猪血血红蛋白酶解及其酶解产物抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是肉类生产大国,肉制品加工副产物血液产量丰富,仅猪血一项年产量就达130万吨以上。畜禽血液营养丰富,其中大部分为血红蛋白存在于红血球中,占血液总蛋白质含量的70~80%,而且血红蛋白中还含有丰富的血红素铁。由于其口感、色泽的原因只有少部分被人们直接食用,其他大部分被用作动物饲料。即使是用作饲料,也仍然存在着难以消化吸收、生物利用率低的重要问题。本文以血红蛋白为原料,研究蛋白酶水解血红蛋白的优化条件及内在规律,进行血红蛋白酶解液的脱色及血红素提取,评价酶解产物及脱色产物的风味、探讨二者的抗氧化活性,以期为血红蛋白的酶解、酶解液脱色、血红素提取和酶解产物利用提供理论依据和技术支撑。
     成分分析结果表明猪血红细胞(血红蛋白)是一种高蛋白、低脂肪、低热量原料,非常适合作为水解底物。单一酶水解血红蛋白蛋白质回收率(PR)较低。冷冻、超声和均质溶血使酶解过程的PR增加5-7%。Pancreatin与Protamex (PP)、Pancreatin与Flavourzyme (PF)组成的两种组合酶水解血红蛋白的PR达95%左右,而且产物没有苦味。两种组合酶对底物中优先作用疏水性氨基酸,降低了酶解产物产生苦味的可能。酶解产物的Q值与风味评价结果吻合,可用于指导生产实践。组合酶水解体系在水解时可能会发生一些产物之间的聚合反应,导致PR有所降低。
     吸附助剂对色素的有一定的亲和能力,但不是脱色的关键因素。pH对两种组合酶水解液的脱色效果影响显著。色素自身的絮凝和沉降作用在脱色过程中起主导作用。色素因疏水相互作用产生笼形水合物并形成较大粒径的水合物晶体,可离心除去。脱色可降低肽的疏水性、改善水解产物的风味。酶解和脱色均可提高血红蛋白的营养价值。冷冻结晶可以富集、浓缩血红素。
     PF和PP两种组合酶的血红蛋白酶解液及其脱色酶解液均具有DPPH自由基清除能力、还原力和铁离子螯合能力,前者酶解产物的活性高于后者。水解度与抗氧化活性的相关性比较差。脱色可明显降低抗氧化活性。PF水解产物的铜离子螯合能力弱于PP水解产物,脱色可以提高产物的铜离子螯合能力。
     PF和PP酶解产物及其脱色产物可以抑制亚油酸氧化体系中的过氧化作用,而且具有一定的量效关系。脱色降低酶解产物的抗脂质过氧化能力。PF脱色血红蛋白酶解产物能够抑制广式腊肠中的脂质过氧化反应,但无明显剂量效应。浓度为4%的PF脱色血红蛋白酶解液可抑制腊肠酸价升高。喷雾干燥产物抑制酸价升高的能力与抑制脂肪氧化的能力均强于酶解液,可能是在加工过程中产生了具有抗氧化性质的新物质。
     PF和PP两种组合酶的脱色血红蛋白酶解液的平均疏水性有所下降,PF和PP的脱色产物的抗氧化性随着其平均疏水性的下降而降低。肽的分子量与其抗氧化性之间无相关性,主要应取决于其氨基酸组成和三维构象,疏水性氨基酸较之亲水性氨基酸在构成和维持肽的立体构象的作用可能会更强一些,因此疏水性氨基酸对肽的抗氧化性影响会更大一些。血红蛋白酶解产物分离出的三种肽类的活性具有差异,其中碱性肽的活性最强,酸性肽次之,中性肽最弱。
China is a big meat process country and has an abundant byproduct blood in which only porcine blood can generate 1.3 million tons annually. Animal blood is richly containing hemoglobin in the blood cells which represents 70-80% of the protein content of blood and also includes contains hematin. However, due to the taste and the color only a little blood was consumed directly by people and the other larger amounts was used as feedstuff. Further more, blood is still can not be digested and absorbed easily for the problem of low bioavailability. This work used hemoglobin as resources, researching optimal conditions and some intrinsic mechanisms of enzymatic hydrolysis of hemoglobin, decoloring the hydrolysate and extracting hematin, valuing the flavor and antioxidant activity of the hydrolysate and the decolorized for supporting the theory and technology of enzymic hydrolysis of hemoglobin, decolorization, extraction of hematin, and utilization of the product.
     The composition of porcine hemoglobin showed it had high content of protein, low content of fat and low calorie. Therefore, porcine hemoglobin was a good substrate for hydrolysis. Hemoglobin was hydrolyzed by one protease just obtaining relatively low protein regovery (PR). Freeze, ultrasonic and homogenization can hemolyze blood cells and increase PR of hydrolysis for 5-7%. Both of the enzyme admixtures, Pancreatin and Protamex (PP) as well as Pancreatin and Flavourzyme (PF), hydrolyzed hemoglobin got high PR about 95%. And moreover, the hydrolysates had no bitter taste. The both of the enzyme admixtures had specificity for terminal a variety of hydrophobic amino acids and thus reduced the bitter taste of the product. The Q value of the hydrolysate was in agreement with the results of taste, so the Q rule can be direct the practice. During hydrolysis of hemoglobin by the both enzyme admixtures, the product aggregated leading to decrease PR.
     Though adsorbent can adsorb pigment it was not critical factor for decoloring. pH significantly influence the result of decolorization. Pigments flocculated and precipitated between themselves during process leading to decolorization. Pigment formed clathrate hydrates for the sake of hydrophobic interaction and further aggregated to bigger clathrate hydrates which can be removed by centrifuge. Decolorization reduced the hydrophobicity of peptides and improved the flavor of product. Hydrolysis and decolorization can promote the nutritional value of hemoglobin. Freeze can enrich and concentrate hematin.
     The hydrolysate and its decolorized of PF and PP had DPPH radical scavenging activity, reducing power and ferrous ion chelating activity, and the activity of the former hydrolysate was stronger than that of the latter. No relativity between the degree of hydrolysis and the above mentioned antioxidant activity which can be depressed by decolorization. In contrast, copper ion chelating activity, which can be improved by decolorization, of the hydrolysate of PF was weaker that of PP.
     The hydrolysate and its decolorized of PF and PP restrained lipid peroxidation in the linoleic acid system, and the antioxidant activity, which was also can be depressed by decolorization, was increased with increasing concentration of the products. The decolorized of PF inhibited lipid peroxidation in Chinese Cantonese sausage, but the activity had no relation to the concentration. At higher concentration of 4%, the decolorized of PF decreased the acid value of Chinese Cantonese sausage. The activity of inhibiting lipid peroxidation and decreasing acid value of powder of spray-dried was stronger than that of liquid hydrolysate possibly due to generated new material possessing antioxidant activity.
     The average hydrophobicity of hydrolysate coming from PF and PP was reduced after decolorization, and the antioxidant activity of the both decolorized decreased with decreasing the hydrophobicity. No relativity was found between antioxidant activity and molecular weight of peptides; the antioxidant activity of peptide should mainly determined by amino acid composition and cube configuration. The effect of hydrophobic amino acid on constituting and maintaining the cube configuration was more important than that of hydrophilic amino acid, and so the hydrophobic amino acid influenced deeper the antioxidant activity of peptide than hydrophilic amino acid. Three categories peptides separated from hydrolysate of hemoglobin had different antioxidant activity, among which, the antioxidant activity of basic peptide was strongest, acidic peptide took second place and the neutral was weakest.
引文
[1] 程池, 蔡永峰. 可食用动物血液资源的开发利用[J]. 食品与发酵工业, 1998, 3: 66-72
    [2] 马美湖, 葛长荣, 罗欣, 等. 动物性食品加工学[M]. 北京: 中国轻工业出版社, 2003: 368
    [3] Enrique M, Mariela B, Anangelina A, et al. Proteins, isoleucine, lysine and methionine content of bovine, porcine and poultry blood and their fractions[J]. Food Chemistry, 2005, 93: 503–505
    [4] 马美湖. 试论畜禽血液综合利用的重要意义[J]. 农牧产品开发, 1996, (12): 28-30
    [5] http://www.fao.org/es/ess/yearbook/vol_1_1/pdf/b02.pdf, 2007-2-13
    [6] 中国农业年鉴编辑委员会. 中国农业年鉴 2005[G]. 北京: 中国农业出版社.2005. (12): 17-18
    [7] 张滨, 马美湖, 唐道邦等.畜禽血的微生物降解技术和综合利用[J]. 肉类研究, 2003, (2): 44-48
    [8] http://www.agri.gov.cn/sjzl/baipsh/WB2005.htm#20, 2007-2-13
    [9] 黄群, 马美湖, 杨抚林, 等. 畜禽血的开发利用[J]. 肉类研究, 2003, (3): 37-40
    [10] 马美湖, 唐进明, 陈长龙, 等. 亚硝基血红蛋白合成制取的研究[J]. 肉类工业. 2001, (5): 26-29
    [11] 张坤生,任云霞. 亚硝基血红蛋白合成条件的优化及其特性[J]. 食品科学, 1998, 19 (6): 3~6
    [12] 王远明. 无硝血红蛋白着色剂的研制[J]. 华东理工大学学报, 1998, 24 (6): 655-658
    [13] Shahidi F, Pegg R B. Preparation of the cooked cured-meat pigment,dinitrosylferrhemochrome, fromhemin and nitric oxide[J]. Journal of Food Science,1985, 50: 272-273
    [14] Shahidi F, Rubin, L. J, Wood, D. F. Control of lipid oxidation in cooked ground prok with antioxidants and dinitrosyl ferrohemochrome[J]. Journal of Food Science, 1987, 52: 564-567
    [15] Pegg R B, Shahidi F. A novel titration methodology for elucidation of the structure of preformed cooked cured-meat pigment by visible spectroscopy[J]. Food Chemistry, 2002, 56:105-110
    [16] Shahidi F, Pegg R B. Effect of preformed cooked cured-meat pigment (CCMP) on color parameters of muscle food[J]. Journal of Muscle Foods,1991, 4:297-304
    [17] Saguer E, Altarriba S, Lorca C. Colour stabilization of spray-dried porcine red blood cells using nicotinic acid and nicotinamide[J]. Food Sci Tech Int 2003, 9(4): 301–307
    [18] Hyun C- K, Shin H-K. Utilization of bovine plasma obtained from a slaughterhouse for economic production of probiotics[J]. Journal of Fermentation and Bioengineering. 1998, 86(1): 34-37
    [19] Kherrati B, Faid M, Elyachioui M, et al. Process for recycling slaughterhouses wastes and by-products by fermentation[J]. Bioresource Technol.1998;63(1):75-79
    [20] 方俊. 猪血多肽的制备及其生物活性研究[D]. 湖南农业大学, 2006
    [21] 陈力力, 马美湖. 发酵血粉生产工艺的研究[J]. 肉类工业, 2003, (9): 16-19
    [22] 张滨, 马美湖. 动物血红蛋白(Hb)微生物降解技术研究[J]. 肉类工业, 2005, (4): 37-41
    [23] 李艳伟, 江波, 佟祥山. 酶解猪血蛋白中活性肽的纯化和功能研究[J]. 高等学校化学学报, 2005, 26(1): 61-63
    [24] Zhao Q, Garreau I, Sannier F, et al. Opioid peptides derived from hemoglobin: hemorphins[J]. Biopolymers, 1997, 43: 75-98
    [25] Piot J M, Zhao Q, Guillochon D, et al. Isolation and characterization of a bradykinin-potentiating peptide from a bovine peptic hemoglobin hydrolysate[J]. FEBS Lett, 1992, 299(1):75-79
    [26] Zhao Q, Coeur C L, Piot J M. Analysis of peptides from bovine hemoglobin and tuna myoglobin hydrolysate: use of HPLC with on-line second-order derivative spectroscopy for the characterization of biologically active peptides[J]. Anal chim Acta, 1997, 352: 201-220
    [27] Hyun C K, Skin H K. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides[J]. Process Biochem, 2000, 36: 65-71
    [28] Swetsuna Y. Novel tripeptides and angiotensin converting enzyme inhibitors[J]. Japanese Patent 07-188 183,1995
    [29] Chiba H, Yoshikawa M. Bioactive peptides derived from food proteins[J]. Kagaku to Seibutsu, 1991, 29: 454-58
    [30] Carraway R E, Mitra S P, Cochrana D E. Structure of a biologically active neurotensin-related peptide obtained from pepsin-treated albumins[J]. J. Biol Chem,1987, 262: 5968-73
    [31] Park K J, Hyun C K. Antigenotoxic effects of the peptides derived from bovine blood plasma proteins[J]. Enzyme and Microbial Technology, 2002, 30: 633-638
    [32] Liu X Q, Tsutsumi M. Gel formation of globin prepared by acid-acetone method and globin hydrolyzates[J]. Nippon Shokuhin Kogyo Gakkaishi 1994, 41 (3):178-183
    [33] Liu X Q, Masami Y, Masakazu T, et al. Physicochemical properties of aggregates of globin hydrolysates[J]. J Agric Food Chem, 1996, 44: 2957-2961
    [34] Yuji M, Masakazu T, Kiyomi N. Gelation of porcine by pepsin treatment. Food Sci Technol Int Tokyo,1998, 4(1): 40-43
    [35] Miyaguchi Y, Nagayama K, Tsutsumi M. Gelation of porcine blood globin by calf rennet[J]. Anim Sci Technol, 1996, 67: 482-483
    [36] Cheng B, Navab F, Tmiller N, et al. Mechanism of dipeptide uptake by the small intestine in vitro[J]. Clin Sci, 1971, 40: 247-257
    [37] Hara H, Iwata M, Iwata M. Portal absorption of small peptide in rats under unrestrained condition[J]. J Nutr, 1984, 114: 1122-1133
    [38] Craft I L, Geddes D, Hyde C W, et al. Absorption and malabsorption of glycine and glycine peptides in man[J].Gut, 1968, 9: 425-437
    [39] Ganapathy V, Leibach F. Peptide transport in intestinal and renal brush border membrane vesicles[J]. Life Sci, 1982, 30: 21-37
    [40] Adibi S A, Fogel M R, Agrawal R M. Comparison of free amino acid and dipeptide abaorption in the jejunum of sprue patients[J]. Gastroenterology, 1974, 67: 586-591
    [41] Matthews D M. Mechanis ms of peptide transport[D]. In: S A Adibi ,W Fekl, P Furst and M Oehmake (Ed). Dipeptides as New Substrates in Nutrition Therapy. Karger London. 1987: 6-53
    [42] 余奕珂, 胡建恩, 白雪芳, 等. 以猪血为蛋白源的生物活性肽的研究进展[J]. 精细与专用化学品, 2004, 12(18): 10-13
    [43] Kyoichi K, Hisako M, Chizuko F. Globin digest, acidic protease hydrolysate, inhibits dietary hypertriglyceridemia andVal-Val-Tyr-Pro, one of its constituents, possesses most superior effect[J]. Life Sciences, 1996, 58, (20): 1745-1755
    [44] Lin C-W, Yang J-H, Su L-C. The extraction and properties of superoxide dismutase from porcine blood[J]. Meat Sci, 1997, 46 (3): 303–312
    [45] 周淡宜, 徐水祥, 江月仙. 血红素纯化技术研究[J]. 药物生物技术, 2004, 11 (3): 181~183
    [46] 钟耀广. 利用冰醋酸提取血红素的研究[J]. 食品科学, 2004, 25 (4): 90-95
    [47] Hu W, Link H, Lang W. Preparation, purification and characterization of chlorohaemin[J]. Biol Chem Hoppe Seyler, 1992, 373 (6): 305-313
    [48] 周淡宜, 徐水祥, 周敏子. 血红素制备工艺的实验研究[J]. 药物生物技术, 2002, 9 (2): 103-104
    [49] 王超英. CMC-血红素的制备[J]. 杭州教育学院学报, 2002, 19 (3): 54-56
    [50] Wo. 83/ 03198, 1983
    [51] 罗磊. 猪血 G 型免疫球蛋白的分离提取研究[D]. 江南大学, 2006
    [52] 陆茂林, 施大林, 吕惠敏, 等. 凝血酶制备工艺的研究[J]. 中国生化药物杂志, 2002, (03): 151-152
    [53] Clemente A. Enzymatic protein hydrolysates in human nutrition[J]. Trends in Food Science & Technology, 2000, 11: 254–262
    [54] Lahl W J, Grindstaff D A. Spices and Seasonings: Hydrolyzed Proteins in Proceedings of the 6th SIFST Symposium on Food Ingredients—Applications, Status and Safety, Singapore[C]. 27–29 April 1989, Singapore Institute of Food Science and Technology, 1989: 51–65
    [55] Clemente A, Vioque J, Millan F. Vegetable protein hydrolysates[J]. Nutriciony Obesidad, 1999, 2: 289–296
    [56] Silvestre M P C. Review of methods for the analysis of protein hydrolysates[J]. Food Chem., 1996, 60, 2: 263-271
    [57] Mellander O. The physiological importance of the casein phosphopeptide calcium salts. 11. Peroral calcium dosage of infants[J]. Acta Society Medicine Uppsala, 1950, 55: 247–255
    [58] Pihlanto-Leppala A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides[J]. Trends in Food Science &Technology, 2000, 11: 347–356
    [59] 董开发, 谢明勇. 乳源性生物活性肽[J]. 中国食品学报, 2004, 4 (4): 86-91
    [60] Ferreira S H, Bartet D C, Greene L J. Isolation of bradykinin-potentiating peptides from bothops jararaca venom[J]. Biochem, 1970, 9: 2583-2590
    [61] Chen H M, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin[J]. J Agric Food Chem, 1995, 43 : 574-578
    [62] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant acvtivity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J]. J Agric Food Chem, 1996, 44: 2619-2623
    [63] Rival S G, Boeriu C G, Wichers H J. Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition[J]. J Agric Food Chem, 2001, 49(1): 295-302
    [64] Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus)[J]. Food Res Int, 2003, 36(9-10): 949-957
    [65] Brantl V, Teschemacher H, Henschen A, et al. Novel opioid peptides derived from casein (β-casomorphins) I. Isolation from bovine casein peptone[J]. Hoppe-Seyler's Z. Physiological Chemistry, 1979, 360: 1211–1216
    [66] Zioudrou C, Streaty R A, Klee W A. Opioid peptides derived from food proteins[J]. Journal of Biological Chemistry, 1979, 254: 2446–2449
    [67] Jolles P, Parker F, Floc'h F, et al. Immunostimulating substances from human casein[J]. Journal of Pharmacology 1979, 3 :363–369
    [68] Maruyama S, Suzuki H. A Peptide inhibitor of angiotensin I-converting enzyme in the tryptic hydrolysate of casein[J]. Agricultural and Biological Chemistry 1982, 46 : 1393–1394
    [69] Yoshikawa M, Tani F, Yoshimura T, et al. Opioid peptides from milk proteins[J]. Agricultural and Biological Chemistry, 1986, 50: 2419–2421
    [70] Chiba H, Yoshikawa M. Biologically functional peptides from food proteins: new opioid peptides from milk proteins[M]. In: R.E. Feeney and J.R. Whitaker, Editors, Protein Tailoring for Food and Medical Uses, Marcel Dekker, New York ,1986, 123–153
    [71] Jolles P, Lévy-Toledano S, Fiat A-M, et al. Analogy between fibrinogen and casein. Effect of an Undecapeptide Isolated from κ-casein on Platelet Function[J]. EuropeanJournal of Biochemistry, 1986, 158: 379–382
    [72] Tomita M, Bellamy W, Takase M, et al. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin[J]. Journal of Dairy Science, 1991, 74: 4137–4142
    [73] Mullally M M, Meisel H, FitzGerald R J. Synthetic peptides corresponding to α-lactalbumin and β-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity[J]. Biological Chemistry Hoppe-Seyler, 1996, 377: 259–260
    [74] Berkhout B, Jeroen L B W, Leonie B, et a1.Characterization of anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides[J]. Antiviral Research, 2002, 55 (2):341-355
    [75] Maruyama S, Suzuki H. A peptide inhibitor of angiotensin-I-converting enzyme in the trypic hydrolysate of casein[J]. Agric Biol Chem, 1982, 46(5): 1393-1394
    [76] Maruyama S, Nakagomi K, Tomizuka N, et al. Angiotensin-I-converting enzyme inhibitor derived from an enzymatic hydrolysate of casein (Ⅱ): Isolation and bradykinin-potentiating activity on the uterus and the ileum of rats[J]. Agric Biol Chem, 1985, 49(5): 1405-1409
    [77] Maruyama S, Mitachi H, Tanaka H, et al. Studies on the active site and antihyper- tensive activity of angiotensin-I-converting enzyme inhibitors derived from casein[J]. Agric Biol Chem, 1987, 51: 1581-1586
    [78] Kohama Y, Matsumoto S, Oka H, et al. Isolation of angiotensin-converting enzyme-inhibitor from tuna muscle[J]. Biochem. Biophys. Res. Commun. 1988, 155: 332-337
    [79] Yokoyama K. H, Chiba H, Yoshikawa M. Peptide inhibitors for angiotensin-I-converting enzyme from thermolysin digest of dried bonito[J]. Biosci., Biotechnol., Biochem. 1992, 56,(6): 1541-1545
    [80] Fujita H, Yoshikawa M. LKPNM: a prodrug type ACE inhibitory peptide derived from fish protein[J]. Immunopharmacology 1999, 44: 123-127
    [81] Matsumoto K, Ogikubo A, Yoshino T, et al. Separation and purification of angiotensin-I convertingenzyme inhibitory peptide in peptic hydrolyzate of oyster[J]. J. Jpn. Soc. Food Sci. Technol. 1994, 41: 589-594
    [82] Kawamura Y, Takane T, Stake M, et al. Physiologically active peptide motif in proteins - peptide inhibitors of ACE from the hydrolysates of Antarctic krill muscle protein[J]. Jpn. Agric. Res. Q. 1992, 26: 210-213
    [83] 吴建平, 丁霄霖. 大豆降血压肽的研制(Ⅰ)-生产高活性 ACEI 肽酶系的筛选[J].中国油脂, 1998, 23(2): 49-51
    [84] 吴建平, 丁霄霖. 大豆降血压肽的研制(Ⅱ)-酶 E 作用条件的优化[J]. 中国油脂, 1998, 23(3): 6-8
    [85] 吴建平, 丁霄霖. 大豆降血压肽的研制(Ⅲ)-酶 E 水解进程参数的研究[J]. 中国油脂, 1998, 23(4): 12-13
    [86] Matsui T, Li C H, Tanaka T, et al. Depressor effect of wheat germ hydrolysate and its novel antiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma[J]. Biol Pharm Bull, 2000, 23(4): 427-431
    [87] Ono S, Hosokawa M, Miyashita K, et al. Isolation of peptides with angiotensin I-converting enzyme inhibitory effect derived from hydrolysate of upstream chum salmon muscle[J]. J. Food Sci. 2003, 68: 1611-1614
    [88] Arihara K, Nakashima Y, Mukai T, et al. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins[J]. Meat Sci. 2001, 57: 319-324
    [89] Katayama K, Tomatsu M, Fuchu H,et al. Purification and characterization of an angiotensin I-converting enzyme inhibitory peptide derived from porcine troponin C[J]. Anim. Sci. J. 2003, 74: 53-58
    [90] Byun H, Kim S. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska Pollack (Theragra chalcogramma) skin[J]. Process Biochem. 2001, 36: 1155-1162
    [91] William J L, Steven D B. Enzymatic production of protein hydrolysates for food use[J]. Food Technol, 1994, 48(10): 68-71
    [92] Mahmoud M I, Malone W, Corolle C T. Enzymatic hydrolysis of casein: effect of degree of hydrolysis on antigenicity and physical properties[J]. J Food Sci, 1992, 57(5): 1223-1229
    [93] Kilara A, Enzyme-modified Protein Food Ingredients[J]. Process Biochem, 1985, 20: 149–158
    [94] Panyam D, Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science & Technology, 1996, 7(4): 120-125
    [95] Kinsella J E, Whitehead D M. ‘Proteins in whey: chemical, phisical, and functio- nal properties’ in Advances in Food and Nutrition Research[M]. New York: Academic Press, 1989: 343-438
    [96] Foegeding E A, Davis J P, Doucet D, et al. Advances in modifying and understanding whey protein functionality[J]. Trends in Food Science & Technology, 2002, 13: 151–159
    [97] Adler-Nissen J. Determination of degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid[J]. J. Agric. Food Chem. 1979, 27 (6): 1256–1262
    [98] Kneifel W, Seiler A. Water-holding capacity of milk protein products[J]. Food Struct. 1993, 12: 297–308
    [99] Ju Z Y, Otte J, Madsen J S, et al. Effects of limited proteolysis on gelation and gel properties of whey protein isolate[J]. J. Dairy Sci. 1995, 78: 2119–2128
    [100] Haquez U, Mozaffar Z. Casein hydrolysate: functional properties of peptides[J]. Food Hydrocol, 1992, 5: 559-571
    [101] Silvestre M P C. Review of methods for the analysis of protein hydrolysis[J]. Food Chem, 1997, 60(2): 263-271
    [102] Siemensma A D, Weijer W J, Bak H J. The importance of peptide lengths in hypoallergenic infant formulae[J]. Trends Food Sci. Technol. 1993, 4: 16–21
    [103] Silk D B, Fairclough P D, Clark M L, et al. Use of a peptide rather than a free amino acid nitrogen source in chemically defined elemental diet[J]. J. Parenter. Enteral Nutr. 1980, 4: 548–553
    [104] Grimble G K, Rees R G, Keohane P P, et al. Effect of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum[J]. Gastroenterol, 1987, 92: 136–142
    [105] 钮琰星, 周瑞宝, 黄凤洪. 蛋白质酶水解物功能特性及其在食品工业应用[J].粮食与油脂, 2003, 5: 16-18
    [106] Adibi S A. Glycyl dipeptides: new substrates for protein nutrition[J]. J. Lab. Clin. Med., 1989, 113: 665–673
    [107] Parrado J, Bautista J, Machado A. Production of soluble enzymatic protein hydrolysate from industrially defatted nondehulled sunflower meal[J]. J. Agric. Food Chem. 1991, 39: 447–450
    [108] Frokjaer S. Use of hydrolysates for protein supplementation[J]. Food Technol. 1994, 48 : 86–88
    [109] Cordle C T. Control of food allergies using protein hydrolysates[J]. Food Technol. 1994, 48: 72–76
    [110] Clemente A, Chambers S J. Development and production of hypoallergenic protein hydrolysates for use in infant formulas[J]. Food Allergy and Intolerance 2000, 1:175–190
    [111] Milla P J, Kilby A, Rassan U B, et al. Small intestinal absorption of amino acids and a dipeptide in pancreatic insufficiency[J]. Gut, 1983, 24: 818–824
    [112] Silk D B. Future of enteral nutrition[J]. Gut. 1986, 27: S116–S122
    [113] Silk D B. Diet Formulation and Choice of Enteral Diet[J]. Gut. 1986, 27: 40–46
    [114] Arai S, Maeda A, Matsumara M, et al. Enlarged-scale production of a low-phenylalanine peptide substance as a foodstuff for patients with phenylketonuria[J]. Agric. Biol. Chem. 1986, 50: 2929–2931
    [115] Meredith J W, Ditesheim J A, Zaloga G. Visceral protein levels in trauma patients are greater with peptide diet than with intact protein diet[J]. J. Trauma. 1990, 30: 825–828
    [116] Fisher J E, Rosen H M, Ebeid A.M, et al. The effect of normalization of plasma amino acids on hepatic encephalopathy in man[J]. Surgery. 1976, 80: 77–91
    [117] Adachi S, Kimura Y, Murakami K, et al. Separation of peptide groups with definite characteristics from enzymatic protein hydrolysate[J]. Agric. Biol. Chem. 1991, 55: 925–932
    [118] Rizzello C G, Losito I, Gobbetti M, et al. Antibacterial activities of peptides from the water soluble extracts of Italian cheese varieties[J]. J. Dairy Sci, 2005, 88:2348-2360
    [119] Korhonen H, Pihlanto A. Bioactive peptides: production and functionality[J]. International Dairy Journal 2006, 16: 945–960
    [120] Kitts D D, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery[J]. Curr Pharm Des, 2003, 9: 1309-1323
    [121] Korhonen H, Pihlanto A. Food-derived bioactive peptides - opportunities for designing future foods[J]. Current Pharmaceutical Design, 2003, 9:1297–1308
    [122] FitzGerald R J, Meisel H. Milk protein hydrolysates and bioactive peptides[M]. In: P.F. Fox, & P.L.H. McSweeney (Eds.), Advanced dairy chemistry, Vol. 1: Proteins (3rd ed.) New York, NY, USA: Kluwer Academic/Plenum Publishers. 2003: 675–698
    [123] Shimizu M. Food-derived peptides and intestinal functions[J]. BioFactors, 2004, 21: 43–47
    [124] Gill H S, Dohll F, Rutherfurd K J, et al. Immunoregulatory peptides in bovine milk[J]. Br J Nutr, 2000, 84: 111-117
    [125] Lee J Y, Lee H D, Lee C H. Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour[J]. Food Res Int, 2001, 34: 217-222
    [126] Yano S, Suzuki K, Funatsu G. Isolation from a thermolysin peptides with angiotensin I-converting enzyme inhibitory activity[J]. Biosci Biotechnol Biochem, 1996, 60(4): 661-663
    [127] Aspmo S I, Horna S J, Eijsink V G H. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera[J]. Process Biochemistry. 2005, 40:1957–1966
    [128] Kristinsson H G, Rasco B A. Fish protein hydrolysates: production, biochemical, and functional properties[J]. Crit Rev Food Sci Nutr. 2000, 40(1): 43–81
    [129] Jae-Young J, Zhong-Ji Q, Hee-Guk B, et al. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis[J]. Process Biochemistry. 2007 in press
    [130] Aspmo S I, Horna S J, Eijsink V G H. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media[J]. Process Biochemistry, 2005, 40: 3714–3722
    [131] 陈晶, 熊善柏,李洁, 等. 白鲢鱼骨蛋白酶水解工艺研究[J]. 食品科学, 2006, 27(11): 326-330
    [132] 王守兰, 朴玉. 胶原蛋白质食用品质改良[J]. 食品工业科技, 1999, 2: 21-23
    [133] Charrbers J, R. Enzyrmic treatment of bones[J]. Sci. Food Agri.1988, 42: 87-94
    [134] Surowka K, Fic M. Studies on the recovery of proteinaceous substances from chicken heads[J]. J Sci Food Agric, 1994, 65: 289-296
    [135] Michel L, Rozan P. Nutritional value of veal bone hydrolysate[J]. J Food Sci, 1997, 62(1): 183-187
    [136] 付刚, 李诚, 马长中, 等. 猪骨抗氧化肽的酶解制备研究[J]. 现代食品科技, 2006 , 22(3): 136-138
    [137] Bhaskar N, Modi V K, Govindaraju K, et al. Utilization of meat industry by products: Protein hydrolysate from sheep visceral mass[J]. Bioresource Technology, 2007, 98: 388–394
    [138] Houlier B. A process of discolouration of slaughter house blood: Some technical and economical results[C]. Proceeding of 32nd European Meeting of Meat Research Workers, Ghent, Belgium, 1986: 91-94
    [139] Synowiecki J, Jagietka R, Shahidi F. Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction[J]. Food chemistry, 1996, 57(3): 435-439
    [140] Ockerman H W, Hansen C L. Animal By-Product and utilization [M]. Technomic Publishing Company, Inc. Lancaster, Pennsylvania 17604 U.S.A, 2000: 338-343
    [141] Rot J M, Guillochon D, Leconte D, Thomas D. Application of ultrafiltration to the preparation of defined hydrolysates of bovine haemoglobin[J]. J. Chem. Technol. Biotechnol. 1988, 42: 147-156
    [142] Ney K H. Prediction of bitterness of peptides from their amino acid composition[J]. Z. Lebensm.-Untersuch. Forch, 1971, 147: 64-68
    [143] Matoba T, Hata T. Relationship between bitterness of peptides and their chemical structures[J]. Agr. Biol. Chem, 1972, 37(8):1423-1431
    [144] 李艳伟, 江波, 佟祥山. 解猪血蛋白中活性肽的纯化和功能研究[J]. 高等学校化学学报, 2005, 26(1): 61-63
    [145] Chang C Y, Wu K C, Chiang S H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates[J]. Food Chemistry, 2007, 100: 1537–1543
    [146] Yike Y, Jianen H, Yuji M, etal. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides, 2006, 27: 2950 – 2956
    [147] Chobert J M, Briand L, Gueguen J, et al. Recent advances in enzymatic modifications of food proteins for improving their functional properties[J]. Nahrung, 1996, 40:177–182
    [148] Periago M J, Vidal M L, RosG, et al. Influence of enzymatic treatment on the nutritional and functional properties of pea flour[J]. Food Chem, 1998, 63: 71–78
    [149] Villanueva A, Vioque J, Sanchez-Vioque R, et al. Peptide characteristics of sunflower protein hydrolysates[J]. J. Am Oil Chem. Soc, 1999, 76: 1455–1460
    [150] Vioque J, Sanchez-Vioque R, Clemente A, et al. Partially hydrolyzed rapeseed protein isolates with improved functional properties[J]. J. Am. Oil Chem. Soc, 2000, 77: 447–450
    [151] 刘传富, 董海洲.大豆多肽及其在食品工业中的应用[J]. 粮食与油脂, 2002(10): 31-32
    [152] 刘文斌, 王恬. 大豆粕蛋白酶酶解条件和产物分析研究[J]. 中国油脂, 2005, 30(6): 47-50
    [153] 李晓刚, 张永丹. 花生粕的酶解新工艺研究[J]. 食品工艺科技,2004,25(2): 102-103
    [154] 林勉, 刘通讯. 内肽酶与端解酶水解花生粕蛋白的研究[J]. 食品科学, 2000, 21(1): 22-25
    [155] 杨柳, 王锦华, 艾军, 等. 菜籽粕酶解条件的研究[J]. 农产品加工学刊, 2006, 79(10): 95-97
    [156] Amado R, Arrigoni E. Nutritive and functional Properties of wheat germ[J]. International Food Ingredients.1992, 4: 30-34
    [157] 程云辉, 王璋, 许时婴. 酶解麦胚蛋白制备抗氧化肽的研究[J]. 食品科学, 2006, 27, (6): 147-151
    [158] 徐志宏, 谢笔钧, 魏振承.蛋白副产物资源开发生物活性肽研究进展[J]. 广东农业科学, 2006, 11: 9-12
    [159] 林超, 王玉蓉, 吴清, 等. 全蝎的酶解工艺研究[J]. 北京中医药大学学报, 2005, 28 (6): 66-69
    [160] 陈力宏, 董英, 孙艳辉. 酶法制备蚕茧层抗氧化多肽水解液的研究[J]. 蚕业科学, 2006, 32, (3): 442- 444
    [161] 赵云涛, 李付振, 国兴明. 中华稻蝗酶解氨基酸营养液的研制[J]. 无锡轻工大学学报, 2002, 21 (6): 588-591
    [162] 黄群, 马美湖, 杨抚林, 等. 畜禽血液血红蛋白的开发利用[J]. 肉类工业, 2003, 10: 19-25
    [163] 马美湖. 国外畜禽血液综合利用动态[J]. 农牧产品开发, 1996, 9: 31-35
    [164] Caldironi H A, Ockerman H W. Incorporation of blood proteins into sausage[J]. Journal of Food Science, 1982, 47: 405-408
    [165] Yousif A M, Cranston P, Deeth HC. Incorporation of bovine dry blood plasma into biscuit flour for the production of pasta[J]. Lebensm.-Wiss. u.-Technol. 2003, 36: 295-302
    [166] Rawdkuen S, Benjakul S, Visessanguan W, et al. Chicken plasma protein affects gelation of surimi from bigeye snapper (Priacanthus tayenus)[J].Food Hydrocolloids 2004, 18,(2): 259-270
    [167] Man-Jin I, Hee-Jeong C, Nam-Soon O. Process development for heme-enriched peptide by enzymatic hydrolysis of hemoglobin[J]. Bioresource Technology, 2002, 84: 63-68
    [168] 杨锡洪, 夏文水. 酶法水解血红蛋白制备亚铁血红素肽[J]. 食品与机械. 2005, 21(3): 14-16, 40
    [169] Lebrun F, Bazus A, Dhulster P, et al. Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysate[J]. J. Agric.Food Chem.1998, 46: 5017-5025
    [170] Nikta V, Fouzia N, Didier G. Influence of the extent of hemoglobin hydrolysis on the digestive absorption of heme iron. An in vitro study[J]. J. Agric. Food Chem. 2002, 50: 4969-4973
    [171] 严聃. 亚硝基血红素多肽合成制取工艺探讨[J]. 湖南科技学院学报, 2006, 27(5): 76-81
    [172] 杨万根. 解猪血红蛋白制备小肽方法的研究[D]. 湖南农业大学, 2006
    [173] Synowiecki J, Jagietka R, Shahidi F. Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction[J]. Food chemistry, 1996, 57(3): 435-439
    [1] Tybor P T, Dill C W, Landmann W A. Effect of descolorization and lactose incorporation on the emulsification capacity of spray-dried blood protein concentrates[J]. Journal of Food Science, 1973, 38(6): 4–6
    [2] Tybor P T, Dill C W, Landmann W A. Functional properties of proteins isolated from bovine blood by a continuous pilot process[J]. Journal of Food Science, 1975, 40(6):155–159
    [3] Hayakawa S, Matsuura Y, Nakamura R, Sato Y. Effect of heat treatment on preparation of colorless globin from bovine hemoglobin using soluble carboxymethyl cellulose[J]. Journal of Food Science, 1986, 51(3): 786–790
    [4] Hayakawa S, Ogawa T, Sato Y. Some functional properties under heating of the globin prepared by carboxymethyl cellulose procedure[J]. Journal of Food Science, 1984, 47(4): 1415–1418
    [5] Janaína G S, Harriman A M, Marialice P C. Silvestre. Comparative study of the functional properties of bovine globin isolates and sodium caseinate[J]. Food Research International, 2003, 36: 73–80
    [6] Kuppevelt A V, Levin G, Reizenstein P. Small scale production and net protein utilization of globin. Globin fortification of cereals[J]. Nutritional Report International, 1976, 13(5): 429–443
    [7] Yang J-H, Lin C-W. Functional properties of porcine blood globin decolourized bydifferent methods[J]. International Journal of Food Science and Technology, 1998, 33 (4): 419-427
    [8] Buckley K, Mowbray M. Food protein product[M]. US Pat, Appl No, 820890, Dec, 25, 1979
    [9] Wismer-Pedersen J. Decoloration of blood by hem oxidation[C]. Proceedings of 33th International Congress of Meat Science and Technology, Helsinki, Finland, 1987: 119-123
    [10] Houlier B. A process of discolouration of slaughter house blood: Some technical and economical results[C]. Proceeding of 32nd European Meeting of Meat Research Workers, Ghent, Belgium, 1986: 91-94
    [11] Synowiecki J, Jagietka R, Shahidi F. Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction[J]. Food chemistry, 1996, 57(3): 435-439
    [12] Ockerman H W, Hansen C L. Animal by-product and utilization [M]. Technomic Publishing Company, Inc. Lancaster, Pennsylvania 17604 U.S.A, 2000: 338-343
    [13] Rot J M, Guillochon D, Leconte D, Thomas D. Application of ultrafiltration to the preparation of defined hydrolysates of bovine haemoglobin [J]. J. Chem. Technol. Biotechnol. 1988, 42: 147-156
    [14] Ney K H. Prediction of bitterness of peptides from their amino acid composition[J]. Z. Lebensm.-Untersuch. Forch, 1971, 147: 64-68
    [15] Matoba T, Hata T. Relationship between bitterness of peptides and their chemical structures [J]. Agr. Biol. Chem, 1972, 37(8): 1423-1431
    [16] Chi-Yue C, Kuei-Ching W, Shu-Hua C. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates[J]. Food Chem, 2007, 100: 1537–1543
    [17] Yike Y, Jianen H, Yuji M, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides, 2006, in press
    [18] Yike Y, Jianen H, Xuefang B, et al. Preparation and function of oligopeptide-enriched hydrolysate from globin by pepsin[J]. Process Biochem, 2006, 41: 1589–1593
    [19] Man-Jin I, Hee Jeong C, Nam-Soon O. Process development for heme-enriched peptide by enzymatic hydrolysis of hemoglobin[J]. Bioresource Technology, 2002, 84: 63–68
    [20] Froidevaux R, Vercaigne-Marko D, Kapel R, et al. Study of a continuous reactor for selective solvent extraction of haemorphins in the course of peptic haemoglobinhydrolysis[J]. J Chem Technol Biotechnol, 2006, 81:1433–1440
    [21] Renata T, Duarte M C, Carvalho S, and Valdemiro C S. Bovine blood components: fractionation, composition, and nutritive value[J]. J. Agric. Food Chem, 1999, 47 (1): 231–236
    [22] Saguer E, Altarriba S, Lorca C, Parés D, Toldrà M, Carretero C. Colour stabilization of spray-dried porcine red blood cells using nicotinic acid and nicotinamide[J]. Food Sci Tech Int 2003, 9(4):301–307
    [23] 黄德智, 张向生. 新编肉制品生产工艺与配方[G]. 北京: 中国轻工业出版社, 2002: 599-601, 627-629
    [24] 杨慧芬, 李明元, 沈文. 食品卫生理化检验标准手册[S]. 北京: 中国标准出版社, 1998
    [25] Carroll N V, Longley R W, Roe J H. The determination of glycogen and muscle by use of anthrone reagent[J]. J Biol Chem, 1956, 220: 583-593
    [26] 解景田, 赵静. 生理学实验(第二版)[M]. 北京: 高等教育出版社. 2002, 7: 62-64
    [27] 黄伟坤, 唐英章, 黄焕昌. 食品检验与分析[M]. 北京: 轻工业出版社, 1989: 57
    [28] Aubes-Dufau I, Jean-Louis S, Didier C. Production of peptic hemoglobin hydrolysates: bitterness demonstration and characterization[J]. J. Agric. food Chem, 1995, 43 (8):1982-1988
    [29] Spackann D H, Stein W H, Moore S. Automatic recording apparatus for use in the chromatography of amino acids[J]. Anal Chem, 1958, 30: 1190-1206
    [30] Van H S M, Sch?nfeldtw H C, Smith M F, et al. Nutrient content of south African chickens[J]. J Food Compos Anal, 2002, 15: 47-64
    [31] 扈文盛. 常用食品数据手册[G]. 北京: 中国食品出版社, 1989: 450-451
    [32] Rithie A H, Mackie I M. Preparation of fish protein hydrolysates[J]. Anim Feed Sci Technol, 1982, 7: 125-133
    [33] Hoyle N T, Merritt H. Quality of fish protein hydrolysates from herring[J]. J Food Sci, 1994, 59(1): 76-79,129
    [34] Shahidi F, Han X Q, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus)[J]. Food Chem, 1995, 53: 285-293
    [35] Sugiyama K, Egawa M, Onzuga H, et al. Characteristics of sardine muscle hydrolysates prepared by various enzymatic treatments[J]. Nippon Suisan Gakk, 1991, 57(3): 475-479
    [36] Kilara A. Enzyme-modified protein food ingredients[J]. Process Biochem, 1985, 20: 149-158
    [37] Imm J Y, Lee C M. Production of seafood flavor from red hake (Urophycis chuss) by enzymatic hydrolysis[J]. J Agric Food Chem, 1999, 47: 2360-2366
    [38] Mullally M M, O’Callaghan D M, FitzGerald R J, et al. Proteolytic and peptidolytic activities in commercial pancreatin protease perparations and their reationship to some whey protein hydrolysate characteristics[J]. J Agric Food Chem, 1994, 42: 2973-2981
    [39] Gauthier S F, Paquin P, Pouliot Y, et al. Surface activity and related functional properties of peptides obtained from whey proteins[J]. J Dairy Sci, 1993, 76:321-328
    [40] Moreno M M C, Cuadrado F V. Enzymic hydrolysis of vegetable proteins: mechanism and kinetics[J]. Process Biochem, 1993, 28: 481-490
    [41] González-Tello P, Camacho F, Juracdo E, et al. Enzymatic hydrolysis of whey proteins[J]. I. Kinetic models. Biotechnol Bioeng, 1994, 44: 523-528
    [42] Shahidi F, Han X Q, Synowiecki J. Production and characteristics of protein hydrolysates from capelin[J]. Food Chem, 1995, 53: 285-293
    [43] 彭志英. 食品酶学导论[M]. 北京: 中国轻工业出版社, 2002: 162-165
    [44] Ferreira N G, Hultin H O. Liquefying cod fish frames under acidic conditions with a fungal enzyme[J]. J Food Proc Pres, 1994, 18: 87-91
    [45] Viera G H F. Studies on the enzymatic hydrolysis of Brazilian lobster processing wastes[J]. J Sci Food Agric, 1995, 69: 61-65
    [46] Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel(Scomber austriasicus)[J]. Food Res Int, 2003, 36: 949-957
    [47] Adler-Nissen J. Enzymic hydrolysis of food proteins[M]. Elsevier Applied Science Publishing Co., Inc. New York, 1986: 97-98
    [48] Kuchel, P. W., Ralston, G. B.著, 姜招峰译. 生物化学[M]. 北京: 科学出版社, 2002
    [49] 王镜岩, 朱圣庚, 徐长法. 生物化学[M]. 北京: 高等教育出版社, 2002
    [50] Owen R F, 王璋译. 食品化学(第二版)[M]. 北京: 轻工业出版社, 1991
    [51] Clegg K M, McMillan A D. Dietary enzymic hydrolysates of protein with reduced bitterness [J]. J. Food Technol, 1974, 9: 21-29
    [52] Adler-Nissen J. Enzymic hydrolysis of proteins for increased solubility[J]. J. Agric. Food Chem, 1976, 24, 4(6): 1090-1093
    [53] Gardner R J. Correlation of bitterness thresholds of amino acids and peptides withmolecular connectivity [J]. J. Sci. Food Agri, 1980, 31: 23-30
    [54] Lemieux L, Simard R E. Bitter flavor in dairy products. II. A review of bitter peptides from caseins: formation, isolation and identification, structure masking and inhibition[J]. Lait (Lyon), 1992, 72(4): 335-382
    [55] Myers R H, Montgomery D C. Building empirical models[M]. In: Response surface methodology: Process and product optimization using designed experiments, 2nd edition. USA: Wiley, 2002: 17-73
    [56] Ivone Y M, Oswaldo B J, Luiz W O S, et al. Response surface methodology for extraction optimization of pigeon pea protein[J]. Food Chemistry, 2000, 70, 259-265
    [1] Adler-Nissen J. A review of food proteins hydrolysis specific areas[M]. In: Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishing Co., Inc., New York, 1986: 97-99
    [2] Houlier B. A process of discolouration of slaughter house blood: Some technical and economical results[G]. Proceeding of 32nd European Meeting of Meat Research Workers. Ghent, Belgium, 1986: 91-94
    [3] Synowiecki J, Jagietka R, Shahidi F. Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction[J]. Food Chem, 1996, 57(3): 435-439
    [4] Ockerman H W, Hansen C L. Animal by-product and utilization[M]. Technomic Publishing Company, Inc., Lancaster, Pennsylvania, 17604, U.S.A. 2000: 338-343
    [5] Pedersen B. Removing of bitterness from protein hydrolysates[J]. Food Technol, 1994, 45(10), 96-98
    [6] Toldrà M, Elias A, Parés D, et al. Functional properties of a spray-dried porcine red blood cell fraction treated by high hydrostatic pressure[J]. Food Chem, 2004, 88: 461–468
    [7] Guérard F, Dufossé L, Broise D D L, et al. Enzymatic hydrolysis of proteins fromyellowfin tuna(Thunnus Albacares)wastes using Alcalase[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11: 1051–1059
    [8] Plancken I V D, Delattre M, Indrawati, et al. Kinetic Study on the Changes in the Susceptibility of Egg White Proteins to Enzymatic Hydrolysis Induced by Heat and High Hydrostatic Pressure Pretreatment[J]. J. Agric. Food Chem. 2004, 52, 5621-5626
    [9] Kristinsson H G, Rasco B A. Kinetics of the hydrolysis of Atlantic salmon(Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture[J]. Process Biochemistry, 2000, 36: 131–139
    [10] Deqing S, Zhimin H, Wei Q. Lumping kinetic study on the process of tryptic hydrolysis of bovine serum albumin[J]. Process Biochemistry, 2005, 40: 1943–1949
    [11] Márquez M C, Vázquez M A. Modeling of enzymatic protein hydrolysis[J]. Process Biochemistry, 1999, 35: 111–117
    [12] Ney K H. Prediction of bitterness of peptides from their amino acid composition[J]. Z. Lebensm.-Untersuch. Forch, 1971, 147: 64-68
    [13] Shahidi F, Xiao-Qing H, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus)[J]. Food Chem. 1995, 53 (3): 285-293
    [14] Moreno M C M, Cuadrado V F. Enzymic hydrolysis of vegetable proteins: mechanism and kinetics[J]. Process Biochem. 1993, 28 (7): 481-490
    [15] Guérard F, Dufossé L, Broise D D L, et al. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase[J]. J. Mol. Catal. B-Enzym. 2001. 11: 1051–1059
    [16] Spellman D, Kenny P, O’cuinn G, et al. Aggregation properties of whey protein hydrolysates generated with bacillus licheniformis proteinase activities[J]. J. Agric. Food Chem. 2005, 53(4): 1258-1265
    [17] Fischer M, Gruppen H, Piersma S R, et al. Aggregation of peptides during hydrolysis as a cause of reduced enzymatic extractability of soybean meal proteins[J]. J. Agric. Food Chem. 2002, 50 (16): 4512-4519
    [18] Otte J, Ju Z Y, Faergemand M, et al. Protease-induced aggregation and gelation of whey proteins[J]. J. Food Sci. 1996, 61: 911-915
    [19] Otte J, Lomholt S B, Ipsen R, et al. Aggregate formation during hydrolysis of β-lactoglobulin with a Glu and Asp specific protease from Bacillus licheniformis[J]. J. Agric. Food Chem. 1997, 45: 4889 - 4896
    [20] Brownsell V L, Williams R J H, Andrews A T. Application of the plastein reaction to II. Plastein properties[J]. Food Chem, 2001, 72: 337-346
    [21] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein[J]. J. Mol. Biol. 1982, 157: 105-132
    [22] Isabelle A D, Seris J L, Combes D. Production of peptic hemoglobin hydrolysates: bitterness demonstration and characterization[J]. J. Agric .Food Chem. 1995, 43(8): 1982-1988
    [23] Carr J W, Lougheed T C, Baker B E. Studies on protein hydrolysis. IV. Further observations on the taste of enzymic protein hydrolysates[J]. J. Sci. Food Agric. 1966, 7: 629-637
    [24] Guigoz Y, Solms J. Bitter peptides, occurrence and structure[J]. Chem. Senses Flavour. 1976, 2: 71-84
    [25] Clegg K M, McMillan A D. Dietary enzymic hydrolysates of protein with reduced bitterness [J]. J. Food Technol, 1974, 9: 21-29
    [26] Adler-Nissen J. Enzymic hydrolysis of proteins for increased solubility [J]. J. Agric. Food Chem, 1976, 24, 4(6): 1090-1093
    [27] Gardner R J. Correlation of bitterness thresholds of amino acids and peptides with molecular connectivity [J]. J. Sci. Food Agri, 1980, 31: 23-30
    [28] Lemieux L, Simard R E. Bitter flavor in dairy products. II. A review of bitter peptides from caseins: formation, isolation and identification, structure masking and inhibition[J]. Lait (Lyon). 1992,72(4): 335-382
    [29] 王希成. 生物化学[M]. 北京: 清华大学出版社, 2001: 10- 11
    [1] D. 斯沃恩, 秦洪万. 贝雷: 油脂化学与工艺学[M], 第四版(第一册). 北京: 轻工业出版社, 1989: 156-160
    [2] Poling C E, Rice E E. The influence of temperature, heating time and aeration upon the nutritive value of fats[J]. J. Am. Oil Chem. Soc., 1962, 39: 315-320
    [3] 王丹侠, 崔世勇. 血红素的应用分析研究进展[J]. 上海预防医学杂志, 2002, 14(5): 219-221
    [4] 楚杰, 李树品, 蒋千里. 酶法猪血食用蛋白粉的研究[J]. 食品工业科技, 1999, 3: 27-28
    [5] 刘文群, 吴少杰, 赖小玲. 解决猪血污染环境的一条途径- 制备具有优良功能性质的脱色水解蛋白[J]. 环境保护, 1998, 8: 33-35
    [6] Ockerman H W, Hansen C L. Animal by-product and utilization[M]. Technomic Publishing Company, Inc., Lancaster, Pennsylvania, 17604, U.S.A. 2000: 338-343
    [7] Synowiecki J, Jagietka R, Shahidi F. Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction[J]. Food Chem, 1996, 57(3): 435-439
    [8] Jay F S, Tracy D W. Cytochrome spectrum of an obligate anaerobe, eubacterium lentum [J]. Journal of Bacteriology, 1976, 125(3): 905-909
    [9] Louis J D, Linda S T, Donald E H. Reactivities of hydroxylamine and sodium bisulphite with carbonyl-containing haems and with the prosthetic groups of the erythrocyte green haemoproteins [J]. Biochem. J. 1979, 179: 151-160
    [10] Man-Jin I, Hee J C , Nam-Soon O. Process development for heme-enriched peptide by enzymatic hydrolysis of hemoglobin [J]. Bioresource Technology, 2002, 84: 63–68。
    [11] Schokker E P, Dalgleish D G. The shear-induced destabilization of oil-in-water emulsions using caseinate as emulsifier[J]. Colloids and Surfaces A, 1998, 145: 51-69
    [12] Chen J , Dickinson E. Protein/surfactant interfacial interactions Part 1: flocculation of emulsions containing mixed protein + surfactant[J]. Colloids and Surfaces A, 1995, 100: 255-265
    [13] 陈来同. 生化工艺学[M]. 北京: 科学出版社, 2005: 440-447
    [14] 周淡宜, 徐水祥. 血红素纯化技术研究及质量检测[J]. 中国现代应用药学杂志 2005, 22(2): 129-131
    [15] 施同舟, 王仁鹏. 电子显微镜技术与细胞超微结构[M]. 第三军医大学研究生试用教材. 1993, 3. 73~79
    [16] 刘会洲, 郭晨, 余江, 等. 微乳相萃取技术及应用[M].. 北京: 科学出版社, 2005: 6-7
    [17] 梁文平. 乳状液科学与技术基础[M]. 北京: 科学出版社, 2001: 195-210
    [18] 王希成. 生物化学[M]. 北京: 清华大学出版社, 2001: 46-47
    [19] 耿信笃. 现代分离科学理论导引[M].. 北京: 高等教育出版社. 2001:233-299
    [20] 裘俊红, 陈治辉. 笼形水合物及水合物技术现状及展望[J]. 江苏化工, 2005, 33(1): 1-5
    [21] 王新, 裘俊红. 笼形水合物研究与应用[J]. 化工生产与技术, 2004, 11(3): 19-24
    [22] 耿昌全,裘俊红. 笼形水合物分离技术[J]. 浙江工业大学学报, 2001, 29(2): 131-135
    [23] Huang C P, Fennema O, Powrie W D. Gas hydrates in aqueous organic systemsⅠ.preliminary studies[J]. Cryobiology, 1965, 1: 109
    [24] Willson R C, Bulot E, Cooney C L. Clathrate hydrate formation enhances near-critical and supercritical extraction equilibria[J]. Chem Eng Commun, 1990, 95: 47-52
    [25] Owen R F, 王璋. 食品化学(第二版)[J]. 北京: 轻工业出版社, 1991: 257-258
    [26] 李志钊, 叶春华. 血红素的应用与生产技术的研究进展[J]. 食品研究与开发, 2000, 21(5): 12-14
    [1] Poling C E, Rice E E. The influence of temperature, heating time and aeration upon the nutritive value of fats[J]. J. Am. Oil Chem. Soc. 1962, 39: 315-320
    [2] Kanazawa K, Kanazawa E, Nakane M. Uptake of secondary autoxidation products of linoleic acid by rat[J]. Lipids,1985, 20: 412-419
    [3] Uchida K, Stadman E R. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal[J]. Proc. Natl. Acad. Sci. U.S.A. 1992, 89: 4544-4548
    [4] Ames B N. Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases[J]. Science 1983, 221: 1256-1264
    [5] Gey K F. The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms[J]. Biochem. Soc. Trans. 1990, 18: 1041-1045
    [6] Smith M A, Perry G, Richey P L, et al. Oxidative damage in Alzheimer,s[J]. Nature, 1996, 382: 120-121
    [7] Diaz M N, Frei B, Vita J A, et al. Antioxidants and atherosclerotic heart disease[J]. N. Engl. J. Med. 1997, 337: 408-416
    [8] Halliwell B, Murcia M A, Chirico S, et al. Free radicals and antioxidants in food and in ViVo: what they do and how they work[J]. Crit. ReV. Food Sci. Nutr. 1995, 35: 7-20
    [9] Liebler D C, Baker P F, Kaysen K L. Oxidation of vitamin E: Evidence for competing autoxidation and peroxyl radical trapping reactions of the tocopherol radical[J]. J. Am. Chem. Soc.1990, 112: 6995-7000
    [10] Amarowicz R, Shahidi F. Antioxidant activity of green tea catechins in β-caratenelinoleate model system[J]. J. Food Lipids, 1995, 2: 47-56
    [11] Huang S W, Frankel E N. Antioxidant activity of tea catechins in different lipid system[J]. J. Agric. Food Chem. 1997, 45: 3033- 3038
    [12] Urizzi P, Monje M C, Souchard J P, et al. Antioxidant activity of phenolic acids an esters present in red wine on human low-density lipoproteins[J]. J. Chim. Phys. Chim.Biol. 1999, 96: 110-115
    [13] Park P J, Jung W K, Nam K S, et al. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk[J]. Journal of the American Oil Chemists,Society, 2001, 78, 651–656
    [14] Jao C L, Ko W C. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice[J]. Fisheries Science, 2002, 68: 430–435
    [15] Jun S Y, Park P J, Jung W K, et al. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein[J]. European Food Research and Technology, 2004, 219: 20–26
    [16] Carlsen C U, Rasmussen K T, Kjeldsen K K, et al. Pro- and antioxidative activity of protein fractions from pork (longissimus dorsi) [J]. European Food Research and Technology, 2003, 217: 195–200
    [17] 任国谱, 余兵, 李顺灵. 蛋白质及其衍生物的抗氧化性能[J]. 中国油脂, 1997, 22(4): 47-50
    [18] Hattori M, Yamaji-Tsukamoto K, Kumagai H, et al. Antioxidative activity of soluble elastin peptides[J]. J Agric Food Chem, 1998, 46: 2167-2170
    [19] Saito K, Jin D H, Ogawa T, et al. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry[J]. J Agric Food Chem, 2003, 51: 3668-3674
    [20] Deck E A, Faraji H. Inhibition of lipid oxidation by carnosine[J]. J Am Oil Chem Soc, 1990, 67(10): 650-652
    [21] Decker E A, Crum A D, Calvert J T. Difference in the antioxidant mechanism of carnosine in the presence of copper and iron[J]. J Agric Food Chem, 1992, 40: 756-759
    [22] Lee B J, Hendricks D G. Antioxidant effect of L-carnosine on liposomes and beef homogenates[J]. J Food Sci, 1997, 62(5): 931-934, 1000
    [23] Takenaka S, Sugiyama S, Wantanabe E, et al. Effects of carnosine and anserine on the destruction of vitamin B12 with vitamin C in the presence of copper[J]. Biosci, Biotechnol Biochem, 1997, 61(12): 2137-2139
    [24] Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus) [J]. Food Res Int, 2003, 36: 949-957
    [25] Oyaizu M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography[J]. Nippon Shokuhin Kogyo Gakkaishi, 1988, 35: 771-775
    [26] Chi-Yue C, Kuei-Ching W, Shu-Hua C. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates[J]. Food Chem. 2007, 100: 1537–1543
    [27] Decker E A, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food[J]. Journal of Agricultural and Food Chemistry, 1990, 38: 674–677
    [28] Cheng K L, Ueno K, Imamura T. Handbook of Organic Analytical Reagents[M]. CRC Press: Boca Raton, FL, 1982: 503-509
    [29] Larrauri J A, Ruperez P, Calixto F S. Antioxidant activity of wine pomace[J]. Am. J Enol Vitic, 1996,47 (4): 369-372
    [30] Chen H M, Muramoto K, et al. Structural analysis of antioxidant from soybean-conglycinin[J]. J. Agric. Food Chem. 1995, 43: 574-578
    [31] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion[J]. J Agric Food Chem, 1992, 40: 945-948
    [32] Hatano T, Takagi M, Ito H, et al. Phenolicconstituents of liquorice. VII. A new calcone with a potent radical scavenging activity and accompanying phenols[J]. Chem Pharm Bull, 1997, 45: 1485-1492
    [33] Shimoji Y, Tamura Y, Nakamura Y, et al. Isolation and identification of DPPH radical scavenging compounds in kurosu (Japanese unpolished rice vinegar) [J]. J Agric Food Chem, 2002, 50: 6501-6503
    [34] 王政. 酪蛋白酶促水解及其酶解物性质研究[D]. 河南农业大学, 2005: 19-21
    [35] Juntachote T, Berghofer E. Antioxidative properties and stability of ethanolic extracts of holy basil and Galangal[J]. Food Chem, 2005, 92: 193-202
    [36] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical Biol. Med. 1995, 18: 321-336
    [37] Ai S, Soichi T, Toshihide N. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment[J]. J. Agric. Food Chem. 2003, 51: 3661-3667
    [38] Sarkar B. Metal protein interactions. Prog. Food Nutr. Sci. 1987, 11: 363-400
    [39] D. 斯沃恩, 秦洪万. 贝雷: 油脂化学与工艺学[M]. 第四版(第一册). 北京: 轻工业出版社, 1989: 156-160
    [40] Molly K, Demeyer D, Johansson G, et al. The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project[J]. Food Chemistry,1997, 59: 539–545
    [1] Chen J, Suetsuna K, Yamauchi F. Isolation and characterization of immuneo- stimulative peptides from soybean[J]. J Nutr Biochem, 1995, 6: 310-313
    [2] Suetsuna K, Maekawa K, Chen J. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats[J]. J Nutr Biochem, 2004, 15: 267-272
    [3] 沈蓓英. 大豆蛋白抗氧化肽的研究[J]. 中国油脂, 1996, 21(6): 21-24
    [4] Chen H M, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin[J]. J Agric Food Chem, 1995, 43: 574-578
    [5] Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment[J]. J Agric Food Chem, 2003, 51(12): 3661-3667
    [6] Kim S Y, Je J Y, Kim S K. Purification and characterization of antioxidant pept- ide fromhoki (Johnius belengerii) frame protein by gastrointestinal digestion[J]. J Nutr Biochem, 2006, in press
    [7] Jeon Y J, Byun H G, Kim S K. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes[J]. Process Biochem, 1999, 35(5): 471-478
    [8] 许庆陵, 曾庆祝, 朱莉娜, 等. 鲢酶解物对羟自由基的清除作用[J]. 水产学报, 2004, 28(1): 93-99
    [9] Marcuse R. Antioxidative effect of amino acids[J]. Nature, 1960, 186: 886-887
    [10] Saito K, Jin D H, Ogawa T, et al. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry[J]. J Agric Food Chem, 2003, 51: 3668-3674
    [11] Tsuge N, Eikawa Y, Nomura Y, et al. Antioxidative activity of peptides prepared by enzymatic hydrolysis of egg-white albumin[J]. Nippon Nogeik Kashi, 1991, 65: 1635-1641
    [12] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine -containing peptides designed from peptide fragments found in the digests of a soy -bean protein[J]. J Agric Food Chem, 1998, 46: 49-53
    [13] Chi-Yue C, Kuei-Ching W, Shu-Hua C. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates[J]. Food Chem. 2007, 100: 1537–1543
    [14] Marcuse R. Antioxidative effect of amino acids[J]. Nature 1960, 186: 886-887
    [15] Marcuse R. The effect of some amino acids on the oxidation of linolenic acid and its methyl ester[J]. J. Am. Oil Chem. Soc. 1962, 39: 97-103
    [16] Karel M, Tannenbaum S R, Wallace D H, et al. Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids[J]. J. Food Sci. 1966, 31, 892- 896
    [17] Yamashoji S, Yoshida H, Kajimoto G. Effects of amino acids on the photosensitized oxidation of linolenic acid in an aqueous ethanol solution[J]. Agric. Biol. Chem. 1979, 43, 1505-1511
    [18] Yong S H, Karel M. Reaction of histidine with methyl linoleate: Characterization of the histidine degradation product[J]. J. Am. Oil Chem. Soc. 1978, 55: 352-356
    [19] Kohen R, Yamamoto Y, Cundy K C, et al. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain[J]. Proc. Natl. Acad. Sci. U.S.A. 1988, 85: 3175-3179
    [20] Decker E A, Crum A D, Calvert J T. Differences in the antioxidant mechanism ofcarnosine in the presence of copper and iron[J]. J. Agric. Food Chem. 1992, 40: 756-759
    [21] Dahl T A, Midden W R, Hartman P E. Some prevalent biomolecules as defenses against singlet oxygen damage[J]. Photobiochem.Photobiol. 1988, 47: 357-362
    [22] Senji S, Yumi T, Noriyuki I et al. Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system[J]. Food Chemistry, 2004, 86 (1): 99-103
    [23] 方允中, 郑荣梁. 自由基生物学的理论与应用[M]. 北京: 科学出版社. 2002: 115-116
    [24] Hong-Yu Z. Theoretical methods used in elucidating activity differences of phenolic antioxidants[J]. J Am Oil Chem Soc, 1999, 76(6): 745-748
    [25] Murase H, Nagao A, Terao J. Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine[J]. J. Agric. Food Chem. 1993, 41, 1601-1604
    [26] Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus) [J]. Food Research International, 2003, 36: 949–957
    [27] Jeon Y J, Byun H G, Kim S K. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes[J]. Process Biochem, 1999, 35(5): 471-478
    [28] Senji S, Yumi T, Noriyuki I et al. Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system[J]. Food Chemistry, 2004, 86 (1): 99-103
    [29] Fischer M, Gruppen H, Piersma S R, et al. Aggregation of peptides during hydrolysis as a cause of reduced enzymatic extractability of soybean meal proteins[J]. J. Agric. Food Chem. 2002, 50 (16): 4512-4519
    [30] 耿信笃. 现代分离科学理论导引[M]. 北京: 高等教育出版社. 2001: 112-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700