大气化学中几种重要自由基反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯酮(CH2CO)和氢氟烷(HFCs)与活泼自由基的反应在烃类燃烧过程和大气化学等方面有着举足轻重的作用。然而由于自由基的反应通常速度较快,反应机理复杂,对它们进行结构和动力学的实验研究一般具有相当大的难度。因此对这些反应的理论研究近年来备受关注。
    本论文利用量子化学计算方法研究了乙烯酮(CH2CO)和氢氟烷与大气中活泼自由基和原子的微观反应机理,并对氢氟烷系列反应的速率常数、产物分支比及其对温度的依赖关系做出了可靠的理论预测,为进一步的实验研究提供了理论依据。所有成果均属首次报道,并得到了国内外专家的普遍认可。本论文最重要的结果有以下六点:
    1.在QCISD(T)/6-311+G(3df, 2p)//B3LYP/6-311+G(d, p)水平上研究了CH2CO +O(3P)反应。结果表明,该反应存在两种反应机理,即羰基碳加成-消除机理和烷基碳加成-消除机理,最终能够生成五种产物,即CH2 + CO2,CO + CH2O,CCO + H2O,H + CO+ HCO和HCO + HCO。其中,CH2 + CO2 (P1)是最佳反应产物,我们的结论与DeMore课题组的结果比较吻合。
    2.在QCISD(T)/6-311++G (d, p)//B3LYP/6-311+G(d, p)水平上的理论计算结果表明,CH2CO与CN的反应有四种可能的机理:直接氢提取、烷基碳加成-消除、羰基碳加成-消除和氧加成-消除机理,并且每种机理都包括C主导和N主导的进攻。其中,直接氢提取的反应在动力学上是不利的。烷基碳加成消除生成CH2CN+CO的通道能垒低于其他任何通道,从动力学角度看该通道是最佳反应通道。上述两个结论与实验研究结果吻合较好。另外,烷基碳加成-消除生成P4(CH2NC+CO)的通道理论上是可以与该通道竞争的,而这一结论在Edwards的报道中没有体现。
    3.在QCISD(T)/6-311+G(d, p)//B3LYP/6-311+G(d, p)水平上对CH2CO + NCX (X=O,S)反应的微观机理和可能的反应路径进行了理论研究。计算结果表明:两个反应均包括直接的H提取和烷基碳加成-消除机理。NCX中的三个原子都可以提取CH2CO中的H。但是对于烷基碳加成-消除反应有所不同,两者都存在N进攻的反应通道,但当X=O时没有发现C进攻的通道,当X=S时,却没有发现S进攻的通道。烷基碳加成消除生成CH2NCO + CO的通道所需能垒最低,从动力学角度分析,被认为是CH2CO + NCO反应的最佳反应通道。这一与Edwards的实验结果是一致的。与其相似地,CH2NCS + CO是CH2CO + NCS反应的主要产物。
    4.利用双水平直接动力学方法研究了CH3CH2F + OH的直接氢提取反应。在MP2/6-311G(d, p)水平上获取相关的势能面信息,再采用G3方法进行高水平的单点能量校正。然后利用内推单点能量的变分过渡态理论(VTST-ISPE, Variational Transition StateTheory with Interpolated Single-Point Energies)计算了在210—3500 K的温度区间内反应
The reactions of ketene (CH2CO) and hydrofluorocarbons (HFCs) with active radicalsplay important roles in various fields, such as combustion chemistry and atmosphericchemistry. Due to the short lives of the radicals and the difficulty to obtain the pure species,the experimental research for their structures and reaction features (especially the reactionmechanisms and the dynamics) is very difficult. Therefore, more and more attentions havebeen focused on their theoretical researches in recent years.
    With the quantum chemistry calculation methods, we studied the reactions of ketene(CH2CO) and hydrofluorocarbons (HFCs) with active radicals or atoms. The reactionmechanisms are theoretically investigated in detail, and rate constants and branching ratios arealso predicted. Our calculations provide the elementary theoretical evidence for furtherexperimental research. The most valuable results in this thesis can be summarized as follows:
    1. The mechanism for the CH2CO + O(3P) reaction is investigated at theQCISD(T)/6-311+G(3df, 2p)//B3LYP/6-311+G(d, p) level. The computational results showthat the reaction proceeds via two possible mechanisms, i.e., carbonyl carbonaddition-elimination mechanism and olefinic carbon addition-elimination mechanism. Fiveproducts, CH2+CO2,CO + CH2O,CCO + H2O,H + CO + HCO and HCO + HCO, aregenerated. With the lowest energy barrier, the pathway producing CH2 + CO2 dominates thetotal reaction and CH2 + CO2 is the main product. Our results provide the theretical evidencefor the experimental report of DeMore group.
    2. A detailed theoretical survey on the potential energy surface for the CH2CO + CN reactionis carried out at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311+G(d, p) level. The reactionproceeds through four possible mechanism, i.e. direct hydrogen abstraction, olefinic carbonaddition-elimination, carbonyl carbon addition-elimination and side oxygen addition-elimination.Direct hydrogen abstraction is unfavorable kinetically. With the lowest energy, the olefinic carbonaddition-elimination channel to yield CH2CN+CO is most important among all the channels. Theabove conclusions are in good accordance with experimental results. Furthermore, the channelgenerating CH2NC + CO via olefinic carbon addition-elimination mechanism is considerablycompetitive especially as the temperature increases.
    3. The reactions of CH2CO with NCX(X=O, S) are theoretically investigated at the levelof QCISD (T)/6-311+G(d, p)//B3LYP/6-311+G (d, p). Our computational results suggest thatboth reactions can proceed via direct hydrogen abstraction mechanism and olefinic carbonaddition-elimination mechanism. The direct abstraction of one of the H atoms in CH2CO
    molecule by NCX may lead to HCCO + HNCX(PX-1), HCCO + HCNX(PX-2) and HCCO +HXCN(PX-3), respectively. There is some difference between their oefinic carbonaddition-elimination reactions. Both N and O can attack the oefinic carbon atom of CH2CO inthe reaction of CH2CO with NCO. As for CH2CO + NCS reaction, C-and N-attack is bothpossible, while S-dominating attack is not found. With the lowest barrier height, the channlegenerating CH2NCO + CO is considered as a kinetically favourable pathway, which was alsosummarized by Hershberger group. Similarly, CH2NCS + CO is theoretically proved to bemain product for CH2CO + NCS reaction.4. The hydrogen abstraction reaction of CH3CH2F + OH is studied by an ab initio directdynamics method. Three feasible channels and the three corresponding transition states, TS1,TS2a and TS2b are identified respectively. The rate constants over the temperature range of210—3500 K are calculated by canonical variational transition state theory (CVT) with thesmall-curvature tunneling correction (SCT) at the G3//MP2/6-311G(d, p) level. Thetheoretical rate constants and branching ratios are in good agreement with the experimentalvalues. The dynamics calculations also exhibit that α-H abstraction dominates the titlereaction from 210 to 800 K, and the reaction proceeds mainly via β-H abstraction in thetemperature higher than 800 K.5. The H-abstraction reaction of CH3CH2F + Cl is investigated by an ab initio directdynamics method. The potential energy surface (PES) information is obtained at theMP2/6-311G(d, p) level, and more accurate energies of stationary points are calculated at thelevel of QCISD(T)/6-311+G(3df, 2p) and G3(MP2). Both α-H abstraction and β-Habstraction are possible, and three transition states, TS1, TS2a and TS2b are identifiedrespectively. The rate constants over the temperature range of 220—2800 K are calculated bycanonical variational transition state theory (CVT) with the small-curvature tunnelingcorrection (SCT). The theoretical rate constants and branching ratio of k1/k agree well withthe experimental values. The dynamics calculations also exhibit that α-H abstractiondominates the title reaction almost over the whole temperature range.6. The potential energy surface (PES) information of the CH3CHF2 + Cl reaction is builtup at the G3(MP2)//MP2/6-311+G(d, p) level. With the ISPE method, the CVT/SCT rateconstants of the reaction are calculated over the temperature range of 200―2500 K. Thebranching ratios are also decided, as well as the dependence on the temperature. Thecalculated rate constant and branching ratios are both in accordance with the experimentalresults. The calculations also indicate that the rate constants over the temperature range 200―2500 K are fitted by the three-parameter expression: k = (4.62× 10-19)T 2.77 exp(-782.89/T).
引文
[1]王殿勋. 2001 科学发展报告[R]. 北京:科学出版社,2001,p86.
    [2]刘静玲. 环境污染与控制[M]. 化学工业出版社, 2001 年 02 月(第 1 版) p282.
    [3]王明星. 大气化学[M]. 气象出版社,1999 年 05 月第 2 版, p467.
    [4]寒冬, 寒之. 臭氧层[M]. 中国环境科学出版,2001 年 04 月第 1 版 p116.
    [5]秦大河. 大气臭氧层和臭氧空洞[M]. 气象出版社,2003 年 3 月第一版,p187.
    [6]McElroy M B, Salawitch R J, Wofsy S C, et al. Reductions of antarctic ozone due to synergistic interactions of chlorine and bromine[J]. Nature, 1986, 321(6072): 759-762.
    [7]McConnell J C, Henderson G S, Barrie L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion[J]. Nature, 1992, 355(6356): 150-152.
    [8]Fan S M, Jacob D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols[J]. Nature, 1992, 359(6395): 522-524.
    [9]Montzka S A, Butler J H, Mayers R C, et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion[J]. Science, 1996, 272(5266): 1318-1322.
    [10]Redeker K R, Wang N Y, Low J C, et al. Emissions of methyl halides and methane from rice paddies[J]. Science, 2000, 290(5493): 966-969.
    [11]穆光照. 自由基反应[M]. 北京:高等教育出版社,1985, 7, 239.
    [12]Rayson L, Huang S H, Goh S H O 著,穆光照,甘礼骓等译,自由基化学[M]. 上海:上海科学技术出版社, 1983, 258.
    [13]Smith I W M. Radiative associaton in collisions between neutral free radicals[J]. Chem Phys, 1989, 131(2-3): 391-401.
    [14]Berson M, Baird J C. An introduction of electron paramagnetic resonance[M]., W. A. Benjiamin, New York, 1966.
    [15]Hey D H, Waters W A. Some organic reactions involving the occurrence of free radicals in solution[J]. Chem Review, 1937, 21(1): 169-208.
    [16]Kharasch M S. Photodecomposition of chlorine dioxide in carbon tetrachloride solution[J]. J Am Chem Soc, 1937, 59(6): 1155-1156.
    [17]Lowry J H. Mechainism and theory in organic chemistry[M]. New York, N. Y., Harper&Row3, Pub., 1987.
    [18]Harris J M. Fundamentals of organic reaction mechanism[M]. New York willey, 1976.
    [19]施嵘,沈利英. 乙烯酮的生产及下游产品的开发[J]. 河南化工, 2001(8): 4-6.
    [20]Edwards M A, Hershberger J F. Kinetics of the CN + CH2CO and NCO + CH2CO reactions[J]. Chem Phys, 1998, 234(1-3): 231-237.
    [21]Washida N, Hatakeyama S, Takagi H, et al. Reaction of ketenes with atomic oxygen[J]. J Chem Phys, 1983, 78(7): 4533-4540.
    [22]Lovejoy E R, Alvarez R A, Moore C B. The yield of co in the reaction CH2 (?1A1) + CH2CO[J]. Chem Phys Lett, 1990, 174(2): 151-156.
    [23]Chiang S Y, Fang Y S, Bahou M, et al. Experiments and calculations on photoionization and dissociative photoionization of CH2CO[J]. J Chinese Chem Society, 2004, 51(4): 681-688.
    [24]Jun M, Feng W L, Li H Y, et al. Mechanism of the reaction H + CH2CO: G2 calculation[J]. Acta Physico-Chimica Sinica, 2004, 20(5): 483-487.
    [25]Wang S L, Shi Y J, Jakubek Z J, et al. Nonresonant two-photon mass analyzed threshold ionization and zero kinetic energy photoelectron investigation of the (X)over-tilde B-2(1) ground state of CH2CO+ and CD2CO+[J]. J Chem Phys, 2002, 117(14): 6546-6555.
    [26]Chiang SY, Bahou M, Wu YJ, et al. Experimental and theoretical studies on Rydberg states of CH2CO in the region 120-220 nm[J]. J Chem Phys, 2002, 117(9): 4306-4316.
    [27]Hall G E, Liu X H, Lin A, et al. Dynamical corrections to statistical product distributions in the unimolecular of CH2CO[J]. Abstracts of Papers of the American Chemical Society, 2002, 223: C27-C27.
    [28]Hou H, Wang S K, Wang B S, et al. Reaction mechanism and kinetics for the F + CH2CO reaction[J]. Chemical J Chinese Universities, 2002, 23 (6): 1131-1134.
    [29]Willitsch S, Haldi A, Merkt F. Rovibrational energy level structure of the (X)over-tilde B-2(1) ground electronic state of CH2CO+ and CD2CO+[J]. Chem Phys Lett, 2002, 353(1-2): 167-177.
    [30]Nemes L, Luckhaus D, Quack M, et al. Deperturbation of the low-frequency infrared modes of ketene (CH2CO)[J]. J Mol Struct, 2000(517): 217-226.
    [31]Brown A C, Canosa-Mas C E, Parr A D, et al. Temperature dependence of the rate of the reaction between the OH radical and ketene[J]. Chem Phys Lett, 1989, 161(6): 491-496.
    [32]Michael J V, Nava D F, Payne W A, et al. Absolute rate constants for the reaction of atomic hydrogen with ketene from 298K to 500 K[J]. J Chem Phys, 1979, 70(11): 5222-5227.
    [33]Hou H, Wang B S, Gu Y S. Ab initio mechanism and multichannel RRKM-TST rate constant for the reaction of Cl(2P) with CH2CO(ketene)[J]. J Phys Chem A, 2000, 104(2): 320-328.
    [34]Hou H, Wang B S, Gu Y S. Mechanism of the OH + CH2CO reaction[J]. Phys Chem Chem Phys, 2000, 2(10): 2329-2334.
    [35]Zhou Z Y, Fu H, Zhou X M, et al. Mechanistic investigation on the multi-channel reaction of Cl + CH2CO[J]. J Mol Struct (Theochem), 2003, 620(2-3) 207-214.
    [36]Carr Jr R W, Gay I D, Glass G P, et al. Reaction of ketene with atomic hydrogen and oxygen[J]. J Chem Phys 1968, 49(2): 846-852.
    [37]DeMore W B, Sander S P, Golden D M, et al. Chemical kinetics and photochemical data for use in stratopheric modeling[M]. JPL Publication 97-4;NASA: CA, 1997.
    [38]Ebrecht J, Hack W, Wagner G G. Elementary reactions of ketene with fluorine and chlorine atoms in the gas-phase[J]. Ber Bunsen-Ges Phys Chem, 1990, 94: 587-593.
    [39]Hudgens J W, Dulcey C S, Long G R. Multiphoton ionization spectra of radical products in the F(2P) + ketene system: spectral assignments and formation reaction for CH2F, observation of CF and CH[J]. J Chem Phys, 1987, 87(8): 4546-4558.
    [40]Nobuaki W, Shiro H, Hirro T. Reaction of ketenes with atomic oxygen[J]. J Chem Phys, 1983, 78(7): 4633-4640.
    [41]Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. J Chem Phys, 1997, 106(3): 1063-1079.
    [42]Cheng X L, Zhao Y Y, Zhou X M, et al. Reaction mechanism for the F + CH2CO reaction system based on density functional theory and vibrational mode analysis[J]. J Mol Struct(Theochem), 2003, 638(1-3): 27-35.
    [43]Umemoto H, Tsunashima S, Sato S, et al. The reactions of hydrogen and deuterium atoms with 4 ketenes[J]. Bull Chem Soc Jpn, 1984, 57(9): 2578-2580.
    [44]Faubel C, Wagner H G, Hack W. Reactions of carbon suboxide .2. Reaction of hydroxyl radicals with carbon sub-oxide and with ketene[J]. Ber Bunsen-Ges Phys Chem, 1977, 81(7): 689-692.
    [45]Hatakeyama S, Honda S, Washida N, et al. Rate constants and mechanism for reactions of ketenes with OH radicals in air at 299 ± 2 K[J]. Bull Chem Soc Jpn, 1985, 58: 2157-2162.
    [46]Oehlers C, Temps F, Wagner H G, et al. Kinetics of the reaction of oh radicals with CH2CO[J]. Ber Bunsen-Ges Phys Chem, 1992, 96(2): 171-175.
    [47]Gaffnay J S, Atkinson R, Pitts J N J. Relative rate constants for the reaction of oxygen(3P) atoms with selected olefins, monoterpenes, and unsaturated aldehydes[J]. J Am Chem Soc, 1975, 97(18): 5049-5051.
    [48]Hranisavljevic J, Kumaran S S, Michael J V. H + CH2CO → CH3 + CO at high temperature: a high pressure chemical activation reaction with positive barrier[J]. Twenty-seventh symposium (international) on combustion, 1998, 1-2, 159-166.
    [49]Grussdorf J, Nolte J, Temps F, et. al. Primary products of the elementary reactions of ch2co with f, cl, and oh in the gas-phase[J]. Ber Bunsen Phys Chem, 1994, 98(4): 546-553.
    [50]Hancock G, Heal M R. Temperature dependences of methylene (?1A1) removal rates by Ar, No, H2, and CH2CO in the range 295-859 K[J]. J Phys Chem, 1992, 96(25): 10316-10322.
    [51]Oehlers C, Temps F, Wagner H G, et al. Kinetics of the reaction of OH radicals with CH2CO[J]. Ber Bunsen Phys Chem, 1992, 96 (2): 171-175.
    [52]Yu J W, Klippenstein S J, Variational calculation of the rate of dissociation of CH2CO into methylene and carbon monoxide on an abinitio determined potential-energy surface[J]. J Phys Chem, 1991, 95(24): 9882-9889.
    [53]Wallington T J, Ball J C, Straccia A M, et al. Kinetics and mechanism of the reaction of Cl atoms with CH2CO (ketene)[J]. Int J Chem Kinet, 1999, 28 (8): 627-635.
    [54](a) Kerr J B. Trends in total ozone at Toronto between 1960 and 1991[J]. J Geophys Res, 1991, 96(D11): 20703-20709;(b) Stolarski R, Bojkoy R, Bishop L, et al. Measured trends in stratospheric ozone[J]. Science, 1992, 256(5055): 342-349;(c) Ravishankara A R, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263(5143): 71-75;(d) Kerr R A. The ozone hole reaches a new low[J]. Science, 1993, 262(5133): 501;(e) Kerr J B, McElroy C T. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion[J]. Science, 1993, 262(5136): 1032-1034;(f) Newman A. What-ifs for a northern ozone hole[J]. Environ Sci Technol, 1993, 27(8): 1488-1491;(g) Rosswall T. Greenhouse gases and global change: International collaboration[J]. Environ Sci Technol, 1991, 25(4): 567-573.
    [55]麦克迈克尔 A J《危险的地球》[M]. 南京:江苏人民出版社,2000 年.
    [56]Ferguson J D, Johnson N L, Kekenes-Huskey P M, et al. Unimolecular rate constants for HX or DX elimination (X = F, Cl) from Chemically Activated CF3CH2CH2Cl, C2H5CH2Cl, and C2D5CH2Cl: Threshold energies for HF and HCl elimination[J]. J Phys Chem A, 2005, 109(20): 4540-4551.
    [57]唐有祺,王夔.《化学与社会》[M]. 北京:高等教育出版社,1997:p96-103.
    [58]Kozlov S N, Orkin V L, Kurylo M J. An investigation of the reactivity of OH with fluoroethanes: CH3CH2F(HFC-161), CH2FCH2F (HFC-152), and CH3CHF2 (HFC-152a)[J]. J Phys Chem A, 2003, 107(13): 2239-2246.
    [59]Schmoltner A M, Talukdar R K, Warren R F, et al. Rate coefficients for reactions of several hydrofluorocarbons with OH and O(1D) and their atmospheric lifetimes[J]. J Phys Chem, 1993, 97(35): 8976-8982.
    [60]Hsu K J, DeMore W B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements[J]. J Phys Chem, 1995, 99(4): 1235-1244.
    [61]Singleton D L, Paraskevopoulos G, Irwin R S. Reaction of OH with CH3CH2F—the extent of H abstraction from the alpha and beta positions[J]. J Phys Chem, 1980, 84(19): 2339-2343.
    [62]Nip W S, Singleton D L, Overend R, et al. Rates of OH radical reactions. 5. Reactions with CH3F, CH2F2, CHF3, CH3CH2F, and CH3CHF2 at 297 K[J]. J Phys Chem, 1979, 83(19): 2440-2443.
    [63]Huang J, Prinn R G. Critical evaluation of emissions of potential new gases for OH estimation[J]. J Geophys Res-Atmos, 2002, 107(D24): 4784-4784.
    [64]Orkin V L, Khamaganov V G, Determination of rate constants for reactions of some hydrohaloalkanes with OH radicals and their atmospheric lifetimes[J]. J Atmos Chem, 1993, 16(2): 157-167.
    [65]Jeong K M, Hsu K J, Jeffries J B, et al. Kinetics of the reactions of OH with C2H6, CH3CCl3, CH2ClCHCl2, CH2ClCClF2, and CH2FCF3[J]. J Phys Chem, 1984, 88(6): 1222-1226.
    [66]Bednarek G, Breil M, Hoffmann A, et al. Rate and mechanism of the atmospheric degradation of 1,1,1,2-tetrafluoroethane (HFC-134a)[J]. Ber Bunsen Phys Chem, 1996, 100(5): 528-539.
    [67]Morris R A, Viggiano A A, Arnold S T, et al. Reactions of atmospheric ions with selected hydrofluorocarbons[J]. J Phys Chem, 1995, 99(16): 5992-5999.
    [68]Leu G H, Lee Y P, Temperature-dependence of the rate coefficient of the reaction OH + CF3CH2F over the range 255-424 K[J]. J Chin Chem Soc-Taip, 1994, 41(6): 645-649.
    [69]Gierczak T, Talukdar R, Vaghjiani G L, Lovejoy E R, et al. Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes. 1. Rate coefficients for reactions with OH[J]. J Geophys Res-Atmos, 1991, 96(D3): 5001-5011.
    [70]Jordan A, Frank H, Trifluoroacetate in the environment. Evidence for sources other than HFC/HCFCs[J]. Environ Sci Technol, 1999, 33(4): 522-527.
    [71]Simmonds P G, O-Doherty S, Huang, J, et al. Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1, 1-difluoroethane using automated in-situ gas chromatography mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997[J]. J Geophys Res-Atmos, 1998, 103(D13): 16029-16037.
    [72]DeMore W B. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)[J]. Geophys Res Lett, 1993, 20(13): 1359-1362.
    [73]Zhang Z Y, Huie R E, Kurylo M J. Rate Constants for the reactions of OH with CH3CFCl2, (HCFC-141b), CH3CF2Cl(HCFC-l42b), and CH2FCF3(HFC-134a)[J]. J Phys Chem, 1992, 96(4): 1533-1535.
    [74]Zhong J X, Mu Y J, Yang W X, et al. Photooxidation of hydrochlorofluocarbons and hydrofluorocarbons initiated by OH radicals[J]. J Environ Sciences, 1996, 8(2): 228-234.
    [75]Kanakidou M, Dentener F J, Crutzen P J, A Global 3-Dimensional Study of the Fate of HCFCs and HFC-134a in the Troposphere[J]. J Geophys Res-Atmos, 1995, 100(D9): 18781-18801.
    [76]Tschuikow-Roux E, Yano T, Niedzielsk J. Reactions of ground state chlorine atoms with fluorinated methanes and ethanes[J]. J Chem Phys, 1985, 82(1): 65-74.
    [77]Hitsuda K, Takahashi K, Matsumi Y, et al. Kinetics of the reactions of Cl(2P1/2) and Cl(2P3/2) atoms with C2H6, C2D6, CH3F, C2H5F, and CH3CF3 at 298 K[J]. J Phys Chem A, 2001, 105(21): 5131-5136.
    [78]Taketani F, Nakayama T, Takahashi K, et al. Atmospheric chemistry of CH3CHF2 (HFC-152a): Kinetics, mechanisms, and products of Cl Atom and OH radical-initiated oxidation in the presence and absence of NOx[J]. J Phys Chem A, 2005, 109(40): 9061-9069.
    [79]Wallington T J, Hurley M D. A kinetic-study of the reaction of chlorine atoms with CF3CHCl2, CF3CH2F, CFCl2CH3, CF2ClCH3, CHF2CH3, CH3D, CH2D2, CHD3, CD4, and CD3Cl at 295 ± 2 K[J]. Chem Phys Lett, 1992, 189(4-5): 437-442.
    [80]Tuazon E C, Atkinson R , Tropospheric transformation products of a series of hydrofluorocarbons and hydrochlorofluorocarbons[J]. J Atmos Chem, 1993, 17(2): 179-199.
    [81]Edney E O, Driscoll D J. Chlorine initiated photooxidation studies of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs): Results for HCFC-22 (CHClF2);HFC-41 (CH3F);HCFC-124 (CClFHCF3);HFC-125 (CF3CHF2);HFC-134a (CF3CH2F);HCFC-142b (CClF2CH3);and HFC-152a (CHF2CH3)[J]. Int J Chem Kinet, 1992, 24(12) 1067-1081.
    [82]Tuazon E C, Atkinson R, Corchnoy S B. Rate constants for the gas-phase reactions of Cl atoms with a series of hydrofluorocarbons and hydrochlorofluorocarbons at 298 K ± 2 K[J]. Int J Chem Kinet, 1992, 24 (7): 639-648.
    [83]Kaiser E W. Relative rate constants for reactions of HFC-152a, 143, 143a, 134a, and HCFC 124 with F or Cl atoms and for CF2CH3, CF2HCH2, and CF3CFH radicals with F2, Cl2, and O2[J]. Int J Chem Kinet, 1993, 25(8): 667-680.
    [84]Yano T, Tschuikow-roux E. Competitive photochlorination of the fluoroethanes CH3CH2, CH2FCH2F and CHF2CHF2[J]. J Photochem, 1986, 32(1): 25-37.
    [85]Kono M, Y, Matsumi, Reaction processes of O(1D) with fluoroethane compounds[J]. J Phys Chem A, 2001, 105(1): 65-69.
    [86]Tseregounis S I, Riley M J, Solubility of HFC-134a refrigerant in glycol-type compounds-Effects of glycol structure[J]. Aiche J, 1994, 40(4): 726-737.
    [87]Liu J Y, Li Z S, Dai Z W, et al. Direct ab initio dynamics calculations on the rate constants for the hydrogen-abstraction reaction of C2H5F with O(3P)[J]. Theor Chem Acc, 2002, 108(3): 179-186.
    [88]Shiina H, Tsuchiya K, Oya M, et al. Reaction rates of O(3P) atom with fluoroethanes at 1000-1400 K[J]. Chem Phys Lett, 2001, 336(3-4): 242-247.
    [89]Peverall R, Kennedy R A, Mayhew C A, et al. Selected ion flow tube study of the reactions of O-and O2-with CHCl2F, CHClF2, CHF3, CH2ClF, CH2F2, CH3F, CHF2CHF2, CH2FCF3, and CH3CHF2[J]. Int J Mass Spectrometry and Ion Processes, 1998, 171(1-3): 51-72.
    [90]李宗和,吴立明,刘若庄. CHF2CH3(HFC-152a)与F反应的反应途经及反应速率常数研究[J]. 化学学报, 1997, 55, 1061-1065.
    [91]Warren R, Gierczak T. A study of O (1D) reactions with CFC substitutes[J]. Chem. Phys. Lett. 1991, 5(1-2), 403-409.
    [92]Wilson E W, Jacoby A M, Kukta S J, et al. Rate constants for reaction of CH2FCH2F (HFC-152) and CH3CHF2 (HFC-152a) with hydroxyl radicals[J]. J Phys Chem A, 2003, 107(44): 9357-9361.
    [93]Wilson E W, Sawyer A A, Sawyer H A. Rates of reaction for cyclopropane and difluoromethoxydifluoromethane with hydroxyl radicals[J]. J Phys Chem A, 2001, 105(9): 1445-1448.
    [94]Taghikhani M, Parsafar G A, Sabzyan H. Theoretical investigation of the hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a): A dual level direct density functional theory dynamics study[J]. J Phys Chem A, 2005, 109(36): 8158-8167.
    [95]Nielsen O J. Rate constants for the gas-phase reactions of OH radicals with CH3CHF2 and CHCl2CF3 over the temperature range 295-388 K[J]. Chem Phys Lett, 1991, 187(3): 286-290.
    [96]Mashino M, Ninomiya Y, Kawasaki M, et al. Atmospheric chemistry of CF3CF=CF2: Kinetics and mechanism of its reactions with OH radicals, Cl atoms, and ozone[J]. J Phys Chem A, 2000, 104(31): 7255-7260.
    [97]DeMore W B, Wilson E W. Rate constant and temperature dependence for the reaction of hydroxyl radicals with 2-fluoropropane (HFC-281ea)[J]. J Phys Chem A, 1999, 103(5): 573-576.
    [98]Orkin V L, Huie R E, Kurylo M J. Rate constants for the reactions of OH with HFC-245cb (CH3CF2CF3) and some fluoroalkenes (CH2CHCF3, CH2CFCF3, CF2CFCF3, and CF2CF2)[J]. J Phys Chem A, 1997, 101(48): 9118-9124.
    [99]Chen J Y, Young V, Niki H, et al. Kinetic and mechanistic studies for reactions of CF3CH2CHF2 (HFC-245fa) initiated by H-atom abstraction using atomic chlorine[J]. J Phys Chem A, 1997, 101(14): 2648-2653.
    [100]Carr S, Treacy J J, Sidebottom H W, et al. Kinetics and mechanisms for the reaction of hydroxyl radicals with trifluoroacetic-acid under atmospheric conditions[J]. Chem Phys Lett, 1994, 227(1-2): 39-44.
    [101]Chen L, Tokuhashi K, Kutsuna S, et al. Rate constants for the gas-phase reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals at 250-430 K[J]. Int J Chem Kinet, 2004, 36(1): 26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700