多不饱和脂肪酸对LPS诱导的多巴胺能神经元损伤的作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson’s disease,PD)是一种常见于神经退行性疾病,研究发现,小胶质细胞介导的脑内炎症反应可能是引起黑质多巴胺能神经元变性的决定性因素。小胶质细胞是中枢神经系统的免疫反应细胞,活化状态的小胶质细胞对神经元具有保护作用,但过度活化的小胶质细胞会产生严重的神经毒性作用。
     多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs)在生物系统中具有广泛的功能,大量研究表明,n-3多不饱和脂肪酸(n-3 polyunsaturated fatty acids,n-3 PUFAs)具有抗心血管疾病,抗炎性作用、抗氧化作用以及抗细胞凋亡等多种生理功能。近年来一些研究认为,n-3 PUFAs在保护中枢神经系统中起着重要作用,这可能和n-3 PUFAs抗炎作用有关。EPA和DHA能抑制脂多糖等诱导的NF-κB以及炎性因子的表达,并与减少其抑制亚基I-κB的磷酸化有关。
     脂多糖(lipopolysaccharide,LPS)是革兰阴性杆菌细胞内毒素的有效成分,是一种强烈的致炎因子,能够诱导机体的炎症反应。
     本实验以SD成年雄性大鼠为研究对象,采用脑立体定位注射LPS的方法建立帕金森病动物模型,并在此基础上进一步探讨炎症反应诱导的小胶质细胞激活在帕金森病的发病过程中的作用及其信号转导途径以及PUFAs对帕金森病的保护作用。
     实验方法
     1.采用脑立体定位注射LPS方法,注射不同浓度LPS(2.5μg、5μg)14 d后,经腹腔注射阿朴吗啡观察大鼠行为学改变,判断动物模型是否成功,通过免疫荧光染色检测多巴胺神经元损伤和小胶质细胞的活化状况;
     2.通过预先注射PDTC,采用免疫荧光染色观察小胶质细胞OX-42和NF-κB p65的活化,Western blot检测NF-κB p65蛋白水平的表达;
     3.设立NS对照组、LPS组、30%鱼油组和60%鱼油组,通过阿朴吗啡诱导行为学变化,免疫荧光染色检测TH阳性细胞、OX-42的活化,Western blot检测TH和NF-κB p65蛋白水平的表达。
     实验结果
     1.脑立体定位术向大鼠脑黑质内注射LPS 14 d后,经腹腔注射阿朴吗啡,对照组NS无明显行为异常,两组LPS组大鼠向注射侧旋转圈数明显大于NS组(P<0.05)。免疫荧光染色检测黑质酪氨酸羟化酶(tyrosine hydroxylase,TH)阳性细胞数和小胶质细胞OX-42活化情况的结果显示,同NS对照组相比,LPS 2.5μg组和5μg组TH阳性细胞明显减少,其中以5μg组TH阳性细胞数减少最为显著;LPS 2.5μg组可见部分小胶质细胞表现为细胞胞体变大,突起变粗,而LPS 5μg组OX-42阳性小胶质细胞数明显增多,染色深,胞体增大变圆,突起变短,变粗。
     2.LPS注射14 d后,经腹腔注射APO后,PDTC处理组大鼠旋转圈数明显小于LPS组,免疫荧光检测结果显示,PDTC组有部分小胶质细胞表现为细胞胞体变大,突起变粗;与PDTC组相比,LPS组OX-42阳性小胶质细胞数增多,染色深,胞体增大变圆,突起变短,变粗。Western blot检测结果提示,同NS组相比,PDTC组NF-κB p65蛋白表达无显著差异,LPS组NF-κB p65蛋白表达显著增加(P<0.05)。
     3.NS组通过APO诱导没有出现明显的行为学变化,LPS组在诱导后出现向注射侧旋转行为,并且伴有较为明显的前肢抬举性震颤,而30%鱼油组和60%鱼油组通过APO诱导后,两组大鼠旋转圈数明显少于LPS组(P<0.05)。免疫荧光染色检测各组黑质TH结果显示,与NS对照组相比,30%鱼油组和60%鱼油组TH阳性细胞数的差异不显著;而LPS组TH阳性细胞数明显减少(P<0.05)。免疫荧光染色检测小胶质细胞的活化程度,两组鱼油组OX-42阳性小胶质细胞数较少;LPS组OX-42阳性小胶质细胞数增多。Western blot检测TH蛋白的表达水平:两组鱼油组同NS组相比无显著差异,LPS组TH蛋白的表达水平则显著降低(P<0.05);NF-κB p65蛋白的表达水平,两组鱼油组与NS组相比无显著差异,LPS组的NF-κB p65蛋白表达明显增高(P<0.05)。
     结论
     1.黑质内注射LPS可以激活小胶质细胞和对多巴胺神经元产生损伤作用。
     2.LPS可以使NF-κB p65表达明显增高;PDTC则能抑制NF-κB p65的表达。
     3.膳食添加鱼油能够对LPS诱导的多巴胺能神经元的损伤产生保护作用,其机制可能与抑制小胶质细胞激活并降低NF-κB表达有关。
Parkinson’s disease (PD) is a common nerve degenerative disease. It has been reported that microglia mediated inflammatory reaction in brain play a key role in causeing degeneration of substantia nigra dopaminergic neuron. Microglia is the immunoreaction cell of central nervous system, and activated microglia has protective effect on neuron, but the overavtivity microglia may cause serious neurotoxicity.
     polyunsaturated fatty acids (PUFAs) have extensive functions in biosystem. Many studies have shown that n-3 PUFAs had many kinds of effects, such as the protection of angiocardiopathy, anti-inflammation, antioxidation and the inhibitory effect on apoptosis apoptosis. Recent studies considered that n-3 PUFASs had important effect on the protection of central nervous system, which may be associated with anti-inflammatory effect of n-3 PUFAs. EPA and DHA can decrease I-κB phosphorylation, which contributes to the inhibition of the expression of NF-κB and other inflammatory cytokines induced by LPS.
     LPS is effective constituent in Gram-negative bacteria cell toxin. It is a strong proinflammatory factor, and can induce inflammatory reaction of organism.
     SD adult male rats were used to establish the Parkinson's disease animal model of LPS by stereotaxic surgery in the present study. The effect of microglia cell-activating induced by inflammatory reaction and its role in the development of PD were investigated. We further observed the protective effect of PUFASs on PD.
     Methods
     1. Brain stereotactic surgery injection. Fourteen days after injection of different concentrations of LPS(2.5μg、5μg), apomorphine was injected through intraperitoneal, and behavioral changes of the rats were observed to estimate the successful animal model. The density of the dopaminergic neurons and the activation of microglial cells were detected by immunofluorescence fluorescein stain.
     2. With pre-injection of PDTC, the activation of microglia OX-42 and NF-κB p65 were observed by immunofluorescence fluorescein stain. The protein expression of NF-κB p65 was detected by Western blot.
     3. The animals were divided into NS control group , LPS control group, 30% fish oils group, and 60% fish oils group. in each group, ethology variation were measured after apomorphine injection. The number of TH positive cells and the activation of microglia OX-42 were detected by immunofluorescence fluorescein stain. The protein expression of TH and NF-κB p65 were detected by Western blot.
     Results
     1. Fourteen days after LPS injection by brain stereotactic surgery in rats brain substantia nigra, apomorphine was administrated through intraperitoneal injection. NS control group has no obvious abnormal behavior, the rotation turns to the injection side of two LPS groups was significantly more than NS group(P<0.05). With immunofluorescence detection, the number of TH positive cells of LPS 2.5μg group and 5μg group were significantly decreased compare to the NS group, the most significant reduction was in LPS 5μg group. A few microglia cells body in LPS 2.5μg group become lager, and apophysis become coarsen, but in LPS 5μg group, the number of activated microglial cells obviously increased, cell body become lager and more stainable, and apophysis become coarsen.
     2. 14 d after LPS injection, through intraperitoneal injection APO, rotation turns of PDTC treatment group were significantly less than LPS group, immunofluorescence detection results show that a few microglia cell body become lager, and apophysis become coarsen in PDTC group. Compare with the PDTC group, number of activated microglial cells in LPS group was significantly increases, cell body become lager and more stainable, and apophysis become coarsen. Western blot detection results shown that, the protein expression of NF-κB p65 was no significant difference between NS group and PDTC group. The protein expression of NF-κB p65 was significantly increased in LPS group(P<0.05).
     3. NS group has no obvious behavior changes after APO injection, LPS group rotated to the injection side, and accompanied by obvious forelimb trembler. The rotation turns of 30% fish oil group and 60% fish oil group were obvious less than the LPS group (P<0.05) after APO induction. Immunofluorescence detection TH results show that,compared with NS group, the number of TH positive cells in 30% fish oil group and 60% fish oil group were no significantly difference. The number of TH positive cells in LPS group was decreased(P<0.05). With immunofluorescence fluorescein stain detection activation of microglia, we found that the number of activated microglial cells in two fish oil groups, the number of activated microglial cells in LPS group was significantly increased compare to the NS group. Western blot detection of TH proteins level shown that the protein expression of TH was no obvious difference in two fish oils groups. But the protein expression of TH was significantly reduced in LPS group(P<0.05)compare to the NS group; The protein expression of NF-κB p65 in two fish oil groups were no obvious difference. The protein expression of NF-κB p65 in the LPS group was significantly higher than NS group(P<0.05).
     Conclusions
     1. Injection LPS in substantia nigra activated microglia and induced dopaminergic neuron injury.
     2. LPS increased the expression of NF-κB p65 , and PDTC can inhibit the expression of NF-κB p65.
     3. Dietary Supplement fish oil had protective effect on DA neuron injury induced by LPS, which may be associated with the inhibition of microglia activation and reduction of the expression of NF-κB.
引文
[1] Lang A E, Lozano A M. Parkinson’s disease. First of two parts. N. Engl. J. Med. 1998;339:1044-1053
    [2] Dauer W, Predborski S. Parkinson’s disease : mechanisms and models[J].Neurion, 2003;39:889-909
    [3] Andersen JK. Dose neuronal loss in Parkinson’s disease involve programmed cell death?[J].bioessays, 2001;23(7):640-646
    [4] Olanow C W,Tatton W G.Etiology and pathogenesis of Parkinson’s disease[J].Annu Rev Neurosci,1999;22:123-144
    [5] Schapira, A.H. Evidence for mitochondrial dysfunction in Parkinson’s disease-a critical appraisal. Mov. Disord. 1994;9:125-138
    [6] McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson’s disease. Adv. Neurol. 2001;86:83-89
    [7] Halliwell B. Oxidative stress and neurodegeneration: where are we now?. J. Neurochem. 2006;97:1634-1658
    [8] Gwinn-Hardy K. Genetics of parkinsonism. Mov. Disord,2002.17: 645–656
    [9] George JM. The synucleins. Genome Biol,2002,3(1):3002
    [10] Lansbuty PT Jr, Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products[J]. Curropin Genet Dev, 2002,12(3):299-306
    [11] Ibanez P, Bonnet AM, Debarges B, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease[J]. Lancet,2004,364(9440):1169-1171
    [12] Guervo AM, Stefanisl L,Fredenburg R, et al. Impaired degradation ofmutant alpha-synucleinby chaperone-mediated autophagy[J]. Science, 2004,305(5688):1292-1295
    [13] Kobayashi T,Wang M,Hattori N, et al. Exonic deletion mutations of the Parkin gene among sporadic patients with Parkinson’s disease[J]. Parkinsonism Relat Disord,2000,6(3):129-131
    [14] Moore DJ, Dawson VL, Dawson TM, et al. Genetics of Parkinson’s disease:what do mutations in DJ-1 tell us?[J]. Ann Neurol, 2003,54(3):281-282
    [15] Elbaz A, Levecque C, Clavel J, et al. CYP2D6 polymorphism, pesticide exposure, and Parkinson’s disease. Ann. Neurol, 2004;55: 430–434
    [16] Sadek, AH, Rauch R, Schulz PE. Parkinsonism due to manganism in a welder. Int. J. Toxicol, 2003;22:393–401
    [17] Langston JW,Ballard PA,Tetrud JW,et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983;219:979-980
    [18] Wang J, Xu Z, Fang H, et al. Gene expression profiling of MPP(+)-treaed MN9D cell:A mechanism of toxicity study[J]. Neurotoxicology, 2007;28(5):979-987
    [19] Hirsch EC, Faucheux BA. Iron metabolism and Parkinson’s disease. Mov Disord ,1998;13:39-45
    [20] Olanow CW, Youdim MB. Iron and neurode generation : prospects for neuroprotection. In :Olanow CW, et al. Neurodegeneration and Neuro protection in Parkinson’s Disease. London : Academic Press,1996;55~67
    [21] Bindoff LA. Anatomic and disease specificity of NADH CoQ I reducase complex deficiency in Parkinson’s Disease [J]. J Neuro, 1990;55:2142-2145
    [22] Shults CW. Mitochondrial dysfunction and possible treatments in Parkinson’s Disease-a review[J]. Mitochondrion,2004;4:641-648
    [23] Hount S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease[J].Ann Neuro,2003;53(3):49-60
    [24] Czlonkowska A, Kurkowska JI, Czlonkowska et al. Immune processes in the pathogenesis of Parkinson’s disease-a potential role for microglia and nitric oxide. Med Sci Monit,2002;8(8):165-177
    [25] McNaught KS,Perl DP,Brownell AL, et al. Systemic exposure to proteasome inhibitiors causes a progressive model of Parkinson’s disease[J]. Ann Neurol,2004;56(1):19-162
    [26] Hunot S, Hartmann A, Hirsch EC. The inflammatory response in the Parkinson brain[J]. Clinical Neuroscience Research, 2001;21(5):434-443
    [27] Nagatsu T, Mogi M, Lchinose H, et al. Changes in cytokines and neurotrophins in Parkinson’s disease[J]. Neural Transm Suppl,2000;60:277-90
    [28] Hunot S, Dugas N, Faucheux B, et al. FcepsionRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cell. J Neurosci,1999;19:3440-3447
    [29] Hirsch EC, Hunot S, Damier P, et al. Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol,1998;44 Suppl 3:S115-S120
    [30] Kurkowska JI, Wronska A, Kohutnieka M, et al. The inflammatory reaction following l·Methyl-4一Phenyl—l,2,3,6-Tetrahydropyridine intoxication in mouse. Exp Neurol,l999;156:50-61
    [31] Liberatore G, Jackson-Lewis V, Vukosavic S, et al.Inducible nitric oxide sythase stimulates dopaminergic neurodegenerafion in the MPTP model ofParkinson disease. Nat Med,1999;5:1403-1409
    [32] He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res,2001;909:l87-193
    [33] Castano A, Herrera AJ, Cano J, et al. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem. 1998;70:1584-1592
    [34] Herrera AJ, Castano A, Venero JL, et al. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system[J]. Neurobiol Dis,2000; 7(4):429-447
    [35] Le W, Rowe D, Xie W,et al. Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson's disease. J Neurosci. 2001;21(21):8447-8455
    [36] Jeohn CH, Cooper CL, Jang KL, et al. G06976 inhibits LPS-induced microgrial TNF-αrelease by suppressing P38 MAP kinase activation[J]. Neurosei.2002;114(3):689-697
    [37] Liu B, Jiang JW, Wilson BC, et al. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther.2000; 295(1): 125-132.
    [38] Gao HM, Hong JS, Zhang WQ, et a1. Microglia activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease[J].J Neurochem,2002,81(6):1285-1297
    [39] Kreutzberg G, W Microglia:a sensor for pathological events in the CNS.Trends Neurosci.1996;19(8):312-318
    [40] Nimmerjahn A, Kirchhoff, F, Helmchen F. Resting microglial cells arehighly dynamic surveillants of brain parenchyma in vivo.Science. 2005.308:1314–1318
    [41] Davalos D. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci.2005.8:752–758
    [42] McGeer PL, Itagaki S, Boyes BE,et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains.Neurology.1988;38(8):1285-1291
    [43] Fetler L, Amigorena S. Brain under surveillance: the microglia patrol. Neuroscience.2005.309:392–393
    [44] Harry G J, McPherson CA, Wine R N, et al. Trimethyltin-induced neurogenesis in the murine hippocampus.Neurotox.Res.2004; 5:623–627
    [45] Wilkinson B, Koenigsknecht-Talboo J, Grommes C, et al. Fibrillarβ-amyloid-stimulated intracellular signaling cascades require Vav for induction of espiratory burst and phagocytosis in monocytes and microglia.J.Biol.Chem.2006;281(51):20842–20850
    [46] Jack CS. TLR signaling tailors innate immune responses in human microglia and astrocytes.J.Immunol.2005.175:4320–4330
    [47] Muller FJ, Snyder EY, Loring JF.Gene therapy:can neural stem cells deliver? Nature Rev.Neurosci,2006;7(51):75–84
    [48] McGeer PL, McGeer EC, Glial reactions in Parkinson's disease[J]. Mov Disord,2008;23(4):474-483
    [49] Moss DW, Bates TE. Activation of murine microglial cell lines by lipopolysaccharide and interferon-γcauses NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci,2001;13:529–538
    [50] McGeer PL, Itagaki S, Boyes BE, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's diseasebrains.Neurology.1988; 38(3):1285-1291
    [51] Langston JW. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4- phenyl-1,2,3,6- tetrahydropyridine exposure. Ann Neurol.1999;46:598–605
    [52] Imamura K. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol(Berl).2003;106:518–526
    [53] Kim YS, Choi DH, Block ML, et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglia activation. FASEB J. 2006; 20: 1096
    [54] Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synucein in Lewy bodies. Nature.1997; 388: 839-840
    [55] Zhang W, et al. Aggregatedα-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 2005; 19: 533–542
    [56] Kim YS, et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci. 2005; 25, 3701–3711
    [57]张巍,王拥军,Jau-Shyong Hong,等.人神经黑色素过度激活小胶质细胞:多巴胺能神经细胞进行性变性的新机制[J].中国神经免疫学和神经病学杂志,2008;15(4):274-278
    [58] Wilms H, et al. Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J, 2003; 17:500–502
    [59] Merrill JE, Benveniste EN. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Newosci. 1996; 19(8): 331-338
    [60] Jeohn GH, Kong LY, Wison B, Hudson P, Hong JS. Synergistic newotoxicity effects of combined treatments with cytokines in marine primary mixed neuron/gIia cultures. J neuroimmunol. 1998; 85(1): 1-10
    [61] Frigo DE, Vigh KA, Struckhoff AP, et al. Xenobiotic-induced TNF-alpha expression and apoptosis through the p38 MAPK signaling pathway. Toxicol Lett. 2005; 155(2): 227-238
    [62] Sagoo P, Chan G,Larkin DF,George AJ. Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. Invest Ophthalmol Vis Sci. 2004; 45(11):3964-3973
    [63] Kato S, Sugimura N, Nakashima K, et al. Actinobacillus actinomycetemcomitans induces apoptosis in human monocytic THP-1 cells[J]. Med Microbiol. 2005; 54(3):293-298
    [64] Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide newoprotection in the MPTP-mouse model of Parkinson's disease. Synapse 2001; 39(2):167-174
    [65] Feng Z, Li D, Fung PC, et al. COX-2-deficient mice are less prone to MPTP-newotoxicity than wild-type mice. Neuroreport. 2003; 14(15):1927-1929
    [66] Calder PC. Immunoregulatory and anti - inflammatory effects of n-3 polyunsaturated fatty acids [J] . Med Biol Res,1998; 31(4):467
    [67] Dyerberg J.Bang HO. Observations on populations in Greeland and Denmark,in nutritional evaluation of long-chain fatty acids.New York:Academic Press, 1981
    [68] Kang JX. Leaf A. The cardiac antiarrhythmic effects of polyunsaturated fatty acid. Lipids,1996; 31:41-44
    [69] Nordoy A, Marchioli R, Arnesen H. n-3 polyunsaturated fatty acid and cardiovascular disease. Lipids,2001; 36:127-129
    [70] Yam D, Peled A, Shlnitzky M. Suppression of tumor growth and metastasis by dietary fish oil combined with vitaming E and C and cisplatin[J]. Cancer Chemother Pharmacol,2001; 47(1):34
    [71] Bhattacharya A, Lawrence RA, Krishnan A, et a1. Effect of dietary n-3 and n-6 oils with and without food restriction on activity of antioxidant enzymes and lipid peroxidation in livers of cyclophospbamide treated autoimmune-prone NZB/W female mice[J]. Am J Coll Nutr, 2003; 22(5):388
    [72] Cleland LG, JamesMJ, Proudman SM. The role of fish oils in the treatment of rheumatoid arthritis[J]. Drugs,2003; 63(9):845
    [73] Simopoulos AP. Omega - 3 Fatty acids in inflammation and autoimmune diseases. [J]. Coll Nutr,2002; 21(6):495
    [74] Healy DA, Wallace FA, Miles EA, et a1. Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function[J]. Lipids,2000;35 (7):763
    [75] Sanderson P, Macpherson GG, Jenkins CH, et a1. Dietary fish oil diminishes the an tigen p resentation activity of rat dendritic cells [J]. J Leuk Biol, 1997; 62(11):771
    [76] Ergas D, Eilat E, Mendlovic S, et al. n - 3 fatty acids and theimmune system in autoimmunity [J ]. Isr Med Assoc , 2002;4(1):34
    [77] Pompes LJ, Fritsche KL. Antigen driven routine CD4 T lymphocyte proliferation an dinterleukin-2 production are diminished by dietary ( n-3 ) polyunsaturated fatty acids[J]. J Nutr,2002;132(11):3293
    [78] McMurray DN, Jolly CA, Chapkin RS. Effects of dietary n-3 fatty acidson T cell activation and T cell recep tormediated signaling in a murine model[J]. J Infect Dis, 2000;182(1):103
    [79] Jolly CA, J iang YH, Chapkin RS, et al. Dietary ( n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide[J]. J Nutr, 1997;127(1):37-43.
    [80] Mayer K, Meyer S, Reinholz·MuhlyM, et a1. Short time infusion of fish oil based lipid emulsions, approved for parenteral nutrition, reduces monocyte proinflammatory cytokine generation and adhesive interaction with endothelium in humans[J]. J Immunol,2003;171(9):4837
    [81] Heller A, Koch T, Schmeck J, et al. Lipid mediator in inflammatory disorders. Drugs, 1998;55(4):487-496
    [82] Calder PC. Fat chance of immunomodulation[J]. Immunol Today,1998;19:244
    [83] Hughes DA. Pinder AC. n-3 polyunsaturated fatty acids inhibit the antigen? presenting function of human monocytes[J]. Am J Clin Nutr,2000;71 (1):357
    [84] Teitelbaum JE, et al. Review: the role of omega 3 fatty acids in intestinal inflammation. J Nutr Biochem,2001;12:21-32
    [85] Wong KW. Clinical efficacy of n-3 fatty acid supplementation in patients with asthma[J]. J Am Diet Assoc,2005;105(1):98
    [86] Thies F, Nebe-von-Caron G, Powell JR, et al. Dietary supplementation with gamma-linolenic acid or fish oil decreases T lymphocyte proliferation in healthy older humans[J]. J Nutr , 2001;131:1918
    [87] Kelley DS, Taylor PC, Nelson GJ, et al. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatorymediators in young healthy men[J]. Lipids,1999;34:317
    [88] Whelan J. Antagonistic effects of dietary arachidonic acid and n-3 polyunsaturated fatty acids. J Nutr,1996;126:S1086-S1091
    [89] Alexander JW. Immunutrition:the role ofω-3 fatty acids. Nutrition 1998;14:627-633
    [90] Endres S, Meydani SN, Ghorbani R, et al. Dietry supplementation with n-3 fatty acids suppresses interlekin-2 production and monoclear cell proliferation[J]. J Leukoc Biol,1998;54(6):599-603
    [91] Kelley DS, Taylor PC, Nels on GJ, et al. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthymen[J]. Lipids,1999;34(4):317-324
    [92] Oneill LA, Kaltschmidt C. NF -κB, a crucial transcriptionfactor for glial and neuronal cell function[J].Trends Neurosci,1997;20(6):252-258
    [93] Iwai K, Lee BR, Hashiguchi M, et a1. IκB-alpha-specific transcript regulation by the C-terminal end of c-Re1. FEBS Lett, 2005;579(1):141-144
    [94] Moerman AM, Mao X, Lucas MM, et al. Charac-terization of a neuronalκB-binding factor distinct from NF-κB [J]. Brain Res Mol Brain Res,1999;67(2): 303-315
    [95] Li X, Massa PE, Hanidu A, et a1. IKKalpha, IKKbeta, and EMO/IKK gamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem, 2002;277(47):129- 140
    [96] Hinz M, Krappmann D, Eichten A, et al. NF-κB function in growth control: regulation of cyclin Dl expression and G0/G1-to-S-phase transition[J]. Mol Cell Biol,1999;19(4):2690-2698
    [97] Novak TE, Babcock TA, Jho DH , et al. NF-kappa B inhibition byomega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription[J]. Am J Physiol Lung Cell Mol Physiol, 2003;284(1):L84-L89
    [98] Xi S, Cohen D, Barve S, et al. Fish oil suppressed cytokines and nuclear factor-kappa B induced by murine AIDS virus infection[J]1 NutrRes, 2001;21:865
    [99] Lee JY, Plakidas A, Lee WH, et al. Differential modulation of Toll like receptors by fatty acids : preferential inhibition by n-3 polyunsaturated fatty acids[J]. J Lipid Res,2003;44:479
    [100] Weldon SM, Mullen AC, Loscher CE, et al. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid[J]. J Nutr Biochem, 2007;18(4):250-58
    [101] Stephenson D, Yin T, Smalstig EB, et al. Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2000;20(3):592-603
    [102] Diane S, Stephenson DT, Smalsting EB, et al. Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats[J]. Stroke,1997;28:1073-1080
    [103] Nurmi A, Lindsberg PJ, Koistinaho M, et al. Nuclear factor-kappa B contributes to infarction after permanent focal ischemia[J]. Stroke,2004;35(4):987-991
    [104] Wang Y, Meng Z. Expression of NF-κB,caspase-3 and cell apoptosis after focal cerebral ischemia and reperfusion injury in rats[J]. Journal of Apoplexy and Nerous Diseases,2004;21(3):208-210
    [105] Yang K, Mu XS, Hayes RL. Increased cortical nuclear factor-kappa B(NF-κB) DNA binding activity after traumatic brain injury in rats[J]. Neurosci Lett, 1995; 197(2):101-104
    [106] Nonaka M, Chen XH, Pierce JE, et al. Prolonged activation of NF-kappa B following traumatic brain injury in rats[J]. J Neurotrauma, 1999;16(11):1023-1034
    [107] Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor-kappa B [J]. Free Radic Biol Med,2000,28(9):1317-1327
    [108] Casal C, Serratosa J, Tusell JM. Effects of beta-AP peptides on activation of the transcription factor NF-kappa B and in cell proliferation in glial cell cultures[J]. Neurosci Res,2004;48(3):315-323
    [109] Kaltschmidt B, Uherek M, Wellmann H, et al. lnhibitionof F-kappa B potentiates amyloid beta mediated neuronal apoptosis[J]. Proc Natl Acad Sci USA,1999;96(16):9409-9414
    [110] Pahan K, Sheikh FG, Liu X, et al. Induction of nitric-oxide synthase and activation of NF-κB by interleukin-12 p40 in microglial cells[J]. J Biol chem,2001;276(11):7899-7905
    [111] Schreck R, Meier B, Mannel DN, et al.Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells.J Exp Med,1992;175(5):1181-1194
    [112] Pang Y, Cai ZW, Rhodes PG.Analysis of genes differentially expressed in astrocytes stimulated with lipopolysaccharide using cDNA arrays. BrainResearch, 2001;914(1-2):15-22
    [113] Samadi P, Gregoire L, Rouillard C, et al. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol,2006;59:282-288
    [114] Bousquet M, Saint-Pierre M, Julien C, et al. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. The Federation of American Societies for Experimental Biology Journal, April 2008 ;22(4):1213–1225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700