mater., 2003, 15, 3214.
    [18] H. Liu, J. Li, Z. Zhang, Z. Gong, Y. Yang, J. Solid State Electrochem., 2003, 7,456.
    [19] C. C. Chang, J. Y. Kim, P. N. Kumta, J. Electrochem. Soc., 2002, 149, A331.
    [20] K. Y. Choi, K. D. Kim, J. W. Yang, J. Mater. Process. Technol., 2006, 171, 118.
    [21] W. S. Yoon, S. Iannopollo, C. P. Grey, D. Carlier, J. Gorman, J. Reed, G. Ceder,Electrochem. Solid State Lett., 2004, 7, A167.
    [22] H. Kobayashi, Y. Arachi, H. Kageyama, K. Tatsumi, J. Mater. Chem., 2004, 14,40– 42.
    [23] S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, K. Amine, J. PowerSources, 2002, 112, 41.
    [24] A. F. Carley, S. D. Jackson, J. N. O’Shea, M. W. Roberts, Surf. Sci., 1999, 440,L868.
    [25] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc., 1996, 143,1607.
    [26] K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochimica Acta, 2002, 28,145.
    [27] K. Okamoto, K. Shizuka, T. Akai, Y. Tamaki, K. Okahara, M. Nomura, J.Electrochem. Soc., 2006, 153, A1120.
    [28] I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome, F. Izumi, Y. Ishii, F.Nishikawa,T. Konishi, J. Power Sources, 1997, 68, 536.
    [29] O. Haas, A. Deb, E.J. Carins, A. Wokaun, J. Electrochem. Soc., 2005, 152, A191.
    [30] U. Deb, S.P. Bergmann, E.J. Cramer, Cairns, J. Appl. Phys., 2005, 97,113523.
    [31] Y. W. Tasi, B.J. Hwang, G. Ceder, H.S. Sheu, D.G. Liu, J.F. Lee, Chem.Mater.,2005, 17, 3191.
    [32] B. Schougaard, J. Breger, M. Jiang, C. P. Grey, J. B. Goodenough, Adv. Mater.,2006, 18, 905.
    [33] D. Aurbach, M.D. Levi, E. Levi, et al., J. Electrochem. Soc., 1998, 145,3024-3034.
    [34] M.D. Levi, G. Salitra, B. Markovsky, et al., J. Electrochem. Soc., 1999, 146,1279-1289
    [35] C.-H. Lu, H.-C. Wang, J. Eur. Ceram. Soc., 2004, 24, 717.
    [36] G.T.-K. Fey, C.-Z. Lu, T.P. Kumar, J. Power Sources, 2003, 115, 332.
    [37] D. Aurbach, M.D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U.Heider, L. Heider, R. Oesten, J. Power Sources, 1999, 81/82, 472
    [38] B. Markovsky, D. Kovacheva, Y. Talyosef, et al., Electrochem. Solid-State Lett.,2006, 9, A449-A453.
    [39] K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Electrochimica Acta, 2004, 49, 1565-1576
    [40] G. Ning, B. Haran, B.N. Popov, J. Power Sources, 2003, 117, 160-16
    [1] E. Rossen, C. D. W. Jones, J. R. Dahn, Solid State Ionics, 1992, 57, 311.
    [2] Y. Nitta, K. Okamura, K. Haraguchi, S. Kobayashi, A. Ohta, J. Power Sources, 1995,54, 511.
    [3] M. Okada, K. Takahashi, T. Mouri, J. Power Sources, 1997, 68, 545.
    [4] M. Yoshio, Y. Todorov,K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, J.Power Sources, 1998, 74, 46.
    [5] H. Kobayashi, H. Sakaebe, H. Kageyama, K. Tatsumi,Y. Arachi,T. Kamiyama,J.Mater. Chem., 2003, 13, 590–595。
    [6] M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Journal of Power Sources, 2006,160, 1369–1374.
    [7] Q. W. Peng, Z. Y. Tang, L. Q. Zhang, X. J. Liu, Materials Research Bulletin, 2009,44, 2147–2151.
    [8] M. Jiang, B. Key, Y. S. Meng, C. P. Grey, Chem. Mater., 2009, 21, 2733-2745.
    [9] S. Komaba, K. Yoshii, A. Ogata, I. Nakai, Electrochimica Acta, 2009, 54,2353–2359.
    [10] S. H. Ju, Y. C. Kang, Journal of Alloys and Compounds, 2009, 469, 304–309.
    [11] E. Zhecheva, R. Stoyanova, R. Alc′antara, P. Lavela, J.L. Tirado, Journal of PowerSources, 2007, 174, 519–523.
    [12] J. Xiao, N. A. Chernova, M. S. Whittingham, Chem. Mater., 2010, 22, 1180-1185.
    [13] S. B. Schougaard, J. Breger, M. Jiang, C. P. Grey, J. B. Goodenough, Adv. Mater.,2006, 18, 905.
    [14] D. D. MacNeil, Z. Lu and J. R. Dahn, J. Electrochem. Soc., 2002, 149,A1332–A1336.
    [15] J. H. Kim, C. W. Park, Y. K. Sun, Solid State Ionics, 2003, 164, 43.
    [16] S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, K. Amine, J. PowerSources, 2002, 112, 41.
    [17] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc., 1996, 143,1607.
    [18] S. Gopukumar, K. Y. Chung, K. B. Kim, Electrochim. Acta, 2004, 49, 803-810.
    [19]. A. F. Carley, S. D. Jackson, J. N. O’Shea, M. W. Roberts, Surf. Sci., 1999, 440,L868.
    [20] S. P. Singh, M. S. Tomar ,Y. Ishikawa, Microelectronics, 2005, 36, 491.
    [1] K. Shizuka, S. Takano, K. Okahara, J. Power Sources, 2007, 174, 1074.
    [2] A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S.-H. Kang, M. M.Thackeray and P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 8694.
    [3] W.-S. Yoon, S. Iannopollo, C. P. Grey, D. Carlier, J. Gorman, J. Reed and G. Ceder,Electrochem. Solid-State Lett., 2004, 7, A167.
    [4] S.-H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, M. M.Thackeray, J. Mater. Chem., 2007, 17, 2069.
    [5] C. S. Johnson, J.-S. Kim, A. J. Kropf, A. J. Kahaian, J. T. Vaughey, L. M. L.Fransson, K. Edstrom, M. M. Thackeray, Chem. Mater., 2003, 15, 2313.
    [6] H. X. Deng, I. Belharouak, Y.-K. Sun, K. Amine, J. Mater. Chem., 2009, 19, 4510.
    [7] Y. Makimura, Y. Koyama, I. Tanaka, H. Adachi, T. Ohzuku, Abs. 411, 204thmeeting,@ The Electrochemical Society, Inc.
    [8] P. -Y. Liao, J.-G. Duh, J.-F. Lee, J. Power Sources, 2009, 189, 9.
    [9] K. Okamoto, K. Shizuka, T. Akai, Y. Tamaki, K. Okahara, M. Nomura, J.Electrochem. Soc., 2006, 153, A1120.
    [10] C. T. Meneses, F. C. Vicentin, J. M. Sasaki, M. A. Macedo, J. Electron Spectros.Related Phenom., 2007, 156-158, 326.
    [11] I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome, F. Izumi, Y. Ishii, F.Nishikawa,T. Konishi, J. Power Sources, 1997, 68, 536.
    [12] O. Haas, A. Deb, E.J. Carins, A. Wokaun, J. Electrochem. Soc., 2005, 152, A191.
    [13] U. Deb, S.P. Bergmann, E.J. Cramer, Cairns, J. Appl. Phys., 2005, 97,113523.
    [14] Y.W. Tasi, B.J. Hwang, G. Ceder, H.S. Sheu, D.G. Liu, J.F. Lee, Chem.Mater.,2005, 17, 3191.
    [15] J. McBreen, J. Solid State Electrochem., 2009, 13, 1051-1061.
    [16] P. -Y. Liao, J. -G. Duh, J. -F. Lee, H. -S. Sheu, Electrochimica Acta, 2007, 53,1850–1857.
    [17] I. Nakai, K. Takahahi, Y.Shiraishi, T. Nakagome, F. Izumi, Y. Ishii, F. Nishikawa.T. Konishi, J. Power Sources, 1997, 68, 536.
    [18] C. Mitra, Z. Hu, P. Raychaudhui, S. Wirth, S. I. Csiszar, H. H. Hsieh, H.-J. Lin, C.T. Chen, L. H. Tjeng, Phys. Rev. B, 2003, 67, 092404.
    [19] M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Harmann, M. Reuther, C.Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H.Tjeng, Phys. Rev. Lett., 2006, 97, 176405.
    [20] S. Ray, A. Kumar, D. D. Sarma, R. Cimino, S. Turchini, S. Zennaro, N. Zema,Phys. Rev. Lett., 2001, 87, 097204.
    [21] F. Nolting, F. Zema, A. Scholl, J. Stohr, J. W. Seo, J. Fompeyrine, H. Siegwart,J.-P. Locquet, S. Anders, J. Luning, E. E.Fullerton, M. F. Toney, M. R. Scheinfein, H.A. Padmore, Nature (London), 2000, 405, 767.
    [22] K. Kurata, C. Colliex, Phys. Rev. B, 1993, 48, 2102.
    [23] F. M. F. Degroot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, H.Petersen, Phys. Rev. B, 1989, 40, 5715.
    [24] O. Toulemonde, F. Studer, A. Barnabe, B. Raveau, J. B. Goedkoop, Eur. Phys. J.B, 2000, 18, 233.
    [25] Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, J.Electrochem. Soc., 2002, 149, A778.
    [26] S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, K. Amine, J. PowerSources, 2002, 112, 41.
    [1] J.-M. Tarascon, M. Armand, Nature, 2001, 414, 359-367.
    [2] Y. Xia, H. Takeshige, H. Noguchi, M. Yoshio, J. Power Sources, 1995, 56, 61-67.
    [3] Z. Liu, W.-L. Wang, X. Liu, M. Wu, D. Li, Z. Zhen, J. Solid State Chem., 2004, 177,1585-1591.
    [4] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 1997,144, 1188-1194.
    [5] F. Du, X. F. Bie, Y. Chen, Y. J. Wei, L. N. Liu, C. Z. Wang, G. T. Zou, G. Chen, J.Appl. Phys., 2009, 106, 053904.
    [6] C. H. Lu, Y. K. Lin, J. Power Sources, 2009, 189, 40–44.
    [7] K. M. Shaju, P. G. Bruce, Adv. Mater., 2006, 18, 2330–2334.
    [8] J. Choi, A. Manthiram, J. Power Sources, 2006, 162, 667–672.
    [9] D. C. Li, H. Noguchi, M. Yoshio, Electrochimica Acta, 2004, 50, 427–430.
    [10] C. Nithya, R. Thirunakaran, A. Sivashanmugam, G. V. M. Kiruthika, and S.Gopukumar, J. Phys. Chem. C, 2009, 113, 17936–17944.
    [11] J. F.Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Electrochimica Acta, 2008, 53,3075–3083.
    [12] N. A. Chernova, M. Ma, J. Xiao, M. S. Whittingham, J. Breger, C. P. Grey, Chem.Mater., 2007, 19, 4682-4693.
    [13] Y. Bentaleb, I. Saadoune, K. Maher, L. Saadi, K. Fujimoto, S. Ito, J. PowerSources, 2010, 195, 1510–1515.
    [14] M. Ma, N. A. Chernova, B. H. Toby, P. Y. Zavalij, M. S. Whittingham, J. PowerSources, 2007, 165, 517–534.
    [15] A. Deb, U. Bergman, S. P. Cramer, E. J. Cairns, J. Appl. Phys., 2005, 97, 113523.
    [16] P. Y. Liao, J. G. Duh, S. R. Sheen, J. Power Sources, 2005, 143, 212.
    [17]C. L. Gan, X. H. Hu, H. Zhan, Solid State Ionics, 2005, 176, 687.
    [18] S. W. Oh, S. H. Park, C. W. Park, Y. K. Sun, Solid State Ionics, 2004, 171,167–172.
    [19] H. Liu, J. Li, Z. Zhang, Z. Gong, Y. Yang, J. Solid State Electrochem., 2003, 7,456.
    [20] C. C. Chang, J. Y. Kim, P. N. Kumta, J. Electrochem. Soc., 2002, 149, A331.
    [21] B. Zhang, G. Chen, P. Xu, Z. Lv, Solid State Ionics, 2007, 178, 1230.
    [22] Z. L. Liu, A. H. Yu, J. Y. Lee, J. Power Sources, 1999,81–82, 416–419.
    [23] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta,1993, 38, 1159-1167.
    [24] B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater., 2003, 15, 3676-3682.
    [25] C. H. Chen, C. J. Wang, B. J. Hwang, J. Power Sources, 2005, 146, 626–629.
    [26] Y. Hinuma, Y. S. Meng, K. Kang, G. Ceder, Chem. Mater., 2007, 19, 1790-1800.
    [27] S. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, J.Power sources, 1998, 74, 46-53.
    [28] Y. Idemoto, Y. Takanashi, N. Kitamura, J. Power Sources, 2009, 189, 269-278.
    [29] L. Wang , J. G. Li, X. M. He, W. H. Pu, C. R. Wan, C. Y. Jiang, J. Solid StateElectrochem., 2009, 13, 1157–1164.
    [30] K, Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc., 1996, 143,1607-1613.
    [31] S. Gopukumar, K. Y. Chung , K. B. Kim, Electrochim Acta, 2004, 49, 803-810.
    [32] A. F. Carley, S. D. Jackson, J. N. O’Shea, M. W. Roberts, Surf. Sci.,1999, 440,L868-L874.
    [33] S. Madhavi, G. V. S. Rao, B. V. R. Chowdari, S. F. Y. Li, J. Electrochem. Soc.2001, 148, A1279-A1286.
    [34] V. R. Galakhov, E. Z. Kurmaev, S. Uhlenbrock, M. Neumann, D. G. Kellerman,V. S. Gorshkov, Solid State Commun., 1996, 99, 221-224.
    [35] K. Okamoto, K. Shizuka, T. Akai, Y. Tamaki, K. Okahara, M. Nomura, J.Electrochem. Soc., 2006, 153, A1120- A1127.
    [36] D. Carlier, M, Menetrier, C, Delmas, J. Mater. Chem., 2001, 11, 594-603.
    [37] K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari, Electrochimica Acta, 2002, 48,145.
    [38] S. Gopukumar, K.Y. Chung, K.B. Kim, Electrochim. Acta, 2004, 49, 803.
    [39] C. Gan, X. Hu, H. Zhan, Y. Zhou, Solid State Ionics, 2005, 176, 687.
    [40] K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari, Electrochim. Acta, 2002, 48,145.
    [41] C. Deng, S. Zhang, B. Wu, S. Y. Yang, H. Q. Li, J. Solid State Electrochem.,2010, 14, 871-875.
    [1]S.-H. Kang, K. Amine,J. Power Sources, 2003, 119–121, 150–155.
    [2] B. Zhang, G. Chen, P. Xu, C. C. Li, J. Power Sources 2008, 176, 325-331.
    [3] B. Zhang, G. Chen, Y. L. Liang, P. Xu, Solid State Ionics, 2009, 180, 398-404.
    [4] D. C. Li, Y. K. Sasaki, K. Kobayakawa, Y. Sato, J. Power Sources, 2006, 157,488-493.
    [5] D. C. Li, T. Muta, H. Noguchi, J. Power Sources, 2004, 135, 262-266.
    [6] D. Li, H. Noguchi, ITE Lett., 2003, 4, 303.
    [7] G.-T. Kim, J.-U. Kim, Y.-J. Sim, K.-W. Kim, J. Power Sources, 2006, 158,1414-1418.
    [8] K. H. Jeong, H.-W. Ha, N. J. Yun, M. Z. Hong, K. Kim, Electrochimica Acta 2005,50, 5349-5353.
    [9] B. Zhang, G. Chen, P. Xu, Z. Lv, Solid State Ionics, 2007, 178, 1230.
    [10] Y. Hinuma, Y. S. Meng, K. Kang, G. Ceder, Chem. Mater., 2007, 19, 1790.
    [11] S. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, J.Power sources, 1998, 74, 46.
    [12] B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater., 2003, 15, 3676-3682.
    [13] C. H. Chen, C. J. Wang, B. J. Hwang, J. Power Sources, 2005, 146, 626–629.
    [14] Z. L. Liu, A. H. Yu, J. Y. Lee, J. Power Sources, 1999, 81–82, 416–419.
    [15] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta1993, 38, 1159-1167.
    [16] Y. Hinuma, Y. S. Meng, K. Kang, G. Ceder, Chem. Mater., 2007, 19, 1790-1800.
    [17] S. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, JPower sources, 1998, 74, 46-53.
    [18] Y. Idemoto, Y. Takanashi, N. Kitamura, J. Power Sources, 2009, 189, 269-278.
    [19] K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochimica Acta, 2002, 48,145.
    [20] A. F. Carley, S. D. Jackson, J. N. O’Shea, M. W. Roberts, Surf. Sci., 1999, 440,L868-L874.
    [21] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc. 1996, 143,1607.
    [22] A.N. Mansour, Surf. Sci. Spectra, 1996, 3, 279.
    [23] S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, K. Amine, J. PowerSources, 2002. 112, 41.
    [24] D. Carlier, M. Menetrier, C. Delmas, J. Mater. Chem., 2001, 11, 594-603.
    [25] S. Gopukumar, K.Y. Chung, K.B. Kim, Electrochim. Acta, 2004, 49, 803.
    [26] C. Gan, X. Hu, H. Zhan, Y. Zhou, Solid State Ionics, 2005, 176, 687.
    [27] C. Nithya, R. Thirunakaran, A. Sivashanmugam, G. V. M. Kiruthika, S.Gopukumar, J. Phys. Chem. C, 2009, 113, 17936–17944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700