叔丁醇/水基料浆冷冻浇注成型制备多孔陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对冷冻浇注成型工艺制备多孔陶瓷开展研究,以叔丁醇/水二元混合溶液作为陶瓷料浆的液相溶剂,通过分析叔丁醇/水二元混合溶液的物化性质,测量计算叔丁醇/水二元混合液及其结晶体与陶瓷间的液-固、固-固界面张力γls、γss,以及二者差值Δγ。得到溶剂-粉体颗粒二元液相系统冷冻凝固初始及结束状态界面行为规律,并通过这一规律分析叔丁醇/水基陶瓷料浆冷冻浇注成型制备多孔陶瓷过程中,不同叔丁醇浓度与孔结构特征的关系,得出该体系料浆冷冻成型过程液相结晶及成孔形貌与界面行为的关联性。在此基础上,选择合适的料浆组分制备具有定向孔结构的SiC多孔陶瓷,及具有纳米孔结构的纳米氧化硅块体隔热材料。
     本论文以Young-Good-Girifalco-Fowkes方程理论为基础,采用极性-色散分量方法测量计算出混合溶液及其结晶体与陶瓷间液-固、固-固界面张力,以及二者差值Δγ。结果表明,当TBA浓度为0、30、60、90%时,Δγ为极大值,当TBA浓度为20、50、70、100%时,Δγ为极小值。
     采用叔丁醇/水基碳化硅陶瓷料浆冷冻浇注成型制备了具有定向孔结构的多孔陶瓷,孔的形貌呈现狭长片状及柱状两种类型,出现两种类型孔的初始料浆中TBA浓度,分别对应Δγ的极大、极小值,而与液-固表面张力的大小无明显联系。即陶瓷粉体颗粒存在的情况下,此溶剂与颗粒间液-固界面转化为固-固界面的难易程度,影响了结晶体的形貌特征,进而影响了孔结构。Δγ越小,结晶过程越易发生,因此易于形成单位体积内具有较大比表面积的圆型截面柱状孔;反之,Δγ越大,形成新相的难度越大,则更易于形成具有较小比表面积的狭长截面片状孔。
     研究中为制备具有均匀微孔结构的氧化硅隔热材料,在非定向分布温度场环境下,选择TBA浓度为15%、20%、40%、70%的混合溶液配制纳米氧化硅粉体料浆冷冻浇注成型。并与纯水及纯叔丁醇基料浆进行比较,结果表明,由于溶液中氢离子存在以及纳米氧化硅粉体水解作用等原因,TBA浓度为40%、70%料浆具有更为细小均匀的微观孔结构,同时为排除液相冷冻凝固过程体积变化因素,选择TBA浓度为40%料浆冷冻成型制备微孔氧化硅块体材料。所制备添加玻璃纤维的样品,经过不同压力干压后,可以得到纳米孔氧化硅块体隔热材料。结果显示,TBA浓度为40%、固含量为13wt%的叔丁醇/水基纳米氧化硅粉体料浆,冷冻浇注成型后,采用15MPa压力压制,可以得到密度0.4g/cm3,平均孔径29.32nm,比表面积265.63m~2/g的纳米孔氧化硅块体隔热材料,经隔热材料加热过程背温测试,结果表明,该材料的热导率优于某种同厚度硅酸铝纸(700oC热导率为0.08W/(m·K))。
This paper studied on preparation of porous ceramics by freeze-casting formingprocess of TBA/H_2O based ceramics powder suspensions, in which TBA/H_2O mixturewith different TBA concentration acted as cosolvent in slurry. The physical andproperties of TBA/H_2O binary system were studied. The liquid-solid(γls)andsolid-solid(γss)interface tension between the cosolvent and its crystals with ceramicssubstrates (polished SiC and Al_2O_3), as well as their differential value Δγ weremeasured and calculated. Based on the research, the interaction between poresmorphology in oriented porous SiC ceramics and the interface tension wasdemonstrated. Furthermore, nano porous SiO2monolithic insulation was preparedfrom TBA/H_2O based nano SiO2powder slurry by freeze-casting and dry-pressing,subsequently.
     In this paper, an optical method based on Young-Good-Girifalco–Fowkesformula was used for measuring γls,γssand Δγ. The results shows that Δγ hasmaximum value with TBA concentration of0,30,60and90%, respectively, and theminimum value with TBA concentration of20,50,70and100%, respectively.
     By observation of microstructure of SiC porous ceramics fabricated byfreeze-casting of TBA/H_2O slurries, it was found that laminar and columnar orientedpores were obtained with different TBA concentration, and the two kinds of porescorresponding with the maximum points and the minimum points of Δγ, respectively.The reason for these phenomena was that when liquid-solid interface transfer tosolid-solid interface during freeze process, more energy were need with higher Δγ, solaminar crystals with small specific surface area were preferred to be formed, whileon the contrary, columnar pores with large specific surface area were easily to beformed with lower Δγ.
     Based on the former results, a novel method for fabricating nano pores SiO2monolithic insulation was presented by combined freeze-casting with dry-pressingprocess. Nano-sized SiO2powder suspensions with TBA concentration of15,20,40,70%, were selected as the slurries for freeze-casting. The microstructure of these samples showed different regulation with SiC porous ceramics due to the existing ofH+ions and the hydrolyzaion of nano-sized SiO2powders. In this case, slurries withTBA concentration of40and70%were suitable for making porous SiO2monolithwith finer pores. The slurry with TBA=40%, solid loading of13wt%, and with theaddition of2wt%glass fibers was finally chosen for preparation of SiO2porousmonolith by considering the integrative properties of finest pore morphology andsmallest volume changing during freezing process. After pressing of the freeze-castedsamples by pressure of15Mpa, a nano porous SiO2monolithic insulation wasfabricated with density of0.4g/cm3, mean pores of29.32nm, and specific surface areaof265.63m2/g, respectively. The insulation ability evaluated by back side temperaturemeasurment from is higher than Alumina silicates paper (thermal conductivity:0.08W/(m·K)(700oC)) with same thickness.
引文
[1]. Oetjen George Wilhelm, and Peter Haseley.2004. Freeze-Drying[M]. Weinheim: Wiley-VCH.ISBN352730620X.
    [2]. Z.L. Wang, W.H. Finlaya, M.S. Pepplerb, L.G. Sweeneya, Powder formation by atmosphericspray-freeze-drying[J], Powder Technology, Vol.170, Issue1,30November,2006, pp45–52.
    [3]. W. A. Maxwell, R. S. Gurnick, A. C. Francisco, Preliminary Investigation of the“Freeze-casting” Method for Forming Refractory Powders[R], NACA RM E53L21.
    [4]. Schnettler, F. R. Monforte, and W. W. Rhodes, Cryochemical Method for Preparing CeramicMaterials, Science of Ceramics[M], Vol.4, Edited by G. H. Stewart. British Ceramic Society,London, U.K.,1968. pp.79-90.
    [5]. W. Mahler and M.F. Bechtold, Freeze-Formed Silica Fibres[J], Nature (London), Vol.285,1980, pp27-28.
    [6]. W. Mahler, Siliceous Fibres and Method of Preparing Them[P], U.S. Pat. No.4,122,041, Oct.24,1978.
    [7].刘继富,吴厚政,谈家琪,朱宣慧,冷冻干燥法制备MgO—ZrO2超细粉末[J],硅酸盐学报, Vol24,1996(1), pp105-108.
    [8] Hui Lu, Zhe Qu, YanChun Zhou, Preparation and mechanical properties of densepolycrystalline hydroxyapatite through freeze-drying[J], Journal of Materials Science, Materials inmedicine1998(9), pp583-587.
    [9].刘祥志,朴玲钰,毛立娟,郝士杰,杨磊,鞠思婷,真空冷冻干燥制备高比表面积纳米氧化铝[J],物理化学学报, Vol.26,2010(4), pp1171-1176.
    [10]. Takayuki Fukasawa, Zhen-Yan Deng, Motohide Ando, Tatsuki Ohji, Shuzo Kanzaki,Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-DryingProcess[J], J. Am. Ceram. Sci., Vol.85,2000(9), pp2151-2155.
    [11]. T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki, Synthesis of Porous Ceramics with ComplexPore Structure by Freeze-Dry Processing[J], J. Am. Ceram. Soc. Vol.84,2001(1), pp230-232.
    [12]. T. Fukasawa, Z-Y Deng, M. Ando, T. Ohji, Y. Goto, Pore structure of porous ceramicssynthesized from water-based slurry by freeze-dry process[J], J. Mater. Sci. Vol.36,2001,pp2523-2527.
    [13]. Takayuki Fukasawa, Zhen-Yan Deng, Motohide Ando, Tatsuki Ohji, Porous ceramics withcontrolled aligned-pores synthesized by freeze-drying process[C],25thAnnual Conference onComposites, Advanced Materials, and Structures:B, Vol.22,2001(4), pp153-160.
    [14]. Yoshihisa Beppu, Motohide Ando, Tatsuki Ohji, Fabrication of highly porous silicateceramics by freeze-drying[C],25thAnnual Conference on Composites, Advanced Materials, andStructures:B, Vol.22,2001(4), pp145-151.
    [15].唐婕,陈玉峰,王华,樊啟晟,冷冻浇注成型工艺条件对RBSC显微结构的影响[J],稀有金属材料与工程, Vol.31,2002(9), pp166-169.
    [16].唐婕,水基碳化硅/炭黑料浆冷冻浇注成型工艺研究[D],中国建筑材料科学研究院硕士论文,2003.
    [17]. Jie Tang, Yufeng Chen, Jiguo Sun, Hua Wang, Hailin Liu and Qisheng Fan, Preparation ofOriented Porous Silicon Carbide Bodies by Freeze-Casting Process[J], Key Engineering.Materials., Vols.280-283,2005, pp.1287-1290.
    [18]. Jie Tang, Yufeng Chen, Jiguo Sun, Hua Wang, Hailin Liu and Qisheng Fan, Properties andApplication of Oriented Porous SiC as Transpiration Cooling Materials[J], Key Engineering.Materials. Vols.336-338,2007, pp.1109-1112.
    [19]. Kiyoshi Araki, John W. Halloran, Room-Temperature Freeze Casting for Ceramics withNonaqueous Sublimable Vehicles in the Naphthalene–Camphor Eutectic System[J], Journal of theAmerican Ceramic Society, Vol.87,2004(11), pp2014–2019.
    [20]. K. Araki and J. W. Halloran, Porous Ceramic Bodies with Interconnected Pore Channel by aNovel Freeze Casting Technique[J], J. Am. Ceram. Soc., Vol.88,2005(15), pp1108-1114.
    [21]. Byung-Ho Yoon, Won-Young Choi, Hyoun-Ee Kim, Ji-Hwan Kim, Young-Hag Koh,Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering[J],Scripta Materialia, Vol.58,2008, pp537–540.
    [22]. Eun-Jung Lee, Young-Hag Koh, Byung-Ho Yoon, Hyoun-Ee Kim, Hae-Won Kim, Highlyporous hydroxyapatite bioceramics with interconnected pore channels using camphene-basedfreeze casting[J], Materials Letters, Vol.61,2007, pp2270–2273.
    [23]. Byung-Ho Yoon, Chee-Sung Park, Hyoun-Ee Kim, Young-Hag Koh,In-situ fabrication ofporous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry[J],Materials Letters, Vol.62,2008, pp1700–1703.
    [24]. Se-Won Yook, Byung-Ho Yoon, Hyoun-Ee Kim, Young-Hag Koh, Yong-Sik Kim, Poroustitanium (Ti) scaffolds by freezing TiH2/camphene slurries[J], Materials Letters, Vol.62,2008, pp4506–4508.
    [25]. Ruifeng Chen, Chang-An Wang, Yong Huang, Liguo Ma, and Weiyuan Lin. Ceramics withSpecial Porous Structures Fabricated by Freeze-Gelcasting: Using tert-Butyl Alcohol as aTemplate[J]. J. Am. Ceram. Soc., Vol.90,2007(11), pp3478–3484.
    [26] Liangfa Hu, Chang-An Wang, Yong Huang, Chencheng Sun, Sheng Lu, Zijun Hu, Control ofpore channel size during freeze casting of porous YSZ ceramics with unidirectionally alignedchannels using different freezing temperatures[J], Journal of the European Ceramic Society,Vol.30,2010(16), pp3389-3396.
    [27].周立忠,汪长安,刘伟渊,黄勇.叔丁醇基凝胶注模工艺制备轻质、高强莫来石多孔陶瓷[J],无机材料学报, Vol.24,2009(6), pp1173-1177.
    [28]. Tae Young Yang, Jung Min Lee, Seog Young Yoon, Hong Chae Park, Hydroxyapatitescaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique[J], Journal ofMaterials Science: Materials in Medicine, Vol.21,2010(5), pp1495-1502.
    [29]. Lee, J H; Kim, W Y; Yang, T Y; Yoon, S Y; Kim, B K; Park, H C, Fabrication of porousceramic composites with improved compressive strength from coal fly ash[J], Advances inApplied Ceramics, Vol.110,2011, pp.244-250.
    [30]. Yang TY, Lee JM, Yoon SY, Park HC, Hydroxyapatite scaffolds processed using aTBA-based freeze-gel casting/polymer sponge technique[J], J Mater Sci Mater Med. Vol.21,2010(5), pp1495-1502.
    [31]. T.Y. Yanga, H.B. Jia, S.Y. Yoona, B.K. Kimb, H.C. Park, Porous mullite composite withcontrolled pore structure processed using a freezecasting of TBA-based coal fly ash slurries[J],Resources, Conservation and Recycling, Vol.54,2010, pp816–820.
    [32]. Hong Jun Choi, Tae Young Yang, Seog Young Yoon, Byung Kyu Kim, Hong Chae Park,Porous alumina/zirconia layered composites with unidirectional pore channels processed using atertiary-butylalcohol-based freezecasting[J], Materials Chemistry and Physics, Vol.133,2012(1),pp16–20.
    [33]. Duanyang Li and Meishuan Li, Preparation of porous alumina ceramic with ultra-highporosity and long straight pores by freeze casting[J], Journal of Porous Materials, Vol.19,2012(3),pp345-349.
    [34] H. Lu, Z. Qu, Y. C. Zhou, Preparation and mechanical properties of dense polycrystallinehydroxyapatite through freeze-drying[J], J. Mater. Sci., Vol.33,1998(9), pp583-587.
    [35]. S. W. Sofie and F. Dogan, Freeze Casting of Aqueous Alumina Slurries with Glycerol[J], J.Am. Ceram. Sci., Vol.84,2001(7), pp1459-1464.
    [36]. Victor F. Petrenko and Robert W. Whitworth, Physics of Ice[M], Oxford; New York:Clarendon Press,1999.
    [37]. Sylvain Deville, Freeze-Casting of Porous Ceramics: A Review of Current Achievementsand Issues[J], Advanced Engineering Materials, Vol.10,2008(3), pp155-160.
    [38]. Ulrich Soltmann, Horst Bottcher, Dietmar Koch, Georg Grathwohl, Freeze gelation: a newoption for the production of biological ceramic composites (biocers)[J], Materials Letters, Vol.57,2003, pp2861–2865.
    [39]. Y.K. Cho, T.Y. Yanga, J.M. Leeb, S.Y. Yoona, R. Stevensc, H.C. Park, Freeze cast symmetricthree-layer alumina-matrix composites with improved damage resistance[J], Journal of Physicsand Chemistry of Solids, Vol.69,2008, pp1525–1527.
    [40]. Siddhartha Roy, Alexander Wanner, Metal/ceramic composites from freeze-cast ceramicpreforms: Domain structure and elastic properties[J], Composites Science and Technology, Vol.68,2008, pp1136–1143.
    [41]. Yumin Zhang, Luyang Hu,w and Jiecai Han, Preparation of a Dense/Porous BiLayeredCeramic by Applying an Electric Field During Freeze Casting[J], J. Am. Ceram. Soc., Vol.92,2009(8), pp1874–1876.
    [42]. J.-W. Moon, H. J. Hwang, M. Awano, K. Maeda, S. Kanzaki, Preparation of DenseThin-Film Solid Electrolyte on Novel Porous Structure with Parallel Pore Channels[J], J. Ceram.Soc. Jpn., Vol.110,2002, pp479-484.
    [43]. J.-W. Moon, H.-J. Hwang, M. Awano, K. Maeda, Preparation of Nio-YSZ tubular supportwith radially aligned pore channels[J], Mater. Lett., Vol.57,2003(8), pp1428-1434.
    [44]. Etienne Munch, Eduardo Saiz, and Antoni P. Tomsia, Architectural Control of Freeze-CastCeramics Through Additives and Templating[J], J. Am. Ceram. Soc., Vol.922009(7),pp1534–1539.
    [44]. Linlin Ren, Yu-Ping Zeng, Dongliang Jiang, Preparation of porous TiO2by a novel freezecasting, Ceramics International[J], Vol.35,2009(3), pp1267-1270.
    [45]. N. O. Shanti, K. Araki, J. W. Halloran, Particle Redistribution During Dendritic Solificationof Particle Suspension[J], J. Am. Ceram. Soc. Vol.89,2006(8), pp2444-2447.
    [46]. Christopher M. Pekor, Predrag Kisa, and Ian Nettleshipw, Effect of Polyethylene Glycol onthe Microstructure of Freeze-Cast Alumina[J], J. Am. Ceram. Soc., Vol.91,2008(10),pp3185–3190.
    [47]. Seager H, Taskis C B, Syrop M, et al. Freeze drying parenterals containging organicsolvent-Part1Manuf[J]. Chem. Aerosol News, Vol.49,1978(11), pp43-44.
    [48]. Seager H, Taskis C B, Syrop M, et al. Structure of products prepared by freeze-dryingsolutions containing organic solvent[J]. Journal of Parenter Science and Technology, Vol.39,1985(4), pp161-179.
    [49]. T. E. Daubert and R. P. Danner.Physical and Thermodynamic Properties of Pure Chemicals:Data Compilation, Part4[M]. Taylor&Francis, London, U.K.,1989.
    [50]. D. R. Stull, Vapor Pressure of Pure Substances Organic Compounds[J], Ind. Eng. Chem.,Vol.39,1947, pp517-540.
    [51]. B.-H. Yoon, E.-J. Lee, H.-E. Kim, Y.-H. Koh,.Highly Aligned Porous Silicon CarbideCeramics by Freezing Polycarbosilane/Camphene Solution[J], J. Am. Ceram. Soc. Vol.90,2007(9), pp1753-1759.
    [52]. Young-Mi Soon, Kwan-Ha Shin, Young-Hag Koh, etc. Assembling unidirectionally frozenalumina/camphene bodies for aligned porous alumina ceramics with larger dimension[J], Journalof the European Ceramic Society, Vol.31,2011, pp415-419.
    [53]. Changqing Hong, Xinghong Zhang, Jiecai Han, Jiancong Du and Wenbo Han.Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting[J].Scripta Materialia, Vol.60,2009, pp563-566.
    [54]. Changqing Hong, Xinghong Zhang, Jiecai Han, Jiancong Du, Wei Zhang. Camphene-basedfreeze-cast ZrO2foam with high compressive strength[J]. Materials Chemistry and Physics,Vol.119,2010, pp359-362.
    [55]. Jiecai Han, Changqing Hong, Xinghong Zhang, Jiancong Du, Wei Zhang. Highly porousZrO2ceramics fabricated by a camphene-based freeze-casting route: Microstructure andproperties[J], Journal of the European Ceramic Society Vol.30,2010, pp53-60.
    [56]. Se-Won Yook, Hyoun-Ee Kim, Byung-Ho Yoon, Young-Mi Soon, Young-HagKoh.Improvement of compressive strength of porous hydroxyapatite scaffolds by addingpolystyrene to camphene-based slurries[J], Materials Letters, Vol.63,2009, pp955-958.
    [57].A. Macchetta, I.G. Turner, C.R. Bowen. Fabrication of HA/TCP scaffolds with a graded andporous structure using a camphene-based freeze-casting method[J], Acta Biomaterialia, Vol.5,2009, pp1319-1327.
    [58]. Young-Mi Soon, Kwan-Ha Shin, Young-Hag Koh, Jong-Hoon Lee, Hyoun-Ee Kim.Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffoldswith aligned pores[J], Materials Letters, Vol.63,2009, pp1548-1550.
    [59]. Ju-Ha Song, Young-Hag Koh,w and Hyoun-Ee Kim. Fabrication of a Porous BioactiveGlass–Ceramic Using Room-Temperature Freeze Casting[J], J. Am. Ceram. Soc, Vol.89,2006(8),pp2649-2653.
    [60]. S.-J. Hong,H.-S. Yu,H.-W. Kim, Preparation of porous bioactive ceramic microspheres andin vitro osteoblastic culturing for tissue engineering application[J], Acta Biomaterialia, Vol.5,2009, pp1725-1731.
    [61]. Byung-Ho Yoon, Chee-Sung Park, and Hyoun-Ee Kim, In Situ Synthesis of Porous SiliconCarbide (SiC) Ceramics Decorated with SiC Nanowires[J], J. Am. Ceram. Soc, Vol.90,2007(12),pp3759-3766.
    [62].左建国,叔丁醇_水共溶剂的热分析及其冷冻干燥研究[D],上海理工大学博士学位论文,2005
    [63]. Kim J.H., Lee J.H., Yang T.Y., et al. TBA-based freeze/gel casting of porous hydroxyapatitescaffolds[J], Ceramics International, Vol.37,2011, pp2317-2322.
    [64]. Mohamed N. Rahaman and Qiang Fu, Manipulation of Porous Bioceramic Microstructuresby Freezing of Suspensions Containing Binary Mixtures of Solvents[J], J. Am. Ceram. Soc.,Vol.91,2008(12), pp4137–4140
    [65].邢建东,晶体定向生长[M],西安交通大学出版社,2008
    [66].洪广言,无机固体化学[M],科学出版社,2002
    [67]. S. Deville, E. Saiz, A.P. Tomsia, Ice templated porous alumina structures[J], Acta Materialia,Vol.55,2007(6), pp1965-1974.
    [68]. Stephen A. Barr a, Erik Luijten, Structure properties of materials created throughfreeze-casting[J], Acta Materialia, Vol.58,2010, pp709–715.
    [69].陶涛,彭晓峰,李笃中,单向冻融处理中界面与刚性颗粒的相互作用:Ⅰ.实验现象[J],应用基础与工程科学学报, Vol.12,2004(2), pp187-196
    [70].丁晓峰,管蓉,陈沛智,接触角测量技术的最新进展[J],理化检验-物理分册,2008年第44卷(2),84-89
    [71].杜文琴,巫莹柱,接触角测量的量高法和量角法的比较[J],纺织学报,Vol.28,2007(7),pp29-32.
    [72].宋华杰,董海山,郝莹,计算固体表面能的Young-Good-Girifalco-Fowkes方程的理论基础[J],粘接, Vol.21,2000(5), pp1-5.
    [73].孙杰,聂福德,张凌, TATB与氟聚合物界面张力及粘附功的计算[J],粘接, Vol.22,2001(5), pp27-28.
    [74]. Kasraian K, DeLuca PP, Thermal analysis of the tertiary butyl alcohol-water system and itsimplications on freeze-drying[J], Pharm Res. Vol.12,1995(4), pp484-490.
    [75]. Fesmire J E,Ryu J, Improved aerogel-based thermal insulation systems[R], NASA TechBriefs,1999,56.
    [76]. Friedrich Hrz, Glen Cress, Mike Zolensky.Optical analysis of impact features in aerogelfrom the orbital debris collection experiment on the Mir Station[R], NASA TM.1999,209372.
    [77]. Anthony J, Tuzzolino, E. Thanasis, Dust measurements in the Coma of comet by the DustFlux Monitor Instrument[J], Science, Vol.304,2004, pp1776-1780.
    [78]. Joanne Bake, Look into the Seeds of Time[J], Science, Vol.314,2006, pp1707-1710.
    [79]. S. S. Kistler, Coherent expanded aerogels and jellies[J], Nature, Vol.127,1931, pp741-743.
    [80]. S. S. Kistler, Coherent expanded aerogels[J], J.Physical Chem., Vol.36,1932, pp52-55.
    [81]. C. J. Brinker, B. James, Preparation of high porosity xerogels by chemical surfacemodification[P], WO9425149.
    [82]. S. S. Prakash, C. J. Brinker, A. J. Hurd, et al, Silica aerogel films prepared at ambientpressure by using surface derivatization to induce reversible drying shrinkage[J], Nature, Vol.375,1995, pp431-439.
    [83]. D. M. Smith, S. David, M. Julie, et al, Preparation of low-denksity xerogels at ambientpressure[J], Journal of Non-Crystalline Solids, Vol.186,1995, pp104-112.
    [84]. S. S. Prakash, Ambient-pressure silica aerogel films, Mat. Res. Soc., Vol.371,1995,pp205-210.
    [85]. D. M. Smith, S. David, M. Julie, et al, Preparation of low-density xerogels at ambientpressure for low K dielectrics[J], Mat. Res. Soc., Vol.371,1995, pp261-272.
    [86]. N. Husing and U. Schubert, Organofunctional silica aerogels[J], J. Sol-Gel Sci.&Techn,Vol.8,1997(1-3), pp807-812
    [87]. S. Speil, Low density thermal insulations for aerospace applications[J], Appl. MaterialsResearch. Vol.3,1964, pp238-242.
    [88].石兴,泡沫料浆压滤成型制备纳米孔氧化硅隔热材料[D],中国建筑材料科学研究总院博士论文,2012.
    [89]. www.Engineeringtoolbox.com/thermal-conductivity-d_429.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700