苎麻雄性不育的遗传机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Boehmeria mvea),又称“中国草”,是我国特有的纤维作物。苎麻雄性不育从上世纪60年代发现至今,已引起了苎麻育种工作者和相关研究者的高度重视。由于对苎麻雄性不育的遗传机制尚不清楚,限制了在育种上利用。因此,确有必要进行深入系统的研究,从而促进苎麻杂交优势的研究和应用。本文采用经典数量遗传、细胞遗传研究方法和现代分子生物学技术手段,通过对苎麻雄性不育的遗传特点、生理生化基础及细胞学特征、雄性不育相关基因的克隆、雄性不育分子标记的建立和杂种优势的利用等方面的研究,对苎麻雄性不育的遗传机理有了较为全面的认识,为利用苎麻雄性不育进行杂交育种奠定了理论基础,指明了合理的应用途径。获得的主要研究结果如下:
     1.苎麻雄性不育表型鉴定
     通过对苎麻雄性不育及恢复系表型的比较观察,结果表明,相对于正常可育植株,雄性不育主要表现为雌花发育正常,而雄蕾瘦小,不开裂,花药干瘪,内容物很少,无花粉散出;I_2-KI染色无颜色变化,雌花开放时雄蕾逐渐枯萎脱落。
     2.苎麻雄性不育的遗传分析
     对雄性不育系C26为母本、恢复系B8为父本组配的六个杂交组合的后代植株不育性状分离情况进行调查和分析,表明苎麻雄性不育系C26的育性受一对隐性核基因和细胞质基因共同控制,属于细胞质—核基因互作不育类型,基因型为T(rr)。恢复系B8的育性受一对杂合基因控制,且细胞质与C26不同,基因型为F(Rr)。
     3.苎麻雄性不育物质代谢
     通过对苎麻雄性不育系和恢复系代谢产物分析后发现,可溶性糖含量在相同的发育阶段,不育系均高于其恢复系,这种差异在大蕾时期最大,不育系C26、C4分别是其恢复系的1.91和2.59倍。淀粉含量随着花蕾发育,不育系无明显变化,而恢复系则不断积累,中蕾时期恢复系B16含量比不育系C4高72.8%,大蕾时期恢复系B8比不育系C26高79.6%。可溶性蛋白质含量随着花蕾发育,不育系和恢复系均逐渐下降,但在材料间表现不一致,不育系C26低于其恢复系B8,而不育系C4则高于其恢复系B16。游离脯氨酸含量的变化,在不育系与恢复系F_1花蕾中可育株含量远高于不育株。
     4.苎麻雄性不育同工酶谱分析
     通过对苎麻雄性不育系过氧化物酶(POD)和超氧化物歧化酶(SOD)同工酶分析,POD电泳分析未发现雄性不育的特征谱带,但同工酶谱恢复系强于不育系,尤其是迁移率为0.59的条带在各时期均表现如此。SOD电泳分析仅在功能叶中检测到雄性不育系与恢复系在带的强弱上的差异,同样表现恢复系强于不育系,但在雄蕾发育的各时期均无酶带显示。在功能叶、幼蕾、中蕾和大蕾时期,SOD和POD活性均表现恢复系均强于不育系。
     5.苎麻雄性不育发生时期分析
     通过对苎麻雄性不育系和恢复系的石蜡切片分析,结果显示,雄性不育发生在从造孢细胞到四分体形成的各个阶段,不同的雄性不育系发生不育的时期和败育的原因有所不同。不育系C4主要败育原因为无孢原细胞分化,在发育早期即彻底败育。不育系C26主要败育时期为减数分裂期,败育形式主要为绒毡层巨大化,向内挤压小孢子母细胞,使其不能正常生长发育进入减数分裂,或到后期绒毡层逐渐解体,小孢子母细胞没有进入减数分裂,最终解体。此外还观察到维管束急剧退化现象。
     6.苎麻NAD7基因片段的克隆与分析
     通过NAD7保守序列设计的引物,应用RT-PCR方法从苎麻雄性不育系C4中克隆了NAD7的cDNA片段,其长度为969 bp,编码322个氨基酸。序列比对表明该cDNA序列及推测的氨基酸序列与拟南芥、油菜有98%的同源性。聚类分析显示,苎麻NAD7基因的进化在植物中处于很古老的地位。
     7.苎麻品种(系)与亲本间的遗传关系
     从100条ISSR引物中筛选出21条引物,对8份四川苎麻品种(系)及其亲本的遗传关系进行了分析,结果表明,21条引物在8份材料中共扩增出86条带,平均每条引物扩增4.1条带,其中多态性位点71个,各引物扩增出的位点数3~8个,平均可以检测到3.4个多态性位点。聚类分析结果表明,供试品种与其母本遗传距离较远表现特有的偏父本遗传现象。
     8.苎麻雄性不育特有分子标记的建立
     用ISSR引物U835筛选到1个雄性不育特有的分子标记,对该标记进行克隆测序表明其长度为658bp,并将此标记转化成了稳定的SCAR标记。利用此标记,对强优势组合川苎8号自交群体进行验证,结果显示该标记与雄性不育基因的重组率为3.3%,可用于苎麻雄性不育分子标记辅助育种。
     9.苎麻雄性不育系杂种优势利用研究
     利用雄性不育材料,进行了杂交组合的测配,对杂交组合的杂种优势、分离变异进行了分析,结果表明苎麻的杂种优势十分显著,强优势主要表现在株高、茎粗及有效株率等方面,为苎麻雄性不育杂种优势的利用提供了科学依据,丰富了苎麻育种理论。
Ramie (Boehmeria. nivea), is an important fiber crops. As our national treasure, it is also called "China grass". Breeding scientists pay a lot of attention to Ramie male sterility since it has been found. However, there are not only few documents and little applications, but also little known of genetic mechanism on Ramie male sterility. To accelerate Ramie breeding process, it is very necessary for us to study Ramie male sterility roundly. In this dissertation, many studies on male-sterility in Ramie were applied, such as genetic analysis, the characteristics in physiology and biochemistry and cytology investigation, NAD7 gene clone and analysis, molecular markers construction and heterosis utilizing. The main results showed as follows:
     1. Ramie male sterility phenotype identification
     Compared with normally plants, the male sterility plants mainly display on the male flower bud: the male flower bud is thin, small, un-crack, the anther is withered, the contents are very few and without pollen; non-color change with I_2-KI dyes. The female flower opens when the male flower bud withered and gradually falls off. The female flower growth is normal.
     2. Ramie male sterility genetic analysis
     Genetic analysis of generations of 6 crossed combinations showed that the male sterility character of the male sterility line C26 were controlled by one pair of recessive nuclear genes and cytoplasm gene. So C26, gene type T (rr) ,belong to CMS Fertility. While the gene type of the restoring line B8 was F (Rr).
     3. Ramie male sterility material metabolism
     In the same developmental stage, the male-sterile line soluble sugar content is higher than its fertility restoring line. The distinct difference was observed in the big flower bud stage: male-sterile line C26 and C4 respective is its fertility restoring line 1.91 and 2.59 times. Along with the flower bud growth, the male-sterile line male flower bud starch content don't changes obviously, but the fertility restoring line accumulates starch steadily: in flower bud stage, fertility restoring line B16 starch content high 72.8% compared to male-sterile line C4, the big flower bud stage, fertility restoring line B8 achieve 79.6% compared to male-sterile line C26. Along with flower bud growth, regardless of the male-sterile line or the fertility restoring line, the soluble protein descends gradually. But with respect to the contents, it displays not consistently between materials: male-sterile line C26 is lower than its restoring line B8, but male-sterile line C4 is higher than its restoring line B16. The free proline content is consistent in the starch content change. In the male-sterile plants and common plants of F1, all material displays the same as its parents, except in the protein content: fertile plant is higher than sterile.
     4. Ramie male sterility isozyme analysis
     The male sterility characteristic bands have not been observed in the POD electrophoresis. The only difference is the band intensity: the restoring line stronger than the male-sterile line. Therein to Rf 0.59 band in restoring line is stronger than that of male-sterile line in all stages. With respect to SOD, the isozyme bands have not been examined in various times of the male flower bud growth but only in the functional leaves. The mainly difference between male-sterile line and restoring line exist in the band intensity, the same as POD. The POD, SOD activities mensurating results showed that the restoring line stronger than the male-sterile line (fertile plants stronger than sterile plants in F1).
     5. Ramie male sterility paraffin section
     The paraffin section results indicated that Ramie male sterility occurs in each stage from the spore cell forms to the tetrad, in which male-sterile line C4 main abortion thoroughly in growth early time because of having no spore original cell differentiation, while the male-sterile line C26 main abortion time in meiosis process. The male-sterile line C26 abortion form mainly has: the microspore mother cell cannot develop into meiosis normally, because of the extrusion from the huge tapetum. When the tapetum disintegrates gradually later, the microspore mother cell has still not entered meiosis until disintegrated. Moreover, the phenomenon that canaliculus bundle degenerate suddenly has been found in the experiment.
     6. Cloning and analysis of NADH dehydrogenase subunit 7 gene fragment
     A cDNA fragment of Ramie NAD7 gene was obtained by RT-PCR with special primers, which were designed according to the conserved sequences of NAD7 gene. The cDNA fragment had the sequence length of 969 bp, encoding 322 amino acids. Analysis of sequence alignment and phylogenetic tree revealed that NAD7 gene of Ramie shared in 98% identity with those of Brassica napus and Arabidopsis thaliana. The results also showed that the NAD7 gene of Ramie is an ancestral type in plant.
     7. Genetic relation analysis of Ramie cultivars and their parents from Sichuan with ISSR
     21 ISSR primers, which were screened from 100 ISSR primers, were used to analyze and identify the relationship of 8 Ramie with ISSR technology. PCR amplification showed that 86 clear and repeatable bands were obtained in all materials, of which 71 bands appeared to be polymorphic (82.5%). Genetic distance and the cluster analysis indicated that these materials were divided into 2 groups, and the value of genetic distance was ranged from 0.48 to 0.90. Moreover, it was also found that the genetic relationships between hybrids and their parents were not equal, the male parent transfer more genetic loci to their descendants, which indicated that hybrids inherited more genetic information from the male parent.
     8. Study on the Molecular Markers Linked to Male Sterile Gene
     A specific DNA segment was amplified only in the fertile cultivars but not in the sterile cultivars using the ISSR primer U835. And the ISSR-marker was converted into SCAR marker that can be used to molecular marker-assisted selection of Ramie breeding.
     9. Heterosis utilizing of Ramie male sterility
     Using the male-sterile breeding materials, the combination of hybrid Ramie male sterility, the combination of hybrid heterosis and separation variation were carried out. The results indicated that heterosis of Ramie male sterile line is quite obvious. Ramie heterosis for the use of CMS not only provides a scientific basi, a new channel of Ramie hybrid and Ramie breeding theory. But also reduce costs, increase farmers income, solve the problems of production, increase Ramie production market competitiveness and resilience of its social and economic efficiency has been remarkable.
引文
[1]Kaul M L H.male sterility in higher plants.Berlin:Berlin springer- verlag,1998,887-892
    [2]孙天恩,叶梦炜,王明全,陈克成.三种细胞质雄性不育水稻小孢子发育过程的研究.武汉大学学报(自然科学版),1996,42(6):733-739
    [3]陈贤丰,梁承邺.湖北光敏感核不育水稻花药能量和活性氧的代谢.植物学报,1992,34(6):416-425
    [4]利容千,朱英国,孟祥红,王建波.水稻红莲-粤泰不育系花粉与药隔组织Ca~(2+)的分布.作物学报,2001,27(2):230-235
    [5]冯九焕,卢永根,刘向东.水稻光温敏核雄性不育系培矮64S花粉败育的细胞学机理 中国水稻科学,2000,14(1):7-14
    [6]张中华,魏刚,杨燕,舒忠旭.苎麻优良雄性不育系“C26”的选育及利用研究 中国麻业2005,27(3):109-112
    [7]孙宗修,程式华.杂交水稻育种:从三系、二系到一系 北京:中国农业科技出版社1994 46-47
    [8]Sears ER.Yearbook of agriculture 1947.245-255
    [9]Edwardson JR.,Cytoplasmic male,sterility.Botan.Rev.,1956,22:696-738
    [10]Heslop-Harrison J.Pollen:development and physiology(Ed.).London" Butterworths.1971
    [11]MaanSS.Cytoplasmic variability in triticina,Proc.4th Int,Wheat Genetices Simp.1973,367-372
    [12]MaanSS.Interaction systems for hybridwheat research,Crop.Sci.1972,(12):360
    [13]王培田.关于雄性不育性的通路假说.自然科学争鸣,1979,5:51-53
    [14]傅寿仲 油菜细胞质雄性不育研究进展 南京:植物遗传理论与应用研讨会论文集 1990,15-20
    [15]张天真,靖深蓉.棉花雄性不育杂交种选育的理论与实践,北京:中国农业出版社,1996,86-93
    [16]Beckett JB.Classification of male sterile cytoplasms in maize(Zea Mays.L).Crop Science,1971,11:724-726
    [17]杨光圣,傅廷栋.油菜细胞质雄性不育恢保关系研究.作物学报,1991 17(2):151-156
    [18]余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究 武汉植物学研究,1990,8(3):209-216
    [19]何觉民,戴君惕,邹应斌.两系杂交小麦研究Ⅰ.生态雄性不育小麦的发现、选育.湖南农业科学1992,5:1-3
    [20]赫忠友,李元秉,谭树义.温敏雄性不育玉米的发现及初步研究 作物杂志 1995,2:1-2
    [21]Kemble RJ,Bedbrook JB.Low molecular weight circular and linear DNA in mitochondria from normal and male sterile Zea mays cytoplasm.Nature,1980,284:565-566
    [22]杨光圣,傅廷栋,Gregory G Brown.甘蓝型油菜细胞质雄性不育的遗传分类研究 中国农业科学,1998,31(1):27-31
    [23]谢纬武,康传红,王继志.一种新型甜菜胞质雄性不育系的分子生物学鉴定.中国科学(C 辑),1996,26(2):175-178
    [24]何之常,肖翊华.外源生长物质对农垦58S育性转变的影响.杂交水稻,1992(3),39-41.
    [25]广西师范学院生物系水稻三系研究组.水稻三系及杂交水稻花药中脯氨酸的测定 植物学报,1977,19(1):26-30
    [26]吴文瑜,肖翊华.水稻不育系和保持系在幼穗分化期的同工酶.武汉大学学报(自然科学版),1992
    [27]王台,肖翊华,刘文芳.光敏核不育水稻的光敏感期叶片内游离氨基酸和蛋白质氨基酸的变化.见:肖翊华.光敏核不育水稻的光周期及其生理学.武汉:武汉大学出版社,1993
    [28]张明永,梁承邺.CMS水稻不同器官的膜脂过氧化水平 作物学报,1997,23(5):603-606
    [29]张明永,田长恩.细胞质雄性不育水稻幼穗花药的呼吸酶活性研究.热带亚热带植物学报1997,5(4):52-55
    [30]杨征,朱英国.水稻孢子体雄性不育系小孢子发育过程中的蛋白质分析.武汉大学学报(自然科学版),1997,43(2):205-210
    [31]田长恩,梁承邺.水稻细胞质雄性不育系及其保持系幼穗发育过程中的多胺代谢.植物生理学报,1998,24(2):333-339
    [32]黄厚哲,楼仕林.植物生长素亏缺与雄性不育的发生.厦门大学学报(自然科学版),1984,23(1):82-97
    [33]夏涛,刘纪麟.生长素和玉米素与玉米细胞质雄性不育性关系的研究.作物学报,1994,20(1):26-31
    [34]黄少白,周燮.水稻细胞质雄性不育与内源GAl+4和IAA的关系.华北农学报,1994,9(3):16-20
    [35]Kojima K.Changes of ABA,IAAand Gas level in reproductive organs Of citrus.Japan Agricultural Research,1997,31(4):381-386
    [36]陈竹君,张明方,汪炳良,等榨菜胞质雄性不育及其农艺性状的研究.园艺学报1995,22(1):40-46
    [37]李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花药组织内源激素的关系.农业生物技术学报,1996,4(4):307-313
    [38]徐孟亮,刘艺芳,肖翊华,等湖北光敏核不育水稻幼穗发育中内源IAA的变化.华中农业大学学报,1990,9(4):381-386
    [39]Hamdi S,Teller G,Louis JP.Master regulatory genes,auxin level,and sexual organogenesis in the dioecious plant Mercurialis annua.Plant Physiology,1987,85:393-399
    [40]Louis JP,Augur C,Teller G.Cytokinins and differentiation process in Mercurialis annua L.(2n=16).Genetic regulation,relation with auxin,indole-acetic acid oxidases,and sexual expression patterns.Plant Physiology.1990,94:1535-1541
    [41]高夕全,张子学,夏凯,等雄性不育辣椒中几种内源激素的含量变化.植物生理学通讯,2001,37(1):31-32
    [42]Skorupska HT,Desamen NV,Palmer RG.Development hormonal expression of apetalous male sterile mutation in soybean Glycine max(L)Meer.Annals of Biology,1994,10(1);152-164
    [43]Singh S,Sawhney VK,Pearce DW.Temperature effects on endogenous indole-3-acetic acid levels in leaves and staments of the normal and male sterile" stamentless-2"mutant of tomato(Lycopersicon esculentum Mill).Plant,Cell and Environment,1992,15:373-377
    [44]Shukla A,Sawhney VK.Abscisic acid:one of the factors affecting male sterility in Brassica Napus.Physiologia Plantarum,1994,91:522-528
    [45]Singh S,Sawhney VK.Cytokinins in a normal and ogura(ogu)cytoplasmic male sterile line of rapeseed(Brassica napus L.)Plant Science,1992,42:34-35
    [46]Ahokas H.cytoplasmic male sterility in barely:Evidence for the involvement of cytokinins in fertility restoration.Proceedings of the National Academy of Science,1982,79:7605-7608
    [47]Shukla A,Sawhney VK.Metabolism of dihydozeatin in floral buds of wild-type and a genic male sterile line of rapeseed(Brassica napus L.)J Exp Bot 1993,44(266):1497-1506
    [48]Dauphin G.,Tiller BG,Durand B.Different endogenous cytokinins between male and female Mercurialis annua L.Planta,1980,148:124-129
    [49]Sun TP,Kaimaya Y.The Arabidopisis GAL locus encodes the cylaseseent -kaurene sythetase A of gibberellin biosynthesis.Plant Cell,1994,6(10):1509-1518
    [50]Tian Chang-En,Liang Cheng-Ye,Huang Yu-Wen,et al.Preliminary study on the relationship between polyamine and ethylene during panicle development in cytoplasmic male sterile rice.Acta Phytophysiologica Sinica,1999,25(1):1-6
    [5I]Nakajima M,Yamaguchi I,Kizawa S.Semi-quantification of GAI and GA4 in male sterile anthers of rice by radiommunoassay.Plant and Cell Physiology.1991,32:522-533
    [52]赵玉锦,童哲,陈华君,等 内源植物激素与光敏核不育水稻农垦58S育性的关系 植物学报,1996,38(12):936-941
    [53]Benedetti CE,Xie DX,Turner JG.COLl-dependent expression of an Aradopsis vegetativestorage protein in flowers and siloques and in response to coronatine or methyl jasmonate.Plant Physiol,1995,109:567-572
    [54]Stintzi A,Browse J.The Arabidopsis male-sterile mutant,opt3,lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis PNAS,2000,97(19):10625-10630
    [55]Sanders PM,Lee PY,Biesgen C et al.The Arabidopsis DELAYED DEHISCENCEI gene encodes an enzyme in the jasmonic acid synthesis pathway.Plant Ceil,2000,12:1041-1061
    [56]McConn M,Browse J.The critical requirement for linolenic acid is pollen development,not ph otosynthesis,in an A rabidopsis mutant.Plant Cell,1996,8:403-416
    [57]王学德.棉花细胞质雄性不育花药的淀粉酶与碳水化合物.棉花学报,1999,11(3): 113-116
    [58]Teixeira RT,Knorpp C,Glimelius K.Modified sucrose,starch,and ATP levels in two alloplasmic male-sterile lines of B.napus.J Exp Bot,2005 56(414):1245-1253
    [59]Goetz M,Godt DE,Guivarc'h A,Kahmann U,Chriqui D,Roitsch T.Induction of male sterility in plants by metabolic engineering of the carbohydrate supply.Proc Natl Acad Sci USA 2001,98(11):6522-6527
    [60]Carolyn A.Napoli,Deirdre Fahy,Huai-Yu Wang2,and Loverine P.Taylor white anther:A Petunia Mutant That Abolishes Pollen Flavonol Accumulation,Induces Male Sterility,and Is Complemented by a Chalcone Synthase t ransgene.Plant Physiology,1999,120:615-622
    [61]陈章良,等.高等植物基因表达的调控.植物学报,1991,33(3):390-405.
    [62]吴文华,张方东,李合生.光照时间和波长对农垦58S叶片叶绿体中Ca~(2+)-ATPase活性的影响.华中农业大学学报,1993,12:303-306.
    [63]杨代常,等.四种内源激素在HPGMR叶片中的含量与育性转换.华中农业大学学报,1990,9(4):394-399
    [64]于青,等.Ca~(2+)-CaM在PGMR育性转换中的作用研究[J].武汉大学学报(自然科学版),1992,(1):123-126.
    [65]杨万年,何之常.光敏胞质雄性不育小麦NAD激酶和NADP磷酸酶对光周期的反应.武汉大学学报(自然科学版),1998,44(6):737-741
    [66]胡德文,史红梅.HPMR叶片中Ca~(2+)/CaM依赖性蛋白激酶的初步研究.武汉大学学报(自然科学版),2000,46(4):487-491
    [67]Pring DR,Levings,CS,Hu WWL,Timothy DH.Unique DNA associated with mitochondria in the S type cytoplasm of male sterile maize Proc Natl Acad Aci USA,1977,74(2):2904-2908
    [68]Levings CS Ⅲ and Dewey R E.Molecular studies of cytoplasmic male sterility in maize;Philos.Trans.R.Soc.London B 1988,319:177-185
    [69]Josephson,LM,Morgan TE,andArnold JM.Genetics and inheritance of fertility restoration of male-sterile cytoplasms in corn.Proc.33rd Ann.Corn Sorghum Res.Conf.1978,33:48-59.
    [70]Laughnan JR,Gahay-haughnan.S.Cytoplasmic Male Sterility in Maize Annual Review of Genetics,1983,17:27-48
    [71]傅爱军,王晖.水稻雄性不育的遗传研究.湖南农学院学报,1988,14(1):1-6
    [72]刘俊,朱英国.水稻细胞质雄性不育的分子机制研究.武汉大学学报,1998,44(4):461-464
    [73]Levings CS Ⅲ,Pring DR.Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize.Science,1976,193:158-160
    [74]Forde BG,Leaver CJ.Classification of normal and male sterile cytoplasms in maize.Genetics,1980,95:443-450
    [75]Forde BG,Leaver CJ.Nuclear and cytoplasmic genes controlling synthesis of variant mitochondria polypetides in male sterile maize.Proc Natl Acad Sci.USA,1980,77:418-422
    [76]Forde BG,Leaver CJ.Varition in mitochondrial translation products associated with male sterile cytoplasm in maize.Proc Natl Acad Sci.USA,1978,75:3841-3845
    [77]Dewey RE,Timothy DH,Leving CS.Ⅲ.A mitochondrial protein associated with cytoplasmic male Sterility in the T cytoplasm of maize.Proc Narl Acad Sci USA,1987,84:5374-5378
    [78]Leving CS Ⅲ.The Texas cytoplasm of maize:cytoplasmic male sterility and disease susceptibility.Sciences,1990,250:942-947
    [79]Hanson MR.Plant mitochondrial mutation and male sterility.Annu Rev Genet,1991,25:461-484
    [80]Young EG,Hanson MR.A fused mitochondrial geneassociated with cytoplasmic male sterility is developmentally regulated.Cell,1987,50:41-49
    [81]许仁林,国伟,汪训明,等.杂交水稻及其三系线粒体DNA的AP-PER指纹图谱.植物学报,1994,36(1):1-6
    [82]凌杏元,周培疆,关和新,等.运用AFLP技术筛选分离野败型水稻中与雄性不育性状相关的片段.遗传,1999,21(2):33-36
    [83]Akagi H.A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility.Current Genetics,1994,25:52-58
    [84]Makaroff CA,Apel IJ,Palmer JD.The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male sterile radish.J Biol Chem,1989,264(20):11706-11713
    [85]Krishnasamy S.Organ specific reduction in the abundance of a mithochondrial protein accompanies fertility restoration in cytoplasmic male sterile radish.Plant Mol Biol,1994,26:935-946
    [86]Song J,Hedgcoth CA,Chimeric gene(orf256)is expressed as protein only in cytoplamic male sterile lines of wheat plant.Plant Mol Biol,1994,26:535-539
    [87]Mohr S,Schulte KE,Odenbach W,et al.Mithochondrial DNA of cytoplasmic male sterile Triticum timopheevi:rerrangments of upstream sequences of the atp6 and orf25 gene.Theor Appl Genet,1993,86:259-268
    [88]Xue Y,Collin S,Davies DR,et al.Differential screening of mitochondtrial cDNA libraries from male fertile and cytoplasmic male sterile auger beet reveals genome rerrangments at atp6 and atpA loci.Plant Mol Biol,1994,25:91-103
    [89]Eyster Lewis A.Heritable characters of maize:ⅶ.male sterile J.Hered.,1921;12:138-141.
    [90]孟金陵等.植物生殖遗传学 北京:科学出版社,1997,172-177
    [91]石明松.晚粳自然两用系的选育及应用初报.湖北农业科学,1981,7:1-3
    [92]雷建勋,李泽炳.湖北光敏核不育水稻遗传规律研究Ⅰ.原始光敏核不育水稻与中粳杂交后代育性分析.杂交水稻,1989,2:39-43
    [93]梅国志,汪向明,王明全.农恳58S型光周期敏感雄性不育的遗传分析.华中农业大学学报,1990,9(4):400-416
    [94]张端品,邓训安,余功新,等.农垦58S光敏感雄性不育基因的染色体定位.华中农业大学学报,1990,9:407-419
    [95]Zhang QF,Shen BZ,Dai XK,Mei MH,Saghai Maroof MA,Li ZB.Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice.Proc Natl Acad Sci USA,1994,91:8675-8679
    [96]王风平,梅明华,许才国,等.光敏核不育水稻农垦58S与正常品种“农垦58N”在pmsl 区段无育性基因分离.植物学报,1996,39:922-925
    [97]梅明华.利用分子标记探讨水稻光敏核不育性的基础.华中农业大学博士论文1997
    [98]AbertsenMC,Trimnell MR.Tagging,cloning and characterization a male sterility gene in maize.Aner J Bot Abs,1993,80:16
    [99]Aarts MG,Dirkse WG,Stiekema WJ,et al.Tranposon tagging of a male sterility gene in Arabidopsis.Nature,1993,363:715-717
    [100]Aarts MG,Hodge R,Kalantidis K,et al.The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes.Plant J.1997,12(3):615-23
    [101]Wilson ZA,Morroll SM,Dawson J,et al.The Arabidopsis MALE STERILITYl(MS1)gene is a transcriptional regulator of male gametogenesis,with homology to the PHD-finger family of transcription factors.Plant J.2001,28(1):27-39
    [102]Xu HL,Bruce KR,Philip ET,et al.Bcpl,a gene required for male fertility in Arabidopsis Proc.Natl.Acad.Sci.USA 1995,92:2106-2110
    [103]Unger E,Cigan AM,rrimnell M,et al.A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize,Transgenic Res.2002,11(5):455-465
    [104]Glover J,Grelon M,Craig S,et al.Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis.Plant J.1998,15(3):345-56
    [105]Ross KJ,Fransz P,Armstrong SJ,et al.Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNAtransformed lines.Chromosome Research 1997,5,551-559
    [106]林兴华,余功新.农垦58s光敏不育基因在水稻第5染色体上位置的确定.华中农业大学学报,1996,15(1):1-5
    [107]Zhang Q,Shen BZ,Dai XK,et al.Using bulked extremes and recessive class map genes for photoperiod sensitive genic male sterility in rice.Proc Natl Acad Sci.1994,91:8675-8675
    [108]李子银,林兴华,谢岳峰.利用分子标记定位农垦58S的光敏核不育基因.植物学报,1999,41(7):731-735
    [109]王台,赵玉锦,匡廷云.雄性不育水稻农垦58S的P61蛋白质是叶绿体ATP酶亚基的同工型.植物学报,2000,42(2):169-172
    [110]王台,童哲,匡廷云,等.光敏核不育水稻农垦58S 41 kD蛋白质的N-端序列分析.植物学报,1997,39(10):979-982
    [111]梁成志,童哲,宋文源,等.光敏核不育水稻光敏色素基因的RFLP分析.植物学报, 1994,36(9):664-670
    [112]杨晓云,曹寿椿.不结球白菜波里马胞质雄性不育系温度敏感的特征.中国蔬菜,1999,4:15-17
    [113]杨晓云,曹寿椿.不结球白菜波里马胞质雄性不育系花药发育的细胞形态学研究.南京农业大学学报,1997,20(3):36-43
    [114]陈学伟,李仕贵,王文明,等.水稻萍乡显性核不育基因的定位.科学通报,2000,45(15):1644-1648
    [115]Liang CZ,Gu MH,Pan XB,et al.RFLP tagging of a new semidwarfing gene in rice.Theor Appl Genet,1994,88:898-900.
    [116]朱立煌,徐吉臣,陈英,等.分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24:1048-1052
    [117]李仕贵,马玉清,王文明,等.一个新的水稻迟熟性基因的遗传分析和分子标记定位.遗传学报,2000,27(2):133-138
    [118]李仕贵,周开达,朱立煌.水稻温敏显性核不育基因的遗传分析和分子标记定位.科学通报,1999,44(9):955-958
    [119]黄青阳,何予卿,景润春,等.利用微卫星标记定位水稻红莲型细胞质雄性不育恢复基因科学通报,1999,44(14):1517-1520
    [120]唐家斌,曾万勇,王文明,等.水稻寡分蘖突变体的遗传分析和基因定位 中国科学(C 辑),2001,31(3):208-212
    [121]刘忠松,官春云.高等植物雄性不育的遗传机制.大自然探索,1995,95(1):80-85.
    [122]邓景扬,高忠丽.小麦显性雄性不育基因的发现与利用.作物学报,1980,6(2):85-98.
    [123]李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12.
    [124]胡洪凯,马尚耀,石艳华.谷子显性雄性不育基因的发现.作物学报,1986,12(2):73-78
    [125]马尚耀,董歧福,成慧娟,等.谷子雄性不育复等位基因的发现.遗传,1990,12(1):9-11
    [126]张书芳,宋兆华,赵雪云.大白菜细胞核基因互作雄性不育系选育及应用模式.园艺学报,1990,17(2):117-125
    [127]沈向群.大白菜雄性核基因雄性不育性的研究与优势利用.1999,沈阳农业大学博士学位论文
    [128]沈向群,杨文骏.大白菜核基因显性雄性不育性育性恢复基因的RAPD标记.园艺学 报,2004,31(6):731-731
    [129]魏挽棠,冯辉,张蜀宁.大白莱雄性不育遗传规律的研究.沈阳农业大学学报,1992,23(3):260-266
    [130]冯辉,魏毓棠,许明.大白菜核基因雄性不育的复等位基因假说.园艺学报,1996,467:133-142
    [131]刘飞虎,梁雪妮,张寿文,等.苎麻雄性不育系育性鉴定和遗传分析.中国麻作,2000,22(1):6-9.
    [132]李宗道.苎麻生理生化与遗传育种.北京:农业出版社.1989:158-167
    [133]孙学兵,邹新国.苎麻雄性不育杂交后代的特性.作物杂志,1996(5):22-23
    [134]刘飞虎,梁雪妮,黄海泉.苎麻雄性不育系育性鉴定初报.江西农业大学学报,1998,20(2):197-198
    [135]刘飞虎,梁雪妮,张寿文.苎麻雄性不育系生化代谢和育性遗传研究.植物遗传资源科学,2001,2(4):1-7
    [136]刘飞虎,梁雪妮.苎麻雄性不育系生理生化特点初步研究.中国麻作,2000,22(3):16-20
    [137]张子学,何华奇,王烨.辣椒雄性不育初探.安徽农业技术师范学院学报,1997,11(4):5-9
    [138]史公军,侯喜林,张昌伟.不结球白菜Ogu胞质雄性不育新种质及其保持系的生理生化分析.上海农业学报,2004,20(3):45-48
    [139]郭丽娟,申书兴,张成合,等.茄子雄性不育系的可溶性糖、淀粉、氨基酸分析.河北农业大学学报,2004,27(4):34-36
    [140]王学德.棉花细胞质雄性不育花药的淀粉酶与碳水化合物.棉花学报,1999,11(3):113-116
    [141]宋宪亮,孙学振,刘英欣.棉花ms5ms6核雄性不育花药中碳水化合物和游离氨基酸的变化[J].棉花学报,2001,13(6):334-336.
    [142]刘忠松,官春云,陈社员编.植物雄性不育机理的研究及应用.中国农业出版社,2001:57-58
    [143]周涵韬,郑文竹,梅启明,等.水稻细胞质雄性不育系小孢子发育过程中的同工酶分析.厦门大学学报(自然科学版),2000,39(5):676-681
    [144]鞠正春,孙兰珍.普通小麦K,V型不育系、保持系过氧化物酶同工酶的比较研究.华北农学报,1997,12(2):7-11
    [145]李莹莹,魏佑营,张瑞华,等.辣椒雄性不育“三系”花蕾中3种同工酶活性的动态变化.中国农学通报,2005,21(4):226-229
    [146]刘忠松,官春云,陈社员编.植物雄性不育机理的研究及应用.中国农业出版社,2001:57-58
    [147]程尧楚,段映池,蒋佐升,等.苎麻染色体核型和Giemsa C-带型及PMC减数分裂行为的研究湖南农学院学报.1989,15(增刊):9-15
    [148]刘飞虎,郭清泉,郑思乡,等.苎麻种质资源研究导论.北京:中国农业出版社,2002.
    [149]张中华,魏刚,杨燕,等.苎麻优良雄性不育系“C26”的选育及利用研究[J].中国麻业,2005,27(3):109-112
    [150]郭亚龙,葛颂.线粒体nad1基因内含子在稻族系统学研究中的价值—兼论Porteresia的系统地位.植物分类学报,2004,42:333-344.
    [151]Dombrovska O,Qiu Y L.Distribution of introns in the mitochondrial gene nadl in land plants:phylogenetic and molecular evolutionary implications.Molecular Phylogenetics and Evolution,2004,32:246-263.
    [152]Dieterich J H,Braun H P,Schmitz U K.Alloplasmic male sterility in Brassica napus(CMS 'rournefortii-Stiewe')is associated with a special gene arrangement around a novel atp9 gene.Mol Gen Genomics,2003,269:723-731.
    [153]Kazama T,roriyama K.A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice.FEBS Letters,2003,544:99-102.
    [154]Hashimoto K,Sato N.Characterization of the mitochondrial nad7 gene in Physcomitrella patens:similarity with angiosperm nad7 genes.Plant Science,2001,160:807-815.
    [155]Carrillo C,Bonen L.RNA editing status of nad7 intron domains in wheat mitochondria.Nucleic Acids Research,1997,25:403-409.
    [156]Gutierres S,SabarM,Lelandais C,et al.Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants.Proc.Natl.Acad.Sci.USA,1997,94:3436-3441.
    [157]Duminil J,Pemonge M H,Petit R J.A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA.Molecular Ecology Notes,2002,2:428-430.
    [158]朱爱国,喻春明,唐守伟,等.苎麻主要品质性状研究进展.中国麻业,2002,24(6):8-12.
    [159]揭雨成,冷鹃.中国苎麻种质资源研究的现状与展望.中国麻作,2000,22(3):13-15.
    [160]刘昭铁,熊和平,彭源德,等.苎麻纤维改性研究进展.材料导报,2006,20(1):77-80.
    [161]李建军,郭清泉,陈建荣.21份不同木质素含量的苎麻的RAPD聚类分析.中国麻业,2006,28(3):120-122.
    [162]陈建荣,郭清泉,张学文.苎麻CCoAOMT基因全长cDNA克隆与序列分析.中国农业科学,2006,39(5):1058-1063.
    [163]张中华,魏刚,徐建俊,等.优质高产杂交苎麻新组合“川苎8号”选育报告.中国麻业,2003,25(4):168-171
    [164]中国农科院麻类研究所.中国苎麻品种资源名录.北京:中国农业出版社,1992
    [165]周建林,揭雨成,蒋彦波,等.用微卫星DNA标记分析苎麻品种的亲缘关系.作物学报,2004,30(3):289-292
    [166]揭雨成,周青文,陈佩度.苎麻栽培品种亲缘关系的RAPD分析.作物学报,2002,28(2):254-259
    [167]王建波.ISSR分子标记及其在植物遗传学研究中的应用.遗传,2002,24(5):613-616
    [168]宋军,张中华,潘光堂.苎麻雄性不育生理生化特性初探.热带亚热带植物学报,(已接收)
    [169]周建平,杨足君,冯娟,等.小麦蛋白翻译起始因子5A基因(el F5A)的克隆与分析.遗传,2006,28(5):571-577,
    [170]孙传清,姜廷波,陈亮,等.水稻杂种优势与遗传分化关系的研究.作物学报,2000,26(6):641-649
    [171]罗小金,贺浩华,彭小松,等.利用SSR标记分析水稻亲本间遗传距离与杂种优势的关系.植物遗传资源学报,2006,7(2):209-214
    [172]Hanson M R.Plant mitochondria mutations and male sterility.Annu Rev Genet,1991,25:461-486.
    [173]侯思名,段继强,梁雪妮,等.苎麻细胞质雄性不育系与保持系线粒体DNA的ISSR检测.植物生理学通讯,2006,42(4):705-707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700