高Al组分的AlGaN外延材料的MOCVD生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过MOCVD生长手段,通过一系列实际的生长和测试实验,在蓝宝石衬底上异质外延了高Al组分的AlxGa1-xN外延层,并且针对多种缓冲层技术下的成核层生长、脉冲缓冲层生长和超晶格缓冲层生长工艺,通过材料生长和材料表征两方面,研究了关键层结构中的关键工艺参数对AlxGa1-xN外延材料质量的影响,对关键的工艺参数进行了一系列的优化试验,制备出了高质量的AlN外延材料和高Al组份AlGaN外延材料。
     对不同Al组分含量的高Al组分AlxGa1-xN外延材料样品,采用XRD对其进行了结晶质量和Al组份的表征分析,测定了实际样品具体的Al组分含量,研究了不同Al组分含量的AlxGa1-xN外延层在实际的螺位错密度、刃位错密度和晶格常数方面的差异。
The research of this paper is mainly based on MOCVD crystal growth technical, good-crystal-quality and crack free AlxGa1-xN epilayer with high-Al concentration have been grown on sapphire substrate through a series of growing and testing experiments. And the key point of the buffer layers, the influence factor of several process parameters to the crystal quality have been investigated from the both sides of crystal growth and characterization analysis.Then the process parameters are optimized step by step and the role of each parameter are forecasted during the growing process. Finally, through comparison of the experiment results, the optimized process parameters has been obtained and with which high-Al composition AlxGa1-xN material with best quality could be grown sucessfully.
     Based on the optimized process formula, AlxGa1-xN epilayers with different Al concentration have been grown by adjusting the incorporation of Al. And the real value of Al concentration are determined by XRD.Furthermore, the differences between density of both screw dislocation and edge dislocation have been investigated, and the paractical crystal constant are also be calculated.
引文
[1]段猛,郝跃. GaN基蓝色LED的研究进展[J],西安电子科技大学学报, 2003, 30(1):60-65.
    [2] Pearton S J, Zopler J C, Shurl R J , et al. GaN: Processing, Defects,and Devices[J]. Journal of Applied Physics,1999,86(1):1-78.
    [3]段猛碳化硅衬底上氮化镓薄膜材料及其发光器件特性研究[D],西安:西安电子科技大学,2003.
    [4] Binari S C, Rowland L B,Kruppa W, et al. Microwave Performance of GaN MESFETs[J]. Electronic Letters, 1994, 30(15): 1248-1249.
    [5] Chen Q, Yang J W, Blasingame M, et al. Microwave Electronics Device Applications of AlGaN/GaN Heterostructure[J]. Materials Science and Engineering B,1999, 59(2): 395-400.
    [6] Shur M, Gelment B, Khan M A. Electron Mobility in Two-dimensional Electron Gas in AlGaN/GaN Heterostructres and in Bulk GaN[J]. Journal of Electronic Materials,1996,25(5):777-785.
    [7] Liang Chunguang, Zhang Ji. GaN-dawn of 3rd-generation-semiconductor[J]. Chinese Journal of Semiconductor. 1992, 20(2).89-99.
    [8] Wen Shangsheng. Study and development of high brightness blue GaN-based LED[J]. Chinse Journal of Quantum. 2003,20(10).
    [9] Wang Sansheng, Gu Biao, Xu Yin, et al. Growth methods and its applicatios in optoelectronic devices of GaN-based semiconductor materials[J]. Electron Devices, 2002, 25(1):1-8.
    [10] Fang Zhilie. Future applications of light emitting diodes[J]. Physics and Advanced Technology, 2003,32(5):295-301.
    [11] Wang Erzhen, Wang Chunfeng. Development and application of white LED[J]. Electron-Optics Technology. 2002,43(1):1-9.
    [12] Subramanian Muthu, Schuurmans F J, Pashley M D. Red,green,and bule LED based white light generation:Issues and control[C]. Industry Applications Conferencs, 2002.37th IAS Annual Meeting,2002,13-18.
    [13] Li Zhonghui, Ding Xiaomin, Yang zhijian et al. Characteristics of high brightness InGaN-based white emitting diodes[J]. J.infrares Millim Waves,2002,21(5):390-392.
    [14] Jiang Dapeng,Zhao Chengjiu,Hou Fengqin. Fabrications and characteristics of white-emitting diodes[J]. Chinese Journal of Luminescence,2003,24(4):385-389.
    [15] Regina M M,Mueller G O, Krames M R,et al. High-power phosphor-converted light-emitting diodes based on III-Nitrides[J]. IEEE J.Select. Topics Quantum Electron, 2002,8(2):339-345.
    [16] Chen C H, Chang S J, Su Y K, et al. Hitride-based cascade near white light-emitting diodes[J]. IEEE Photon Technology Letter. 2002,14(7):908-910.
    [17] Sheu J K, Pan C J, Chi G C, et al. White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer[J]. IEEE Photon.Technol.Lett. 2002,14(4):450-452.
    [18] Guo Xiaoyun, Graff J, Schubert F E. photon recycling semiconductor light emitting diode[J]. IDEM Tech.Dig, 1999:600-605.
    [19]顾忠良,GaN半导体研究与进展[J],半导体情报,1999,36(4):10-14.
    [20]许敏,袁凤坡,陈国鹰等,调制摻杂对AlGaN/GaN HEMT材料电学性能的影响[J],工艺技术与材料,2007,32(30):230-233.
    [21] J. M. Redwing, M. A. Tischler, and J. S. Flynn, Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H-SiC and sapphire substrates[J], Appl. Phys. Lett., 1996, 69(7):963-965.
    [22] M.Asif Khan, Q.chen, et al, Enhancement and depletion mode GaN/AlGaN heterostructure field effecttransistors[J], Appl. Phys. Lett., 1996,68(4):514-516.
    [23]薛丽君,刘明等,AlGaN/GaN异质结极化行为与二维电子气[J],半导体技术,2004,23(3):15-19.
    [24]刘诗文,郭霞等,InGaN/GaN多量子阱蓝光LED电学特性研究[J],光学器件,2006,27(3):240-243.
    [25]魏同波,王军喜等,AlGaN基UV-LED的研究与进展[J],功能材料与器件学报,2007,13(1):95-100.
    [26] Hideki Hirayama, 231-261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by NH3 pulse-flow method on sapphire[J], Appl. Phys. Lett.,2007,91(7):071901
    [27] S. Porowski, J. Cryst. Growth,189/190, (1998)153
    [28] R. Dwilinski, R. Doradzi ski, J. Garczy ski, L. Sierzputowski, J. M. Baranowski, M. Kamiska, Mater. Sci. Eng. B50, 46 (1997).
    [29] Liang C.G, Zhang J. GaN-Dawn of 3rd-Generation-Semiconductors. Chinese Journal of Semconductors. 1999, February, v20, n2, p89-90.
    [30]杨树人,丁墨元。外延生长技术。北京:国防工业出版社,1992。
    [31] Khan M.A, Kuznia J.N, Van J.M, et al. Growth of high optical and electrical quality GaN layers using low-pressure metalorganic chemical vapor deposition. AppliedPhysics Letters, 1991, v58, p1604.
    [32] Degave F, Ruterana P, Nouet G, et al. Initial stages of GaN buffer layer growth on (0001) sapphire by metalorganic chemical vapour deposition, Diamond and Related Materials, 2002, v11, p901-904.
    [33] Degave F, Ruterana P, Nouet G, et al. Analysis of the nucleation for GaN layers on (0001) sapphire, Materials Science and Engineering, 2002, B93, p177-180.
    [34]范进社,陈光德,齐鸣等。分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究。物理学报,2001,12,v50,n12,p2429-2433.
    [35] D.J.Wallis, A.M.Keir, R.S.Balmer, et al. Composition measurement in strained AlGaN epitaxial layers using X-ray diffraction[J]. Applied Physics Letters, 2004, 85(26): 6359-6361.
    [36] H.Heinke, V.kirchner, S.Einfeldt, et al, X-ray diffraction analysis of the defect structure in epitaxial GaN[J]. Applied Physics Letters, 2000, 77(14):2145-2147.
    [37] Shigeaki Sumiya, Youhua Zhu, Jicai Zhang, et al, AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Grown on Epitaxial AlN/Sapphire Templates[J], Japanese Journal of Applied Physics, 2008, 47(1):43-46.
    [38] S.R.Lee, A.M.West, A.A.Allerman, et al, Effect of Threading Dislocations on the Bragg Peakwidths of GaN,AlGaN,and AlN heterolayers[J], Applied Physics Letters, 2005,86(24):241904.
    [39] J.P.Zhang, H.M.Wang, W.H.Sun, et al, High-Quality AlGaN Layers over Pulsed Atomic-Layer Epitaxially Grown AlN Templates for Deep Ultraviolet Light-Emitting Diodes[J], Journal of Electronic Materials, 2003, 32(5):364-370.
    [40]李美成,邱永鑫等,MOCVD外延Al2O3基AlGaN/GaN超晶格的结构和光学特性[J],稀有金属材料与工程,2005,34(9):1385-1388.
    [41] Z.Ren, Q.Sun, K.Davitt, et al, Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes[J], Applied Physics Letters, 2007,91(5):051116.
    [42] D.M.Follsteaedt, A.A.Allerman, S.R.Lee, et al, Dislocation reduction in AlGaN grown on patterned GaN[J], Journal of crystal growth, 2008, 31(34):766-776.
    [43] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, .Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer.. Appl. Phys. Lett. 48, 353-355 (1986).
    [44] X.L.Wng, D.G.Zhao, X.Y.Li, The effect of LT-AlN buffer thickness on the properties of high Al composition AlGaN epilayers[J], Material Letters, 2006, 60(13):3693-3696.
    [45] M.Z.Peng, L.W.Guo, J.Zhang, et al, Effect of growth temperature of initial AlNbuffer on the structural and optical properties of Al-rich AlGaN[J], Journal of crystal growth, 2007, 7(13):289-293.
    [46] M.Kneissl, D.W.Treat, M.Teepe, et al, Ultraviolet AlGaN multiple-quantum-well laser diodes[J], Applied Physics Letters,2003,82(25):4441-4443.
    [47] M.A.Mastro, C.R.Eddy, D.K.Gaskill, et al, MOCVD growth of thick AlN and AlGaN superlattices on Si substrates[J]. Journal of crystal growth, 2006, 287:610-614.
    [48] Cheng-Liang Wang, Ming-Chang Tsai, Jyh-Rong Gong, et al, Influence of AlGaN/GaN superlattices inserted structure on the performance of InGaN/GaN multiple quantum well light emitting diodes[J], Material Science and Engineering, 2007,138:180-183.
    [49] Uttiya Chowdhury, Michael M, Charles J , et al. High performance solar blind photodetector using an Al0.6Ga0. 4 N n-type window layer [J]. Jounal of Crystal Growth, 2003 (248): 552-555.
    [50] R.McClintock, A.Yasan, K.Mayes, et al. High quantum efficiency AlGaN solar blind p-i-n photodiodes[J]. Applied physics letters, 2004 (84) : 1148-1250.
    [51] Xiaoyan Wang, Xiaoliang Wang, Guoxin Hu, et al. Characteristics of high Al content AlxGa1-xN grown by metalorganic chemical vapor deposition[J]. Microelectronics journal, 2007(38):838-841.
    [52] M.Z.Peng, L.W.Guo, J.Zhang, X.L.Zhu, et al. Reducing dislocations of Al-rich AlGaN by combining AlN buffer and AlN/Al0.8Ga0.2N superlattices[J]. Journal of crystal growth, 2008(310):1088-1092.
    [53] H.Heinke, V.Kirchner, S.Einfeld, D.Hommel. X-ray diffraction analysis of the defect structure in epitaxial GaN[J]. Applied physics letters, 2000(77):2145-2147
    [54] D.J Wallis, A.M.Keir, R.S.Balmer, et al. Composition measurement in strained AlGaN epitaxial layers using X-ray diffraction[J]. Applied physics letters, 2004(85):6359-6361
    [55] Shigeaki Sumiya, Youhua Zhu, Jicai Zhang, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates[J]. Japanses journal of applied physics, 2008(47):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700