成纤维细胞生长因子18对成牙本质细胞分化的作用及信号传导通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成牙本质细胞是牙髓-牙本质复合体的特征性细胞,具有高度分化、极性和分泌的特性,是合成和分泌牙本质基质的唯一细胞。成牙本质细胞可以在牙齿发育期间生成牙本质,也是牙齿损伤修复中起主要作用的细胞。成牙本质细胞分化是牙胚发育的重要阶段,也是牙髓组织自身损伤修复过程中的关键环节。这一过程受多种信号分子的调控,从基因表达水平阐明成牙本质细胞分化的调控规律及其影响因素有助于对牙齿发育、损伤与修复等过程的深入认识。
     成纤维细胞生长因子18(Fibroblast growth factor 18,FGF18)是1998年发现的成纤维细胞生长因子家族的新成员,与FGF8和FGF17属于同一亚家族。研究证实FGF18是一种发育组织重要的分泌性信号分子,参与多种组织的发育,尤其在外胚层器官比如脑的发育等过程中起了重要作用。在胚胎的骨和软骨中FGF18可通过MAPK信号转导途径调节细胞的发育,FGF18的缺失就会严重影响成骨和软骨的形成。在同样具有矿化能力并且来源于外胚层的牙齿发育过程中,FGF18存在特异的时空分布特点,且随着成牙本质细胞的逐渐分化成熟,自身表达增强,提示FGF18参与成牙本质细胞的分化和牙本质的形成。但FGF18在成牙本质细胞形成和分化过程中起什么作用?通过哪种途径起作用?至今尚不很清楚。本课题对于这些问题进行了较深入的研究。具体内容如下:
Odontoblast is a special type of highly differentiated, tall columnar cell residing in pulp-dentin complex. As it is the only cell that secrete dentin matrix protein, it is in charge of dentin formation during tooth development and post-trauma repairation in postnatal tooth. So it is important to clarify the mechanism of odontoblast differentiation and mineralization, which is governed by a great deal of sequential and reciprocal interactions between epithelial and mesenchymal tissues.
    Fibroblast Growth Factor 18(FGF18) is a newly discovered member of FGFs family. Sequence comparison indicates that FGF18 is highly conserved between humans and mice and is most homologous to FGF8 and FGF17 among the FGF family members. It is a unique secreted signaling molecule in several adult and developing tissues and plays a crucial role in development of some ectodermal organs like midbrain. It is also a pleiotropic growth factor that stimulates proliferation in some tissues such as articular cartilage and bone through MAPK signal pathway. In FGF18 knock-out mouse, ossification of long bone and craniofacial bone was delayed, which indicated that FGF18 is a regulatory factor of osteoblast differentiation. It is interesting that FGF18 is expressed in a distinct temporal and spatial pattern during mouse odontogenesis and its expression is upregulated with the differentiation of odontoblasts, which suggests that there is great possibility of FGF18 to participate in the proliferation and differentiation of ondontoblast. Thus, the aim of this study was to investigate the role of FGF18 in regulating the proliferation and differentiation of odontoblast cells and its signal pathway. The present study consists of three parts as follow:
引文
1. Cheng-Ming Chuong. Molecular basis of epithelial appendage morphogenesis. 1998, R. G. Landes Company. Chapter 9:157-173.
    2. Thesleff, I. and Nieminen, E Tooth morphogenesis and cell differentiation. Curr.Opin.Cell Biol. 1996, 8(6):844-850.
    3. Lumsden, A. G Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988, 103 Suppl: 155-169.
    4. Mina, M. and Kollar, E. J. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch.Oral Biol. 1987, 32(2):123-127.
    5. Neubuser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997, 90(2):247-55.
    6. Mandler M, Neubuser A. FGF signaling is necessary for the specification of the odontogenic mesenchyme. Dev Biol. 2001, 240(2):548-59.
    7. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol. 2002, 217:93-135.
    8. Kettunen P, Karavanova I, Thesleff I. Responsiveness of Developing Dental Tissues to Fibroblast Growth Factors: Expression of Splicing Alternatives of FGFR1, -2, 3,and of FGFR4; and Stimulation of Cell Proliferation by FGF-2, -4, -8, and -9. Dev Gen. 1998, 22:374-385
    9. Kettunen P, Thesleff I. Expression and Function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn. 1998, 211:256-268
    10. Peters H, Neubuser A, Kratochwil K, Bailing R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities.Genes Dev. 1998, 12:2735-47
    11. (?) T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn. 1997, 210:383-396
    12. Xu X, Jeong L, Hun J, Ito Y, Bringas P Jr, Chai Y. Developmental expression of Smadl-7 suggests critical function of TGF-beta/BMP signaling in regulating epithelial-mesenchymal interaction during tooth morphogenesis. Int J Dev Biol. 2003, 47(1): 31-9.
    13. Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N. Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol. 2003, 264: 91-105
    14. Mitsiadis TA, Romeas A, Lendahl U, Sharpe PT, Farges JC. Exp Cell Res. Notch2 protein distribution in human teeth under normal and pathological conditions. 2003, 282(2): 101-9.
    15. Mitsiadis TA, Regaudiat L, Gridley T. Role of the Notch signalling pathway in tooth morphogenesis. Arch Oral Biol. 2005, 50(2): 137-40.
    16. Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R. FGF4, a direct target of LEF1 and Writ signaling, can rescue the arrest of tooth organogenesis in Lefl(-/-) mice. Genes Dev. 2002, 16(24): 3173-85.
    17. St Amand TR, Zhang Y, Semina EV, Zhao X, Hu Y, Nguyen L, Murray JC, Chen Y. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol. 2000, 217(2): 323-32.
    18. Alappat S, Zhang ZY, Chen YP. Msx homeoboxgene family and craniofacial development. Cell Research. 2003, 13: 429-442
    19. Peters H, Neubuser A, Kratochwil K, Bailing R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998, 12: 2735-47
    20. Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen CY, Gherzi R. The Wnt/beta-catenin->Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell. 2003, 12: 1201-11
    21. Bang AG, Papalopulu N, Goulding MD, Kintner C. Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol. 1999,; 212(2): 366-80.
    22. Christ B, Huang R, Wilting J. The development of the avian vertebral column. Anat Embryol (Berl). 2000, 202(3): 179-9423. Mandler, M. and Neubüser, A. FGF signaling isnecessary for the specification of the odontogenic mesenchyme. Dev. Biol. 2001,240:548-559
    24. Lammi, L., Halonen, K, Pirinen, S., Thesleff, I., Arte, S.,Nieminen, P. A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur J Hum Genet. 2003, 11:866-71
    25. Jumlongras D, Lin JY, Chapra A, Seidman CE, Seidman JG, Maas RL, Olsen BR. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet. 2004, 114:242-9
    26. Dassule, H.R., McMahon, A.P. Analysis of epithelialmesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol. 1998, 202:215-227
    27. Jernvall J, (?) SVE, Thesleff I. Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proc Natl Acad Sci. 2000, 19:14444-14448
    28. Jemvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating FGF-4. Int J Dev Biol. 1994, 38:463-469
    29. Vaahtokari A, ,(?) T, Jernvall J, (?) S, Thesleff I. The enamel knot as a signaling center in the developing mouse tooth. Mech. Dev. 1996, 54:39-43
    30. Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H. Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem. 2004, 52:103-12
    31. Unda FJ, Martin A, Hernandez C, Perez-Nanclares G, Hilario E, Arechaga J. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res. 2001, 15:34-7
    32. Millar SE, Koyama E, Reddy ST, Andl T, GaddaparaT, Piddington R, Gibson CW. Over- and Ectopic Expression of Writ3 causes progressive loss of ameloblasts in postnatal mouse incisor teeth. Corm Tiss Res. 2003, 44:124-129
    33. Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, McMahon AP. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development. 2002, 129:5323-37
    34. Sun ZL, Fang DN, Wu XY, Ritchie HH, Begue-Kim C, Wataha JC, Hanks CT, Butler WT. Expression of dentin sialoprotein (DSP) and other molecular determinants by a new cell line from dental papillae, MDPC-23. Connect Tissue Res. 1998, 37(3-4):251-61.
    35. Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H. Related. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int. 2000, 66(2):129-38
    36. Arany S, Nakata A, Kameda T, Koyota S, Ueno Y, Sugiyama T. Phenotype properties of a novel spontaneously immortalized odontoblast-lineage cell line. Biochem Biophys Res Commun. 2006,342(3):718-24.
    37. Ruth JV, Lesot H, Begue-Kirn C. Odontoblast differentiation. Int J Dev Biol 1995, 39(1):51-68
    38. MacDougall M, Nydegger J, Gu TT, Simmons D, Luan X, Cavender A, D'Souza RN.. Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect. Tissue Res. 1998, 39:25-37
    39. Thesleff I. Genetic basis of tooth development and dental defects. Acta Odontol. Stand. 2000, 58:191-194.
    40. Vaahtokari A, Vainio S, Thesleff I. Associations between transforming growth factor beta I RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development. 1991, 113:985-994.
    41. Cam Y, Neumann MR, Oliver L, RaulaisD, Janet T, Ruch JV. Immunolocalization of acidic and basic fibroblast growth factors during mouse odontogenesis. Int J Dev Biol. 1992, 36: 381-389.
    42. Mitsiadis TA, Luukko K. Neurotrophins in odontogenesis. Int J Dev Biol. 1995.39: 195-202.
    43. Joseph BK, Savage NW, Young WG, Gupta GS, Breier BH, Waters MJ. Expression and regulation of insulinlike growth factor-I in the rat incisor. Growth Factors. 1993, 8: 267-275.
    44. Lesot H, Lisi S, Peterkova R, Peterka M, Mitolo V, Ruth JV. Epigenetic signals during odontoblast differentiation. Adv Dent. Res. 2001, 15: 8-13.
    45. Heikinheimo K, Begue-Kirn C, Ritvos O, Tuuri T, and Ruch JV. Activin and bone morphogenetic protein (BMP) signaling during tooth development. Eur J Oral Sci. 1998, 106(suppl 1):167-173.
    46. Unda FJ, Martin A, Hilario E, Begue-Kirn C, Ruch JV, Arechaga J. Dissection of the odontoblast differentiation process in vitro by a combination of FGF1, FGF2, and TGFbetal. Dev. Dyn. 2000, 218: 480-489.
    47. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000, 127:4775-4785
    48. Cobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol. 2003, 48(1):1-14
    49. Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, D'Souza RN, Kozak CA, MacDougall M. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem. 1998, 273(16):9457-64
    50. Zhao Z, Stock D, Buchanan A, Weiss K. Expression of Dlx genes during the development of the murine dentition. Dev Genes Evol. 2000,210(5):270-5
    51. Line SR. Molecular morphogenetic fields in the development of human dentition. J Theor Biol. 2001, 211(1):67-75
    52. Lesot H, Kieffer-Combeau S, Fausser JL, Meyer JM, Perrin-Schmitt F, Peterkova R, Peterka M, Ruth JV. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res. 2002, 43:191-200.
    53. Ruch JV. Odontoblast commitment and differentiation. Biochem. Cell Biol. 1998, 76:923-938.
    54. Sahlberg C, Reponen P, Tryggvason K, Thesleff I. Timp-1, -2 and -3 show coexpression with gelatinases A and B during mouse tooth morphogenesis. Eur. J.Oral Sci. 1999, 107:121-130.
    55. Schmitt R, Ruth JV. In vitro synchronization of embryonic mouse incisor preodontoblasts and preameloblasts: repercussions on terminal differentiation. Eur. J. Oral Sci. 2000, 108: 311-319.
    56. David MO, Itoh N. Fibroblast growth factor. Genome Biol. 2001, 2(3):reviews3005. 1-3005. 12
    57. Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol. 1993, 13(7): 4251-9
    58. Mignatti P, Moromoto P, Rifkin DB. Basic fibroblast growth factor: a peotein devoid secretory singal sequence, is released by cells via a pathway indenpendent of endoplasmic reticulum-Glogi complex. J cell psysiol. 1992, 151: 81-93
    59.范洪宽,周慧,李惟.成纤维细胞生长因子与其受体相互作用以及抑制剂的研究进展.生物化学和生物物理学进展.2001,28(3):338-341
    60. Rohmann E, Brunner HG, Kayserili H, Uyguner O, Nurnberg G, Lew ED, Dobbie A, Eswarakumar VP, Uzumcu A, Ulubil-Emeroglu M, Leroy JG, Li Y, Becker C, Lehnerdt K, Cremers CW, Yuksel-Apak M, Numberg P, Kubiseh C, Schlessinger J, van Bokhoven H, Wollnik B. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006, 38(4): 414-7.
    61. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005, 16(2): 139-49.
    62. Ohbayashi N, Hoshikawa M, Kimura S, Yamasaki M, Fukui S, Itoh N. Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF-18. J Biol Chem. 1998, 273(29): 18161-4
    63. Whitmore TE, Maurer MF, Sexson S, Raymond F, Conklin D, Deisher TA. Assignment of fibroblast growth factor 18 (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet. 2000, 90(3-4): 231-3
    64. Moka Y, Ohbayashi N, Hoshikawa M, Itoh N, Hogan BL, Furuta Y. Comparison of the expression of three highly related genes, FGFS, FGF17 and FGF18, in the mouse embryo. Meeh Dev. 1998, 74(1-2): 175-7
    65.杨帆.牙胚成纤维细胞生长因子18基因克隆、表达及其功能研究.第四军医大学博士论文.2003.
    66. Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. FGF18 is required for normal cell proliferation and differentiation during??osteogenesis and chondrogenesis. Genes Dev. 2002, 16(7):870-9
    67. Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002, 16(7):859-69
    68. Shimoaka T, Ogasawara T, Yonamine A, Chikazu D, Kawano H, Nakamura K, Itoh N, Kawaguchi H. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem. 2002, 277(9):7493-500.
    69. Eswarakumar VP, Monsonego-Ornan E, Pines M. The IIIc alternative of FGFr2 is a positive regulator of bone formation. Development. 2002, 129(16):3783-93
    70 Ohuchi H, Kimura S, Watamoto M, Itoh N. Involvement of fibroblast growth factor (FGF)18-FGF8 signaling in specification of left-right asymmetry and brain and limb development of the chick embryo. Mech Dev. 2000, 95(1-2):55-66
    71. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of FGF8 and FGF17 regulate proliferation and differentiation of midline cerebellar structures. Development. 2000, 127(9): 1833-43
    72. Sato T, Joyner AL, Nakamura H. How does FGF signaling from the isthmic organizer induce midbrain and cerebellum development? Dev Growth Differ. 2004, 46(6):487-94.
    73. Liu A, Li JY, Bromleigh C, Lao Z, Niswander LA, Joyner AL. FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development. 2003, 130(25):6175-85
    74. Ellsworth JL, Garcia R, Yu J, Kindy MS. Fibroblast growth factor-18 reduced infarct volumes and behavioral deficits after transient occlusion of the middle cerebral artery in rats. Stroke. 2003, 34(6): 1507-12.
    75. Ellsworth JL, Garcia R, Yu J, Kindy MS. Time window of fibroblast growth factor-18-mediated neuroprotection after occlusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2004, 24(1):114-23.
    76. Martin A,Unda FJ, Begue-Kirn C,et al. Effects of aFGF, bFGF, TGFbetal and IGF-I on odontoblast differentiation in vitro. Eur Joral Sci. 1998, 106(suppl 1): 117~121
    77. Ellsworth JL, Berry J, Bukowski T, Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors.Osteoarthritis Cartilage. 2002,10(4):308-20
    78. Peters H, Bailing R.Teeth. Where and how to make them Trends Genet. 1999, 15(2):59-65
    79. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998, 74: 49-139.
    80. Yung Y, Yao Z, Aebersold DM, Hanoch T, Seger R. Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs. J Biol Chem. 2001, 276(38):35280-9.
    81. Adachi T, Kar S, Wang M, Carr BI. Transient and sustained ERK phosphorylation and nuclear translocation in growth control. J Cell Physiol. 2002, 192(2): 151-9.
    82. Kim H J, Kim JH, Bae SC, Choi JY, Kim H J, Ryoo HM. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J Biol Chem. 2003, 278(1):319-26
    83. Ochi H, Ogino H, Kageyama Y, Yasuda K. The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation. J Biol Chem. 2003, 278(1):537-44
    84. Tessner TG, Muhale F, Schloemann S, Cohn SM, Morrison A, Stenson WF. Basic fibroblast growth factor upregulates cyclooxygenase-2 in I407 cells through p38 MAP kinase. Am J Physiol Gastrointest Liver Physiol. 2003, 284(2):G269-79.
    85. Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing.Plant Cell. 1999, 11 (12):2291-301.
    86. Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol. 1992, 6(22):3343-53.
    87. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995, 81 (4):611-20.
    88. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell. 2000,101(1):25-33.
    89. Hammond SM, Bernstein E, Beach D, Harmon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, 404(6775):293-6.
    90. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004, 430(6996):161-4.
    91. Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 2002, 26(2): 199-213.
    92. Scherr M., Morgan M.A., Eder M.Gene silencing mediated by small interfering RNAs in mammalian cells. Curt. Med. Chem. 2003, 10:3245-256
    93. Tuschl T.RNA interference and small interfering RNAs.Chembiochem. 2001, 2(4):239-45.
    94. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.Nat Biotechnol. 2002, 20(5):500-5.
    95. Miyagishi M, Taira K. U6 promoter-driven siRNA with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002, 20(5):497-500.
    96. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A. 2002, 99(8):5515-20.
    97. Brummelkamp TR, Bemards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002, 296(5567):550-3.
    98. Aoki Y, Cioca DP, Oidalra H, Kamiya J, Kiyosawa K. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol. 2003, 30(1-2):96-102.
    99. Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J, Lukas J. Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation.Nat Cell Biol. 2002, 4(4):317-22.
    100. Stucke VM, Sillje HH, Amaud L, Nigg EA. Human Mpsl kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 2002, 21(7): 1723-32.
    101. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002, 3(10): 737-47
    102. Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A. 2003, 100(4): 1844-8.
    103. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA. Germline transmission of RNAi in mice. Nat Struct Biol. 2003, 10(2): 91-2.
    104. Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol. 2003, 21 (5): 559-61.
    105. Hemann MT, Fridman JS, Zilfou JT, Hemando E, Paddison PJ, Cordon-Cardo C, Hannon G J, Lowe SW. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet. 2003, 33(3): 396-400.
    106.何文喜,牛忠英,赵守亮,高杰,李萍.Smad7在成牙本质细胞系MDPC-23内转化生长因子β信号转导中的作用.北京口腔医学.2005,13(2):76-78
    107. M. K. Hajihosseini, J. K. Heath. Expression patterns of fibroblast growth factors-18 and -20 in mouseembryos is suggestive of novel roles in calvarial and limb development. Mechanisms of Development. 2002, 11: 379-83
    108. He WX, Niu ZY, Zhao SL, Jin WL, Gao J, Smith AJ. TGF-beta activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line. Arch Oral Biol. 2004, 49(11): 911-8.
    109. Wu C, Shimo T, Liu M, Pacifici M, Koyama E. Sonic hedgehog functions as a mitogen during bell stage of odontogenesis. Connect Tissue Res. 2003, 44(Suppl 1): 92-6.
    110.杨帆,肖明振,赵守亮.小鼠牙胚FGF18的基因克隆和序列分析.临床口腔医学杂志.2003,9(4):200-2
    111. Hanks CT, Fang D, Sun Z, Edwards CA, Butler WT. Dentin-specific proteins in MDPC-23 cell line. Eur J Oral Sci. 1998, 106 Suppl 1: 260-6
    112.. Ruth JV, Lesot H, Begue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995, 39(1): 51113. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of routine MC3T3-El cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992, 7(6): 683-87
    114. Thonemann B, Schmalz G. Immortalization of bovine dental papilla cells with simian virus 40 large T antigen. Arch Oral Biol, 2000, 45(10): 857-69
    115. Usui H, Shibayama M, Ohbayashi N, Konishi M, Takada S, Itoh N. FGF18 is required for embryonic lung alveolar development. Biochem Biophys Res Commun. 2004, 322(3): 887-92
    116. Reinhold MI, Abe M, Kapadia RM, Liao Z, Naski MC. FGF18 represses noggin expression and is induced by calcineurin. J Biol Chem. 2004, 279(37): 38209-19
    117. Moore EE, Bendele AM, Thompson DL, Littau A, Waggie KS, Reardon B, Ellsworth JL. Fibroblast growth factor-18 stimulates ehondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthdtis Cartilage. 2005, 13(7): 623-31.
    118. Liang RF, Nishimura S, Sato S. Effects of epidermal growth factor and transforming growth factor-beta on insulin-induced differentiation in rat dental pulp cells. Arch Oral Biol. 1992, 37(4): 789
    119. Takita K, Ohsaki Y, Nakata M, Kurisu K. immunofluorescence localization of type Ⅰ and type Ⅲ collagen and fibronectin in mouse dentaltissure in late development and during molar eruption. Arch Oral Biol. 1987, 32(3): 237
    120. Thonemann B, Schmalz G. Bovine dental papilla-derived cells immortalized with HPV 18 E6/E7. Eur J Oral Sci. 2000, 108(5): 432-41.
    121. Qin C, Brunn JC, Cadena E, Ridall A, Butler WT. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res. 2003, 44 Suppl 1: 179-83.
    122.郝建军,汪平,史俊南.碱性成纤维细胞生长因子的人牙髓细胞增殖和分化的影响.中华口腔医学杂志.1999,34(4):239-41
    123. Julian Downward. RNA interference. BMJ. 2004, 328: 1245-48
    124. Shimokawa T, Furukawa Y, Sakai M, Li M, Miwa N, Lin YM, Nakarnura Y. Involvement of the FGF18 Gene in Colorectal Carcinogenesis, as a Novel Downstream Target of the beta-Catenin/T-Cell Factor Complex. CANCER??RESEARCH. 2003, 63: 6116-20
    125. Huppi K, Martin SE, Caplen NJ. Defining and assaying RNAi in mammalian cells. Mol Cell. 2005, 17(1): 1-10.
    126. Kaufman RJ. Insight into the structure, function, and biosynthesis of factor Ⅷ through recombinant DNA technology. Ann Hematol. 1991, (3): 155-65
    127.司徒镇强,吴军正主编.细胞培养.西安:世界图书出版公司.2003:169-209
    128. Shimoaka T, Ogasawara T, Yonamine A, Chikazu D, Kawano H, Nakamura K, Itoh N, Kawaguchi H. Regulation of osteoblast, ehondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem. 2002, 277(9): 7493-500.
    129. Xiao L, Naganawa T, Obugunde E, Gronowicz G, Ornitz DM, Coffin JD, Hurley MM. Statl controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem. 2004, 279(26): 27743-52.
    130.裴育,孟迅吾,周学瀛,邢小平,夏维波.成纤维细胞生长因子9影响成骨细胞核心结合因子α1基因表达的作用.中国临床康复.2005,9(10):32-34
    131. Ishibe T, Nakayama T, Okamoto T, Aoyama T, Nishijo K, Shibata KR, Shima Y, Nagayama S, Katagiri T, Nakamura Y, Nakamura T, Toguchida J. Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clin Cancer Res. 2005, 11(7): 2702-12.
    132.陈健,牛忠英,药立波.p38 MAPK在LPS诱导牙龈成纤维细胞表达uPA中作用的研究.牙体牙髓牙周病学杂志.2002,12(9):266-269
    133. Theodosiou A, Ashworth A. MAP kinase phosphatases. Genome Biol. 2002, 3(7): reviews3009. 1-3009. 10
    134. Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science. 1997, 276(5314): 955-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700