大豆种子蛋白质含量和油分含量重演性QTL的发掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆(soybean)是我国重要的农作物之一,是植物蛋白质和油分的主要来源。发掘品质性状基因/QTL并利用分子标记辅助选择对于培育优质大豆品种具有深远的意义。
     近些年来,国内外学者经过多年研究,对控制大豆重要性状的QTL进行定位。因此对已发表的QTL定位结果进行整合与总结,从中发现重演性好的位点,对于理解性状形成的分子机制、提高分子标记辅助选择效果具有较好的理论和应用价值。本研究的目的是利用大豆QTL定位数据库(soybase)和大豆QTL定位有关的文献资料信息,利用物理整合、元分析、overview等三种方法发掘被多次定位到相同或相近区间(20cM以内)的蛋白含量和油分含量QTL位点,为分子标记辅助育种提供参考,主要结果如下:
     1、鉴定出大豆蛋白质含量的重演性QTL,发掘出候选基因,在I、E、B1、C1、C2、K、H上整合出7个重演性较好的大豆蛋白含量QTL,相关区间侧翼标记为Sat_219-Satt496、Satt268-Satt045、A118_1-A520_1、Satt338-Satt682、Satt281-Satt520、Satt349-Satt240、Satt192-BLT046_1;I连锁群连锁群上的Satt127具有较高的遗传贡献率,且在元分析中最小置信区间,overview方法也优化到该标记附近。选择蛋白含量QTL重复次数较高的最小置信区间(Sat_219-Satt496)预测基因,对25份大豆材料重测序并结合表型性状鉴定1个蛋白含量相关的候选基因Glyma20g17550.1。
     2、鉴定出与大豆油分含量的重演性QTL并发掘出候选基因。在C2、A2、I、Al、L连锁群上整合了5个重演性较好的与大豆油分含量相关的QTL,相关区间侧翼标记为Satt277-Satt557、L199_1-SAC7_2、A407_1-A515_1、Sat_344-Satt625、Satt388-Satt462,其中稳定性最高的是位于C2连锁群上的QTL,其overview分析结果仅与元分析定位的区间位置相距2.3cM,故其标记Satt277和Satt557可选作标记辅助鉴定;脂肪酸组分重演性较好的区间分别为-亚麻酸含量相关区间:Satt555-Sct 196;亚油酸含量相关区间:OP_M12b-A636_1、AW620774-A741_1;油酸相关区间:L026_1-Satt615、Satt163-Satt038、Satt325-Satt130、K493_1-T005_2。选择油分含量QTL重复次数较高(大于5次)的最小置信区间(Satt426-Satt511)并分析基因序列,筛选出油分含量候选基因Glyma11g08230.1(B1连锁群);对25份大豆材料测序并结合表型性状预测到油分含量候选基因Glyma11g08110.2、Glyma11g08210.1.
     3、鉴定出重演性好且与多个性状相关的标记或区间,其中T155 1、SOYGPATR、Satt442-Sat_401处的QTL,既与蛋白含量相关,也与油分含量有关联。而通过对产量性状QTL进行物理整合发现Satt277-Satt557处的QTL与油分含量和产量性状均显著相关,这些标记对于解释“一因多效”具有重要意义。
Soybean is a kind of important crops which supply plenty of fat and protein for our daily life. It is useful for us to find QTL or gene for high quality soybean and to use markers to do good for marker-assisted selection.
     Recently investigators launched their research through investigations of important traits in distinct years and locations, Thus generalizing and summarizing the QTL results already published to find locus whose conformity is an evident phenomon can show great value in understanding the molecular merchanism of traits and increasing the effects of molecular marker-assited analysis. The main purpose of this research is to combine the data of soybase and the previous papers about the QTL loci or soybean important agronomic traits with three ways (physical integration meta-analysis、overview analysis) and to find the QTL (in the interval of 20cMs) related with important traits (protein contents、oil contents and weights of 100 soybean seeds).Further more, the research can supply consultation for marker-assisted breeding. The main results are:
     1. Identify 7 most stable soybean protein content QTLs and find genes for soybean protein content.7 most stable soybean protein content QTLs are in linkage I, E, B1, C1, C2, K, H. Their related markers are Sat_219-Satt496、Satt268-Satt045、A118 1-A520 1、Satt338-Satt682、Satt281-Satt520、Satt349-Satt240、Satt192-BLT046_1, which could be used in marker-assisted selection in soybean breeding create new markers to help breeding. The linkage F contained one marker-Sattl27, whose related QTL effect explained by it is the highest, further more,it appeared near/in the smallest confidence interval supplied by biomercator and also are qualified by overview method. Select the smallest confidence interval (Sat_219-Satt496) related with protein contents whose repeated times are high to some extent.Use 25 materials to find the gene sequences and combine this data with protein phenotype traits, finally predict one gene-Glyma20g17550.1.
     2. Identify 5 most stable soybean oil content QTLs and find genes for soybean oil content.The QTLs of soybean oil are intergrated in linkage C2、A2、I、A1、L. Their related markers are are Satt277-Satt557、L199_1-SAC7_2、A407_1-A515_1、Satt62 5、Satt388-Satt462, the left and right marker of the most stable oil QTL are in C2 linkage group. The position of this QTL detected by overview method is only 2.3cM apart from the position of the interval by meta-analysis. So the conclusion is that markers Satt277 and Satt557 can be used for marker-assisted identifications. The following are the QTLs related with the composition of oil:Satt555-Sct_196 related with linolenic acid, OP_M12b-A636_1, AW620774-A741_1 related with linoleic acid and L026_1-Satt615, Satt163-Satt038, Satt235-Satt130, K493_1-T005_2 related with oleic acid. Select the smallest confidence interval (Satt426-Satt511) related with oil contents whose repeated times are high to some extent (more than 5) and analyze the sequence. Through this procedure, the predicted gene Glyma11g08230.1 (B1 linkage) jumped into our sight. This can provide consultation for gene cloning. Use 25 materials to find the gene sequences and combine this data with oil phenotype traits, finally predict another two genes-Glyma11g08110.2 and Glyma11g08210.1.
     3.Through the combination of statistic method and software, we found many maker and intervals about many traits and repeated for many times. T155_1、SOYGPATR、Satt442-Sat_401 are related with both protein contents and oil contents.Through the physical integration of QTL related to soybean yield, we found QTL near Satt277-Satt557 were related to both oil content and yield. These markers may be the main reason of "pleiotropism" and can be available to the following breeding work of breeders.
引文
[1]Akkaya M S, Shoemaker R C, Specht J E, Bhagwat A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Science,1995,35:1439~ 1445.
    [2]Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Retriction fragment length polymorphism as genetic marker in soybean. Theor Appl Genet,1988,75:889~901.
    [3]Barnett M E, Zolkiewska A, Zolkiewski M. Structure and activity of ClpB from Escherichia coli. Role of the amino and carboxyl-terminal domains. The journal of biological chemistry,2000,275:37565~37571.
    [4]Basten C J, Weir B S, Zeng Z B. QTL Cartographer Version 1.15.2001.
    [5]Bernard R L, Weiss M G. Qualitative genetics. Soybean:improvement, production, and use, 1973:117-149.
    [6]Berthet C, Morera A M, Asensio M J, Chauvin M A, Morel A P, Dijoud F, Magaud J P, Durand P, Rouault J P. CCR4-associated factor CAF1 is an essential factor for spermatogenesis. Molecular Biology of the Cell,2004,24(13):5808~5820.
    [7]Botstein D, White R, Skolnick M, Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet,1980,32:314~331.
    [8]Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Science,1997,37:370~378.
    [9]Burton J W. Breeding soybeans for improved protein quantity and quality. Westview Press, Boulder/CO,1985,361-367.
    [10]Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica,2003,129:387~393.
    [11]Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowing time in maize as inferred from quantitative trait loci meta-analysis and sunteny conservation with the rice genome. Genetic,2004,168:2169~ 2185.
    [12]Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H. QTL Analysis of major agronomic traits in soybean. Agricultural Sciences in China,2007,6(4): 399~405.
    [13]Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, Tassell C P V, Specht J E, Cregan P B. A Soybean transcript map:gene distribution, haplotype and SNP analysis. Genetics,2007,176(1):685~696.
    [14]Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker RC, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Science, 2003,43:1053~1067.
    [15]Cicek M. Genetic marker analysis of three major carbohydrates in soybean seeds. Doctor paper of Virginia Polytechnic Institute and State University,2001.
    [16]Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Science,2004,44:1121~1131.
    [17]Craig K L, Tyers M. The F-box:a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Progress in biophysics & molecular biology,1999, 72:299-328.
    [18]Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Science,1999,39:1464~1490.
    [19]Csanadi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet,2001,103:912~919.
    [20]Donis K H, Green P, Helms C. A genetic map of the human genome. Cell,1987,51:31~ 37.
    [21]Diers B W, Keim P, Fehr W R, Shoemaker R C, Fehr W R. RFLP analysis of soybean seed protein and oil content. Theor Appl Genet,1992,83:608~612.
    [22]Du W J, Wang M, Fu S X, Yu D Y. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. Journal of Genetics and Genomics,2009,36:721~731.
    [23]Etzel C J, Guerra R. Meta-analysis of genetic linkage analysis of quantitative trait loci. American Journal of human Genetics,2002,71:56~65.
    [24]Fasoula V A, Harris D K, Boerma H R. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Science, 2004,44:1218-1225.
    [25]Fleckenstein D, Rohde M, Klionsky D J, Rudiger M. Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin a, is associated with the yeast vacule membrane. Journal of cell science,1998,111:3109~3118.
    [26]Frary A, Nesbitt T C, Grandillo S, Van D K E, Cong B, Liu J, Meller J, Elber R, Alpert K, Tanksley S. Cloning and transgenic expression of fw2.2:a quantitative traits locus key to the evolution of tomato fruit. Science,2000,289:85~87.
    [27]Fukuoka H, Kageyama Y, Yamamoto K, Takeda G. Rapid conversion of rDNA intergenic spacer of diploid mutants of rice derived from gamm-irradiated tetraploids. Mol Gen Genet, 1994,243:166~172.
    [28]Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet,2005, 111:851-861.
    [29]Gai J Y, Wang Y J, Wu X L, Chen S Y. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Front Agric China, 2007,1(1):1~7.
    [30]Girard M, Poupon V, Blondeau F, Mcpherson P S. The DnaJ-domain protein RME-8 functions in endosomal trafficking. The journal of biological chemistry,2005,280: 40135~40143.
    [31]Glass G V. Primary, secondary, and meta-analysis of research. Educational Researcher, 1976,5:3-8.
    [32]Graef G I, Fehr W R, Miller L A, Hammond E G, Cianzo S R. Inheritance of fatty acid composition in a soybean mutant low linolenic acid. Crop Science,1988,28(1):55~58.
    [33]Goffinet B, Gerber S. Quantitative trait loci:a meta-analysis. Genetics,2000,155:463~ 473.
    [34]Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean:meta-analysis of QTL location. Crop Science,2006,46:595~602.
    [35]Guzman P S, Diers B W, Neece D J, Martin S K S, Leroy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Science,2007,47:111~122.
    [36]Herne C M, Ghosh S, Todd J A. Microsatellite for linkage analysis of genetic traits. Trends Genet,1992,8:288~294.
    [37]Hillig R C, Renault L, Vetter I R, Drell T, Wittinghofer A, Becker J. The crystal structure of rnalp:a new fold for a GTPase-activating protein. Molecular Cell,1999,3:781~791.
    [38]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau E D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet,2004,109: 552-561.
    [39]Hyten D L, Pantalone V R, Saxton A M, Schmidt M E, Sams C E. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. Journal of the American Oil Chemists Society,2004,81(12):1115~1118.
    [40]Hnetkovsky N, Chang S J C, Doubler T W, Gibson P T, Lightfoot D A. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Science, 1996,36(2):393~400.
    [41]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Jhonson S L, Cianzio S R. Molecular Marker Analysis of seed size in soybean. Crop Science,2003,43:68~74.
    [42]Hyten D L, Pantalone V R, Saxton A M, Schmidt ME, Sams C E. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. Journal of the American Oil Chemists Society,2004,81(12):1115~1118.
    [43]Ikeda T, Ohnoshi S, Senda M, Mikoshi T, Ishimoto M, Kitamura K, Funatsuki H. A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). Theor Appl Genet,2009,118:1477~1488.
    [44]Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics,1993,135:205~ 211.
    [45]Johnson H W, Robinson R L, Comstock R E. Estimates of genetic and environmental variability in soybeans. Agronomy J,1955,47:314~318.
    [46]Johnson H W, Bernard R L. Soybean genetics and breeding. Advances in Agronomy,1962, 14:149~221.
    [47]Jun T H, Van K J, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica,2008,162:179~191.
    [48]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative Alleles for Increased Yield from Soybean Plant Introductions. Crop Science,2004, 44:784-791.
    [49]Kwon S H, Torrie J H. Heritability of and interrelation ships among traits of two soybean populations. Crop Science,1964,4:196~198.
    [50]Keightley P D. Evolutionary history of the grasses. Plant physiol 2001,125:1198~1205.
    [51]Keim P, Diers B W, Olson T, Shoemaker R C. RFLP mapping in soybean:Association between marker loci and variation in quantitative traits. Genetics,1990,126:735~742.
    [52]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185~199.
    [53]Lark K G, Chase K, Adler F, Mansur L M, Orf J H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci,1995,92:4656~4660.
    [54]Lark K G, Weisemann J M, Matthews B F, Palmer R, Chase K, Macalma T. A genetic map of soybean (Glycine max L. Merr) using an intraspecific cross of two cultivars:'Minosy' and 'Noir 1'. TheorAppl Genet,1993,86:901~906.
    [55]Lee T L, Rinadi N J, Robert F, Odom D T, Ziv B J, Gerber G K, Hannett N M, Harbison C T, Thompson C M, Simon I, Zeitlinger J, Jennings E G, Murray H L, Gordon D B, Ren B, Wyrick J J, Tagne J B, Volkert T L, Fraenkel E, Gifford D K, Young R A. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science,2002,298(5594):799~804.
    [56]Lee D K, Chang C S. Molecular communication between androgen receptor and general transcription machinery. Journal of steroid biochemistry & molecular biology,2003,84: 41~49.
    [57]Lincoln S, Daly M, Lander E. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1 [J]. Whitehead Institute Technical Report 2nd Ed,1992.
    [58]Lee S H, Bailey M A, Mian M A R, Carter T E, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. RFLP loci associated with soybean seed protein and oil content across populations and locations. Them Appl Genet,1996,93:649~657.
    [59]Li W B, Sun D S, Du Y P, Chen Q S, Zhang Z C, Qiu L J, Sun G L. Quantitative trait loci underlying the development of seed composition in soybean (Glycine max (L). Merr.). Genome,2007,50:1067~1077.
    [60]Liu L J, Wu J J, Gao M J, Yang Z, Pu G F, Zheng L, Xue Y G. Formation of soybean oil content and marker selection, Research and progress of modern agro-biotechnology: proceeding of international agro-biotechnology conference,2005:90~92.
    [61]Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Science,2008,48:571~581.
    [62]Liu B H, Fujita T, Yan Z H, Sakamoto S, Xu D H, Abe J. QTL mapping of domestication-related Traits in soybean (Glycine max (L). Merr.). Annals of Botany,2007, 100:1027-1038.
    [63]Li Z L, Wilson R F, Rayford W E, Boerma H R. Molecular mapping genes conditioning reduced acid content in N87-2122-4 soybean. Crop Science,2002,42:373~378.
    [64]Monteros M J, Burton J W, Boerma H R. Molecular mapping and confirmation of QTLs associated with oleic acid content in N00-3350 soybean. Crop Science,2008,48:2223~ 2234.
    [65]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A et al. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet,1996,93:1011~1016.
    [66]Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed-weight: genomic locations,gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet,1996,93:574~579.
    [67]Masayuki S, Kiyohiko T, Aya U. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breeding Science,2008,58:361~366.
    [68]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic Mapping Of Agronomic Traits Using Recombinant Inbred Lines of Soybean. Crop Science,1996, 36: 1327-1336.
    [69]Mansur L M, Lark K G, Kross H, Oliveira A. An Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L). Theor Appl Genet,1993,86:907~913.
    [70]Mary I, Meyer Y. Cdna nucleotide sequence and expression of a tobacco cytoplasmic
    ribosomal protein L2 gene. Nucleic acids research,1992,20:1517~1522.
    [71]Mckinnon P J. ATM and ataxia telangiectasia. EMBO report,2004,5(8):772~776.
    [72]Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell,2003,15:1480~1495.
    [73]Medrano R R, Moraila B J, Estrella L H, Bustamante R F R. Nucleotide sequence of an osmotin-like Cdna induced in tomato during viroid infection. Plant molecular biology,1992, 20:1199~1202.
    [74]Morre D J, Auderset G, Penel C, Canut H. Cytochemical localization of NADH-ferricynide oxido-reductase in hypocotyls segments and isolated membrane vesicles of soybean. Protoplasma,1987,140:133~140.
    [75]Neyrolles O,Ferris S, Behbahani N, Montagnier L, Blanchard A. Organization of Ureaplasma urealyticum urease gene cluster and expression in a suppressor strain of Escherichia coli. The journal of bacteria,1996,178:647~655.
    [76]Nichlos D M, Gloverv K D, Carlson S R, Specht J E, Diers B W. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Science,2006,46:834~839.
    [77]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits:I. Comparison of three related recombinant inbred populations. Crop Science,1999,39:1642~1651.
    [78]Panthee D R, Pantalone V R, Saxton A M. Modifier QTL for fatty acid composition in soybean oil. Euphytica,2006,152:67~73.
    [79]Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science,2005,45: 2015-2022.
    [80]Palomeque L, Liu L J, Li W B, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted×high-yielding exotic soybean lines. Theor Appl Genet,2009,119: 417-427.
    [81]Palomeque L, Liu L J, Li W B, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: Ⅱ. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted×high-yielding exotic soybean lines. Theor Appl Genet,2009,119:429~436.
    [82]Paterson A H. Making genetic maps. Genome Mapping in Plants,1996a:23~39.
    [83]Palmer R G. World Soybean Research Conference Ⅲ,1985,337~344.
    [84]Palmer R G, Kilen T C. Soybean:improvement, production, and use. Crop Science Society of America,1987,135~209.
    [85]Perkel J. SNP genotyping:Six technologies that keyed a revolution. Nature Methods,2008, 5(5):447-453.
    [86]Pinkel D, Straume T, Gray J W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA,1986,83:2934~2938.
    [87]Protopopov V, Govindan B, Novick P, Gerst J. Homologs of the synaptobrevin/VAMP family of synaptic vesicle protein function on the late secretory pathway in S.cerevisiae. Cell,1993,74(5):855~861.
    [88]Qin L, Prins P, Jones J T, Popeijus H, Smant G, Bakker J, Helder J. GenEST, a powerful bi-directional link between cDNA sequence data and gene expression profiles generated-by cDNA AFLP. Nucleic Acids Research,2001,29:1616~1622.
    [89]Qiu B X, Arelli P R, Sleper D A. RFLP markers associated with soybean cyst nematode resistence and seed composition in a'Peking'×'Essex'population. Theor Appl Genet,1999, 98:356-364.
    [90]Qin J, Yang R Q, Liu Z X, Zhang Y F, Jiang C X, Li W B, Li Y H, Gun R X, Chang R Z, Qiu L J. location and transmission of QTL for multiple traits in the pedigree of soybean cultivars. Euphytica,2010,173:377~386.
    [91]Rudner L M, Lawrence M, Glass G V, Evartt D L, Emery P J. A user's guide to the meta-analysis of research studies.2002. ERIC Clearinghouse on Assessment and Evaluation,2002.
    [92]Reinprecht Y, Poysa V W, Yu K. Seed and agronomic QTL in low linolenic acids lipoxygenaze-free soybean(Glycine max (L). Merr.)germplasms. Genome,2006,49: 1510~1527.
    [93]Risch N. Genetic linkage:Interpreting LOD scores. Science,1992,255:803~804.
    [94]Rasmussen W D, Baker G L. "A Short History of Price Support and Adjustment Legislation and Programs for Agriculture,1933-65.". Agronomic Economic Research,18:69~78.
    [95]Romagosa I, Han F, Ullrich S E. Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross. Molecular Breeding,1999,5:143~ 152.
    [96]SAX K. The association of size differences with seed coat pattern and pigmentation in Phaseolous vulgarus. Genetics,1923,8:552~560.
    [97]Shoemaker R C. Soybean genomic from 1985 to 2002. Agbiotech Net,1999,1:1~4.
    [98]Shoemaker R C, Polzin K, Labate J, Specht J, Olson T, Young N, Concibido V, Wicox J, Tamulonis J P, Kochert G, Boerma H R. Genome duplication in soybean (Glycine subgenus soja). Genetics,1996,144(1):329~338.
    [99]Shoemaker R C, Olson T C. Molecular linkage map of soybean (Glycine max L.Merr). In: O'Brien SJ(ed) Genetic maps:locus maps of complex genomes. Cold Spring Harbor Laboratory Press,1993,6131~6138.
    [100]Shoemaker R C, Specht J. Intergration of the soybean molecular and classical genetic linkage groups. Crop Science 1995,35:436~446.
    [101]Soytech Inc. Oilseed Staticstics, Soytech Inc,2004.
    [102]Smith R R, Weber C R. Mass selection by specific gravity for protein and oil soybean populations. Crop Science 1968,8:373~377.
    [103]Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increase seed protein concentration in soybean. Crop Science,2000,40: 1438~1444.
    [104]Soares T C B, Good-God P I V, Miranda F D D, Schuster Y J B S I, Piovesan N D,Barros E G D, Moreira M A. QTL mapping for protein content in soybean cultivated in two tropical environments. Pesq agropec bra,2008,43(11):1533~1541.
    [105]Stombaugh S K, Orf J H, Jung H G, Chase K, Lark K G, Somers D A. Quantitative Trait Loci Associated with Cell Wall Polysaccharides in Soybean Seed. Crop Science,2004,44: 2101-2106.
    [106]Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breeding Science,. 2008,58:361~366.
    [107]Smalley M D, Fehr W R, Cianzio S R, Han F, Sebastian S A, Streit L G. Quantitative Trait Loci for Soybean Seed Yield in Elite and Plant Introduction Germplasm. Crop Science, 2004,44:436~442.
    [108]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water:A QTL analysis of drought tolerance. Crop Science,2001,41(2):493~509.
    [109]Spencer M M, Landau-Ellis D, Meyer E J, Pantalone V R. Molecular Markers Associated with Linolenic Acid Content in Soybean. JAOCS,2004,81:559~562.
    [110]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet,2004, 109:122~128.
    [111]Stuber C W. Mapping and manipulating quantitative traits in maize. Trend genetics,1995, 11:477~481.
    [112]Teng W, Han Y, Sun D, Zhang Z, Qiu L, Sun G, Li W. QTL analyses of seed weight during the development of soybean (Glycine max L.Merr). Heredity,2009,102:372~380.
    [113]Terbush D R, Maurice T, Roth D, Novick P. The exocyst is a multiprotein complex required for exocytosis in saccharomyces cerevisiae. EMBO Journel,1996,15:6483-6494.
    [114]Tajuddin T, Watanabe S, Yamanaka N, Harada K. Analysis of Quantitative Trait Loci for Protein and Lipid Contents in soybean Seeds Using Recombinant Inbred Lines. Breeding Science,2003,53:133~140.
    [115]Vollmann J, Schausberger H, Bistrich H, Lelley T. The presence or absence of the soybean Kunitz trypsin inhibitor as a quantitative trait locus for seed protein content. Plant Breeding, 2008,121(3):272-274.
    [116]Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. Nucleic Acid Research,1995,23:4407~4414.
    [117]Wang D K, Pei KM, Fu Y P, Sun Z X, Li S J, Liu H Q, Tang K, Han B, Tao Y Z. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene,2007,394:13~24.
    [118]Wilson R F. Ibid,1987,16:643.
    [119]Wilcox J R. Breeding soybeans for improved oil quantity and quality. Westview Press, Boulder/CO,1985,380~386.
    [120]William J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research,1990, 18:6531-6535.
    [121]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet,1999: 1255-1264.
    [122]Watson J D, Crick F H C. A structure for Deoxyribos Nucleic acid. Nature,2003,423: 397~398.
    [123]Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Hatada K. Analysis of QTLs for Reproductive Development and Seed Quality Traits in Soybean using Recombinant Inbred Lines. Breeding Science,2004,54:399~407.
    [124]Wang D,-Graef G L, Procopiuk A M, Diers B W. Identification of nutative QTL-that underlie yield in interspecific soybean backcross populations. Theor Appl Genet,2004,108:458~ 467.
    [125]Wang Y G, Deng Q Y, Liang F S. Molecular marker assisted selection for yield-enhancing gene in the progeny of Minghui63×O.rufipogon. Agriculture Science in China. Agriculture Science in China,2001,103:75~83.
    [126]Wang J L, Liu C Y, Wang J, Qi Z M, Li H, Hu G H, Chen Q S. An intergrated QTL map of fungal disease resistance in soybean (Glycine max L. Merr):A method of meta-analysis for mining R genes. Agricultural Science in China,2010,9(2):223~232.
    [127]White H B, Quaekenbush F W, Prober A H. Occurrence and inheritance of linolenic and linolenic acids in soybean seeds. Phytochemistry,1961,38(3):113v117.
    [128]Windhovel A, Hein I, Dabrowa R, Stockhaus J.2001. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Molecular Biology,2001,45(2):201~214.
    [129]Wong J C, Lambert R J, Wurtzel E T. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize [J]. Theor Apple Genet,2004,108(2):349~359.
    [130]Yu Y G, Saghai-Maroof M A, Buss G R, Maughan P J, Tolin S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology,1994,84:60~64.
    [131]Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem M A, Davis G T, Schmidt M E, Lightfoot D A. Quantitative trait loci in two Soybean Recombinant Inbred Line Populations Segregating for yield and Disease Resistance. Crop Sci,2002,42(1): 271-277.
    [132]Zhao G Y, Wang J, Han Y P, Teng W L, Sun G L, Li W B. Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) obraztsov, and correlations with plant, pod and seed traits. Euphytica,2008,164:275~282.
    [133]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean(Glycine.max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet,2004,108:1131~1139.
    [134]Zhu Y L, Song Q J, Hyten D L. Single-Nucleotide Polymorphism in Soybean. Genetics, 2003,163:1123~1134.
    [135]Zeng Z. Precision mapping of quantitative trait loci. Genetics,1994,136:1457~1468.
    [136]常汝镇,孙建英.中国大豆品种资源目录.北京:农业出版社,1991.
    [137]关荣霞,常汝镇,邱丽娟.大豆重要农艺性状的QTL定位及中国大豆与日本大豆的遗传多样性分析.北京:中国农业科学院,2002.
    [138]胡明祥,田佩占.中国大豆品种志.农业出版社,1993.
    [139]黄中文,赵团结,喻德跃,陈受宜,盖钧镒.大豆产量有关性状QTL的检测.中国农业科,2009,42(12):4155~4165.
    [140]黄中文,赵团结,喻德跃,陈受宜,盖钧镒.大豆生物量积累、收获指数及产量间的相关与QTL分析.作物学报,2008,34(6):944-951.
    [141]康明,王继安,杨明亮.大豆高油酸、低亚麻酸性状的分子标记.东北农业大学学报,2008,39(9):1-5.
    [142]梁慧珍,王树峰,余永亮,练云,王庭峰,位艳丽,巩鹏涛,刘学义,方宣钧.大豆异黄酮与油分、蛋白质含量基因定位分析.中国农业科学,2009,42(8):2652~2660.
    [143]林延慧,张丽娟,李伟,张礼凤,徐冉.大豆蛋白质含量的QTL定位.大豆科学,2010,29(2):207~209.
    [144]刘顺湖,周瑞宝,喻德跃,陈受宜,盖钧镒.大豆蛋白质有关性状的QTL定位.作物学报,2009,35(12):2139-2149.
    [145]刘峰,庄炳昌,张劲松,陈受宜.大豆遗传图谱的构建和分析.遗传学报,2000,27(11):1018-1026.
    [146]吕祝章,杨建华,李玉环,常汝镇,邱丽娟.大豆农艺性状的QTL分析.安徽农业科学,2010,38(6):2838~2841.
    [147]齐照明,孙亚男,陈立君,郭强,刘春燕,胡国华,陈庆山.基于Meta分析的大豆百粒重的QTLs定位.中国农业科学,2009,42(11):3795-3803.
    [148]任波,李毅.大豆种子脂肪酸合成代谢的研究进展.分子植物育种,2005,3(3):301~306.
    [149]单大鹏,朱荣胜,陈立君,齐照明,刘春燕,胡国华,陈庆山.大豆蛋白含量相关QTL间的上位效应.作物学报,2009,35(1):41-47.
    [150]单大鹏,齐照明,邱红梅,单彩云,刘春燕,胡国华,陈庆山.大豆油分含量相关QTL间的上位效应和QE互作效应.作物学报,2008,34(6):952-957.
    [151]宋万坤,王晶,朱命喜,齐照明,刘春燕,陈庆山,胡国华.大豆脂肪酸组分相关QTL元分析.大豆科学,2009,28(5):774-780.
    [152]史利玉.玉米抗粗缩病及灰斑病基因的初步定位.成都:四川农业大学,2007.
    [153]苏辉.大豆高油分×高蛋白RIL遗传图谱的构建及重要农艺性状的QTL定位.通辽:内蒙古民族大学,2008.
    [154]宛煜嵩.大豆遗传图谱的构建及若干农艺性状的QTL定位分析.北京:中国农业科学院,2002.
    [155]魏崃,孙鸿雁,唐晓飞,杨喆,高明杰,刘丽君.大豆遗传群体选择与品质QTL的获得.分子植物育种,2009,7(4):727~735.
    [156]王贤智,周蓉,单志慧,张晓娟,沙爱华,陈海峰,邱德珍,周新安.不同种植密度下大豆产量性状的QTL分析.中国油料作物学报,2009,31(1):001-008.
    [157]王毅.玉米本地化生物信息库的构建和QTL的整合、比较和元分析.武汉:华中农业大学,2006.
    [158]王珍.大豆SSR遗传图谱构建及重要农艺性状QTL分析.南宁:广西大学,2004.
    [159]王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用.南京:南京农业大学,2001.
    [160]吴琼,齐照明,刘春燕,胡国华,陈庆山.基于元分析的大豆生育期QTL的整合.作物学报,2009,35(8):1418-1424.
    [161]王贤智,周蓉,张晓娟,单志慧,沙爱华,陈海峰,邱德珍,,李培武,周新安.大豆遗传图谱的构建和含油量的QTL分析.中国油料作物学报,2008,30(3):272-278.
    [162]吴晓雷,王永军,贺超英.大豆重要农艺性状的QTL分析.遗传学报,2001,28(10):947-955.
    [163]薛永国,刘丽君,杨喆,高明杰,张雷.大豆油分含量QTL分析.东北农业大学学报,2007,38(6):721~724.
    [164]徐鹏,王慧,李群,盖钧镒,喻德跃.大豆油份含量QTL的定位.遗传,2007,29(1):92-96.
    [165]杨喆,关荣霞,王跃强,刘章雄,常汝镇,王曙明,邱丽娟.大豆遗传图谱的构建和若干农艺性状的QTL定位分析.植物遗传资源学报,2004,5(4):309~314.
    [166]杨喆,刘丽君,高明杰,蒲国锋,张雷.大豆高油相关QTL分子标记辅助选择研究.大豆科学,2008,27(6):921-924.
    [167]杨喆,刘丽君,高明杰,蒲国锋,张雷.大豆高蛋白基因分子标记及其在大豆育种中的应用.大豆科学,2008,27(2):186-189.
    [168]杨竹丽,李贵全.晋大52×晋大57 RIL群体重要农艺性状的QTL定位.华北农学报,2010,25(2):88-92.
    [169]杨柳,张彬彬,韩英鹏,李文斌.大豆亚麻酸含量的QTL分析.大豆科学,2006,25(3):270-278.
    [170]庄炳昌.中国野生大豆的遗传多样性及品质性状QTL定位.北京:中国农业大学,2000.
    [171]张德水,董伟,惠东威等.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图.科学通报,1997,42(12):1326~1330.
    [172]张忠臣,战秀玲,陈庆山,腾卫丽,杨庆凯,李文斌.大豆油分和蛋白性状的基因定位.大豆科学,2004,23(2):81~85.
    [173]张军,赵团结,盖钧镒.大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报,2008,(12):1-10.
    [174]赵岚,陆融,姚智.Ca2+/钙调蛋白依赖性蛋白激酶在细胞增殖中的作用.细胞生物学杂志,2007,29:331~335.
    [175]朱晓丽.大豆遗传图谱构建及在两个群体重要农艺性状的QTL定位.哈尔滨:东北农业大学,2006.
    [176]郑永战,盖钧镒,卢为国,李卫东,周瑞宝,田少君.大豆油分及脂肪酸组分含量的QTL定位.作物学报,2006,32(12):1823-1830.
    [177]中国农科院油料所.中国大豆品种资源目录.北京:农业出版社,1982.
    [178]周斌,邢邯,陈受宜,盖钧镒.大豆重组自交系群体NJRIKY遗传图谱的加密及其应用效果.作物学报,2010,36(1):36-46.
    [179]周蓉,陈海峰,王贤智,张晓娟,单志慧,吴学军,蔡淑平,邱德珍,周新安,吴江生.大豆产量和产量构成因子及倒伏性的QTL分析.作物学报,2009,35(5):821~830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700