CD147在RA相关动脉粥样硬化发病中的作用及其机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     类风湿关节炎(rheumatoid arthritis, RA)是一种以关节滑膜增生、关节软骨侵蚀破坏为特征的全身性、炎性自身免疫性疾病,迄今尚无根治疗法。研究表明,RA患者比普通人群病死率增高70%,其中35~50%为心血管疾病所致,心血管疾病尤其是快速发展的动脉粥样硬化是RA患者的首要死亡原因。多种炎症介质及炎性细胞参与了RA患者长期慢性的炎症性反应,导致一系列致动脉粥样硬化的代谢功能改变。这些代谢紊乱之间相互作用,最终促使RA患者动脉粥样硬化加速进展。在这些炎症介质中,新近发现的细胞膜表面粘附分子CD147日益受到了人们广泛的关注。
     CD147分子,又称为细胞外基质金属蛋白酶诱导剂(extracellular matrix metalloproteinase inducer, EMMPRIN),在多种肿瘤细胞和组织中高表达,通过诱导成纤维细胞分泌基质金属蛋白酶(matrix metalloproteinase, MMP)促进了肿瘤的侵袭和转移。研究表明,CD147在RA患者滑膜以及外周血和滑液中的各种炎细胞表面均有较高表达,在RA的病理损伤中起到了重要的作用。此外,在人动脉粥样硬化斑块及纤维帽中,CD147、MMP亦有高表达,推测CD147在人动脉粥样硬化中可能通过诱导活化MMP促进组成纤维帽的细胞外基质降解,强度减小,导致斑块纤维帽变薄破裂。因此,CD147可能在动脉粥样硬化的过程中发挥了重要作用。
     新近研究发现,氧化型低密度脂蛋白(ox-LDL)可以促进细胞膜表面CD147 ( membrane CD147 , mCD147 )从心脏冠状动脉平滑肌细胞(HCA-SMCs)表面脱落,并以可溶性的形式(soluble CD147,sCD147)继续发挥其生物学效应,加速动脉粥样硬化的发生。本实验室先前工作发现,CD147可以从外周血单核细胞(PBMo)表面脱落或被直接分泌进入外周血或关节液中,提示sCD147可能参与RA关节损伤与发病。
     为了深入研究sCD147与RA患者动脉粥样硬化发生和进展的相关性,全面评价RA动脉粥样硬化的危险因素,探讨在免疫调节的基础上进行治疗性干预,从而预防RA患者心血管事件的发生。本课题旨在:①检测RA患者外周血中sCD147的含量并与其血脂水平进行相关性分析;②建立单核(Mo)/巨噬细胞(Mac)来源的泡沫细胞模型,研究:CD147在U937-Mo源性泡沫细胞膜表面的动态表达;CD147在分化中的Mo/Mac及泡沫细胞中表达的变化;泡沫细胞的形成对MMP-2, 9合成的影响;③RA、冠心病患者和健康对照的Mac源性泡沫细胞的mCD147/sCD147表达对ox-LDL浓度的依赖性;sCD147对心脏成纤维细胞(HCF)合成MMP-2, 9的影响及CD147拮抗剂AP-9的抑制作用。
     方法:
     1.采用ELISA检测RA、冠心病患者及健康对照血清中sCD147含量,分析sCD147水平与RA患者病情活动度(DAS28)的相关性;以全自动生化分析仪测定RA患者血脂水平,分析血清中sCD147与血脂水平的相关性。
     2.分离RA、冠心病患者及健康对照PBMo,以GM-CSF刺激分化为Mac后,分别加不同浓度ox-LDL作用48h,建立PBMo-Mac源性泡沫细胞模型;将PMA诱导分化前、后的U937细胞加入不同浓度ox-LDL作用48h,建立U937-Mo/Mac源性泡沫细胞模型,并通过高效液相色谱法及油红“O”特殊染色鉴定泡沫细胞。
     3.将U937-Mo细胞分别在不同浓度的ox-LDL条件下培养48h,收集细胞;将U937-Mo细胞与80mg/L ox-LDL共培养,于不同时间点收集细胞。采用流式细胞术,RT-PCR检测CD147及其mRNA在U937-Mo源性泡沫细胞中的表达与ox-LDL浓度及培养时间的依赖性。
     4. U937细胞在PMA诱导下分化7天后,与不同浓度ox-LDL作用48h,使之成为U937- Mac源性泡沫细胞。采用流式细胞术及RT-PCR检测CD147在单核细胞分化过程中和泡沫细胞膜表面的表达及其mRNA水平;采用ELISA、western blotting、明胶酶谱检测不同浓度ox-LDL对泡沫细胞产生sCD147及MMP-2, -9的影响。
     5.选取15例RA患者、17例冠心病患者及12例健康对照,分离其PBMo,经GM-CSF诱导分化为巨噬细胞后,与不同浓度ox-LDL作用48h建立泡沫细胞模型。采用流式细胞术,western blotting检测泡沫细胞mCD147的表达; ELISA,western blotting检测相应细胞培养上清中sCD147的表达; RT-PCR检测泡沫细胞中CD147 mRNA的表达;明胶酶谱、RT-PCR检测ox-LDL (100mg/L)与巨噬细胞作用48h后,细胞培养上清+心脏成纤维细胞(HCF)、细胞上清+HCF+AP9、HCF等三组细胞MMP-2,9的表达以及CD147拮抗剂AP-9对MMP-2, 9产生的抑制作用。
     结果:
     1.RA患者血清中sCD147水平显著高于冠心病患者及健康人(P<0.05),且病情高度活动RA组其sCD147水平显著高于病情低度活动组及中度活动组(P<0.05)。总胆固醇(TC)升高组及甘油三酯(TG)升高组RA患者的TC/TG水平与其血清中sCD147水平呈正相关(r=0.84,P<0.05;r=0.87,P<0.05),而TC轻度升高及正常组或TG正常组患者的TC/TG水平则与其血清中sCD147水平无相关性(r=0.41,P=0.21;r=0.14,P=0.57;r=0.49,P=0.87);低密度脂蛋白胆固醇(LDL-C)升高及轻度升高组RA患者的LDL-C水平与其血清中sCD147含量呈正相关(r=0.86,P<0.05;r=0.81,P<0.05),LDL-C正常组两者则无相关性(r=0.78,P=0.22);RA患者高密度脂蛋白胆固醇(HDL-C)水平与其血清中sCD147水平无相关性(r=0.04,P=0.96;r=0.13,P=0.87)。
     2.未吞噬ox-LDL的细胞内胆固醇酯约占总胆固醇的15.52%,吞噬后约占细胞内总胆固醇的60%以上,符合泡沫细胞生物学特征。吞噬组细胞经油红“O”特殊染色后,光镜下可见胞浆呈泡沫样改变,并有红染颗粒,表明脂质染色阳性。建立的泡沫细胞模型在生物和形态学上均符合泡沫细胞的定义。
     3.ox-LDL浓度和作用时间动态分析:CD147表达高峰的浓度为25 mg/L;固定ox-LDL浓度为80mg/L时,CD147表达高峰的作用时间为6h;而CD147mRNA表达高峰时ox-LDL作用浓度及时间分别为25 mg/L、6小时,此后其mRNA水平不变。
     4. U937细胞在PMA诱导后的第1,3 d, mCD147平均荧光强度(MFI)较诱导前显著升高(P<0.05);但在第5,7d,mCD147较诱导前显著降低(P<0.05);U937细胞经PMA诱导分化的7天中,CD147mRNA水平较分化前升高约4~6倍(P<0.05)。随着ox-LDL作用浓度增加,泡沫细胞mCD147 MFI较作用前呈逐渐减弱趋(P<0.05) ;同步采用western blotting及ELISA检测显示,细胞培养上清中sCD147水平较作用前呈逐渐上升趋势(P<0.05)。在此过程中,CD147mRNA表达不变。随着ox-LDL浓度增加,泡沫细胞MMP-2 , 9的分泌及活性逐渐增强。
     5.流式细胞术及western blotting结果显示,随着ox-LDL作用浓度的增加,泡沫细胞mCD147表达较作用前呈逐渐减弱趋势(P<0.05);同步ELISA和western blotting检测结果显示,细胞培养上清中sCD147含量较作用前呈逐渐上升趋势(P<0.05),且分子量与细胞膜表面相近;上述减弱和上升趋势由强到弱分别RA、冠心病患者,健康对照,但在此过程中泡沫细胞CD147 mRNA的水平无变化。明胶酶谱及RT-PCR结果表明,富含sCD147的细胞培养上清与HCF共培养后可促进后者MMP-2,9的合成, CD147拮抗剂AP-9可以部分抑制这种促进作用。
     结论:
     1.RA患者体内sCD147分子可能参与了RA的发病,且与病情活动度及血脂的异常相关。
     2.所建立的动脉粥样硬化的病理细胞模型在生物和形态学上均符合泡沫细胞的定义。
     3.CD147在U937-Mo源性的泡沫细胞膜表面表达升高;短时间、低浓度ox-LDL促进CD147表达;泡沫细胞中CD147 mRNA水平与ox-LDL的作用浓度及时间无关。
     4.CD147可能仅维持单核细胞向巨噬细胞分化时的表达水平,并可能足以使分化的巨噬细胞在其成熟期执行特殊功能;ox-LDL促进泡沫细胞合成MMP-2, 9。
     5.ox-LDL可能通过促进分化后的RA PBMo释放sCD147;sCD147促进HCF合成MMP-2, 9;CD147拮抗剂AP-9可以抑制这种促进作用。
Objective:
     Rheumatoid arthritis (RA) is a chronic destructive autoimmune disease characterized by the inflammation and progressive destruction of distal joints. Until now, the pathogenesis of RA has not been understood well and the therapy of RA just controls the symptom and development of RA, but doesn’t cure it thoroughly. Studies suggest that the mortality rate is approximately twice as high in patients with RA compared with the general population. Cardiovascular disease accounts for 70% of excess mortality in RA patients. Especially , accelerated atherosclerosis could be responsible for it. Systemic inflammatory response in RA is central to the accelerated atherogenesis. Among these inflammatory cells and cytokines , CD147 , a cell surface glycoprotein , arouses great interest.
     Extracellular matrix metalloproteinase inducer (EMMPRIN) / CD147 is enriched on the surface of most tumor cells and shown to stimulate underlying stromal cells to produce elevated levels of MMPs. These elevated levels of MMPs become concentrated and provide a mechanism for tumor cells to invade and metastasize into the extracellular matrix. Most of the inflammatory cells in RA express CD147,indicating that CD147 may play an important role in the RA pathology.In addition, CD147 and MMP have also been shown to be expressed in human coronary atherectomy tissue, which may provide a mechanism for atherosclerotic plaque growth and potentially for lesion destabilization.
     Recently study showed that oxidized low-density lipoproteins stimulate CD147 release by coronary smooth muscle cells , an effect which seems to result from enhanced CD147 shedding. In turn , soluble CD147 might accelerate extracellular matrix degradation in atherosclerotic plaques and thereby promote plaque growth and plaque destabilization. Similarly, our laboratory has demonstrated that CD147 can shed from the human peripheral blood monocytes of RA patients or it can be directly secreted into the synovia, which play a role in the RA pathology.
     Although sCD147 expression appeared to be associated with atherosclerosis development, there is no detailed mechanism between atherosclerotic risk factors and sCD147 in RA. Studying these problems facilitated us to evaluate the atherosclerotic risk factors , pave the way of finding new therapy and decrease the risk of cardiovascular events in RA. Therefore, we aimed to :1. study the relationship between sCD147 and lipid level in serum of RA; 2. establish the Mo/Mac-derived foam cells model; 3. investigate the expression kinetics of CD147 in U937 cell-derived foam cells, and their relationship with atherosclerosis; 4. demonstrate the involvement of CD147 in the development of atherosclerosis and investigate its expression profile in monocytes, macrophages, and foam cells as well as the effects of foam-cell formation on MMP-2, 9 expression; 5. study the influence of oxidized low-density lipoproteins (ox-LDLs) on cell-associated CD147 and sCD147 expression in GM-CSF–differentiated human peripheral blood monocytes; MMP-2, 9 production by HCF after co-culturing with sCD147. Meanwhile the role of antagonistic peptide(AP-9)in the interaction of sCD147 with HCF.
     Methods:
     1. The sCD147 level in patients with RA, CAHD and healthy volunteers were detected by ELISA ; The disease activity score (DAS28) in RA patients was evaluated and the correlation between sCD147 level and DAS28 score was analyzed; The serum lipid level in patients with RA was detected by an automatic biochemical analyzer and the correlation between sCD147 and lipid level in serum was analyzed.
     2. GM-CSF–differentiated human peripheral blood monocytes incubated with different concentration of ox-LDL for 48 h in RA, CAHD and healthy then Mac-derived foam cells were established; After and before PMA–differentiated U937 cells incubated with different concentration of ox-LDL for 48 h then U937 Mo/Mac- derived foam cells were established.The foam cells were identified by High performance liquid phase chromatography and oil red O dyeing.
     3. The U937 cells were incubated with different concentrations of ox-LDL for 48 h. Then under 80mg/L ox-LDL , the U937 cells were incubated for different time duration. CD147 was analyzed at protein and mRNA levels in U937 foam cells by flow cytometry, and RT-PCR.
     4. U937 cells were stimulated with PMA and were allowed to differentiate into macrophages during culture for 7 d in plastic dishes. On day 7, the macrophages were incubated with various concentrations of oxidized low-density lipoprotein in a serum-free medium for 48 h to permit their development into foam cells. The protein and mRNA expression levels of CD147 in the U937 cells, macrophages, and foam cells were determined by immunofluorescence flow cytometry and RT-PCR. To assess the effects of lipid loading in macrophages on the CD147 level and MMP-2 , 9 expression in supernatants , ELISA, western blotting, and gelatin zymography was conducted.
     5. Sample of human peripheral blood were obtain from patients with RA(15), CAHD(17) and healthy donor volunteers(12). Monocytes were isolated from peripheral blood. GM-CSF–differentiated human peripheral blood monocytes incubated with different concentration of ox-LDL for 48 h. CD147 expression in foam cells was analyzed by Flow cytometry and western blotting; sCD147 level in supernatants was analyzed by ELISA and western blotting; CD147 mRNA in foam cells was analyzed by RT-PCR; Zymography analysed MMP-2, 9 release by HCF after co-culturing with sCD147. In additional , the influence of the inhibitor AP-9 on MMP-2, 9 was also observed.
     Results:
     1.The level of sCD147 in serum with RA patients was significantly higher than that in patients with CAHD and healthy volunteers. sCD147 level in the RA group with high DAS28 score was significantly higher than that with low or media DAS28 score. In RA patients , elevated total cholesterol(TC)and triglyceride(TG)was positively correlated with serum sCD147 level(r=0.84,P<0.05; r=0.87,P<0.05; while lightly elevated , normal TC and normal TG had no correlation with serum sCD147 level (r=0.41,P=0.21;r=0.14,P=0.57;r=0.49,P=0.87). Elevated or lightly elevated LDL-C was positively correlated with serum sCD147 level(r=0.86,P<0.05;r=0.81,P<0.05), while there was no correlation in the group with normal LDL-C level (r=0.78,P=0.22). The high density lipoprotein-cholesterol (HDL-C)level in RA patients had no correlation with serum sCD147 level(r=0.04,P=0.96;r=0.13,P=0.87).
     2.The CE/TC in lipid-loaded foam cells is 60% , which was higher than that in nonlipid-loaded cells(15.52%). After lipid-loaded foam cells treated with Oil red O, many red pellets were found in the plasma of the cells. Thus the cell model accorded with foam cell in biology and morphology.
     3. The expression dose-kinetics demonstrated that the CD147 showed the peak expression induced by ox-LDL 25mg/L;Time-kinetic studies revealed that the CD147 levels showed the peak expression at 6 h ;CD147 mRNA levels showed the peak expression induced by ox-LDL 25 mg/L,and the maximum mRNA level of CD147 was shown at 6h. However, ox-LDL enrichment of foam cells had no further effect on CD147 expression.
     4.During the PMA-induced differentiation of U937 cells into macrophages in the 7-d culture, CD147 mRNA expression increased 4- to 6-fold in the differentiated monocytes when compared with the undifferentiated ones. The mean fluorescence intensity of CD147 in the differentiated U937 cells was higher than that in the undifferentiated U937 cells (P<0.001) on days 1 and 3. On days 5 and 7, the mean fluorescence intensity of CD147 in the differentiated U937 cells was lower than that in the undifferentiated ones (P<0.05).The mean fluorescence intensity of CD147 gradually reduced in the foam cells that were treated with various concentrations of ox-LDL when compared with the untreated macrophages. In contrast, the expression of CD147, MMP-2 and MMP-9 was steadily upregulated in the corresponding culture supernatant (P<0.05), however, the mRNA expression of CD147 remained unaltered throughout the experiment.
     5. CD147 expression gradually reduced in the foam cells that were treated with various concentrations of ox-LDL when compared with the untreated macrophages(P<0.05). The declining trend is RA, CAHD and healthy respectively. In contrast, sCD147 was steadily upregulated in the corresponding culture supernatant. The trend of escalation is RA, CAHD and healthy respectively. In addition, sCD147 could stimulate HFC to produce elevated levels of MMP-2 and MMP-9 , which could be suppressed by AP-9.
     Conclusions:
     1. sCD147 may be involved in the pathogenesis of RA and associated with the disease activity. Elevated sCD147 level may associated with dyslipidemia in RA.
     2. The cell model was established in vitro and accorded with foam cells in biology and morphology.
     3. CD147 expression was enhanced in the U937 foam cells; CD147 expression was mainly up-regulated by low dose of ox-LDL; Ox-LDL has no further effect on CD147 mRNA expression.
     4. CD147 mRNA and protein expression were markedly increased 4- 6 fold on GM-CSF–induced monocyte to macrophage differentiation. Such increases in a protein maybe provide the differentiated macrophage with a mechanistic framework to perform specific functional activities at this stage of cellular maturation. In addition, lipid loading in macrophages reduced cell-associated CD147 expression, while it up-regulated the CD147 levels and secretion and activation of MMP-2, 9 in the culture supernatant. Howerver, lipid loading in macrophages had no further effect on CD147 mRNA expression. we hypothesize that the sCD147 maybe shed from the foam cells surface.
     5. Ox-LDLs maybe stimulate the release of sCD147 in differentiated PBMo; sCD147 stimulated MMP-2, 9 synthesis in HCF; AP-9 treatment could inhibit this process.
引文
[1] Drosos AA. Epidemiology of rheumatoid arthritis [J]. Autoimmun Rev. 2004,3(Supp1):S20-22.
    [2] 张乃峥,曾庆馀,张凤山等. 中国风湿性疾病流行情况的调查研究[J]. 中华风湿病学杂志,1997,1(1):31-35.
    [3] Martinez MS, Garcia-Monforte A, Rivera J. Survial study of rheumatoid arthritis patients in Madrid(Spain): a 9-year prospective follow-up. Scand J Rheumatol, 2001,30:195-198.
    [4] Myllykangas-luosujarvi R,AhoK,Kautiainten H,etal. Shorten-ing of life span and causes of excess mortality in a population-based series of subjects with rheumatoid arthritis. Clin Exp Rheumatol, 1995,13:149-153.
    [5] Goodson N. Coronary artery disease and rheumatoid arthritis . Curropin Rheumtaol, 2002,14:115-120.
    [6] Hansson GK, Robertson AK, S?derberg-Nauclér C. Inflammation and atherosclerosis. [J] Annu Rev Pathol, 2006, 1:297-32.
    [7] Naveed Sattar, MD, David W, McCarey, MD, Hilary Capell, MD, Iain B, McInnes, MD. Explaining How "High-Grade" Systemic Inflammation Accelerates Vascular Risk in Rheumatoid Arthritis. Circulation, 2003, 108:2957.
    [8] Kathryn D, Curtin, Ian A, Meinertzhagen , Robert J, Wyman. Basigin (EMMPRIN/CD147) interacts with integrin to affect cellular architecture. Journal of Cell Science , 2005,118: 2649-2660.
    [9] Eric E, Gabison AB,Thanh Hoang-Xuan B,Alain Mauviel a,Suzanne Menashi. EMMPRIN/CD147,an MMP modulator in cancer,development and tissue repair. Biochimie, 2005,87: 361~368.
    [10] Ping Zhu, Jin Ding, Jun Zhou, Wei-Jia Dong, et al. Expression of CD147 on monocytes/macrophages of peripheral blood, synovial fluid and synovium in rheumatoid arthritis: its potential role in leukocyte accumulation and matrix metalloproteinases-production. Arthritis Research &Therapy, 2005, 7:1023-33.
    [11] 李鸿明,朱 平,樊春梅,王彦宏,郑朝晖,李晓燕,卢 宁. PMA对THP-1细胞和RA患者单核细胞及培养上清中CD147表达的影响. 细胞与分子免疫学杂志,2006,22(3):333~338.
    [12] Young Won Yoona, Hyuck Moon Kwona, Ki-Chul Hwangc, Eui-Young Choia, Bum-kee Honga, Dongsoo Kima, Hyun-Seung Kima, Sang Ho Choc, Kyung Soon Songb, Giuseppe Sangiorgid. Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque. Atherosclerosis, 18(2005)37–44.
    [13] Cornelia Haug,Christina Lenz,Fredy Díaz,Max G,Bachem. Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase inducer(EMMPRIN)release by coronary smooth muscle cells. Arteriosclerosis,Thrombosis,and Vascular Biology,2004, 24: 1823.
    [14] FinchWR. Mortality in rheumatoid disease [J]. J Insur Med, 2004, 36(3)200-212.
    [15] Korpela M, Laasonen L, Hannonen P. Retardation of joint damage in patients with early rheumatoid arthritis by initial aggressive treatment with disease-modifying antirheumatic drugs:Five-year experience from the FIN-RACo study[J]. Athritis Rheum, 2004,50(7):2072-81.
    [16] Firestein GS. Evolving concepts of rheumatoid arthritis . Nature, 2003;423:356-361.
    [17] Luos arvi MR,Aho K,Kautianen H.et a1.Cardiovascular tsortsdity in women with rheumatoid arthritis[J].J Rheumato,1995,22:1055-1067.
    [18] Gabriel SE,Crowson CS,O’Fallon WM.Comorhidity in arthritis[J].J Rheumatol, 1999,26:2475-2479.
    [19] Del Rincon ID. Williams K. Stern MP,et a1.High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by txaditional cardiac risk factors[J]. Arthritis Rheum,2001,44:2737-2745.
    [20] Bacon PA,Stevens RJ,Carruthers DM,et al. Accelerated atherogenesis in autoimmune rheumatic diseases. Autoinunun Rev,2002,l:338-347.
    [21] Bjornadal L,Baec~und E,Yin L,et a1.Decreasing mortality in patients with rheumatoid arthritis:results from a large population based cohort in Sweden,1964 95[J].J Rheumatol,2002,29(5):906-912.
    [22] Banks M,Flint J.Bacon PA,et a1.Rheumatoid arthritis is an independent risk factor for ischaemic heart disease[J].Arthritis Rheum,2000,43(Suppl 9):S385.
    [23] Banks MJ,Pace A,Kitas GD . Acute coronary syndromes present atypically andRecur more frequently in rheumatoid arthritis than matched controls[J]. Arthritis Rheum,2001,44(Supp1.):S53.
    [24] Solomon DH,Karhon EW, Rimm EB.et a1.Cardiovascular morbidity and morta1ity in women diagnosed with rheumatoid arthritis[J]. Circulation ,2003,107(9):1303-1307.
    [25] Wolfe,Freundlich B,Straus WL increase in cardiovascular and cerebrovascular disease prevalence in rheumatoid arthritis[J].J Rheumatol,2003,30(1 ):36-40.
    [26] Warrington KJ, Kent PD, Frye RL, et al. Rheumatoid arthritis is an independent risk factor for multi-vessel coronary artery disease: a case control study. Arthritis Res Ther, 2005,7:R84-991.
    [27] Serneri NGG,Prisco D,Martini F,et al. Acute T-cell activation is detectable in unstable angina[J]. Circulation,1997, 95:1806-1812.
    [28] van der, W al AC,Piek JJ,de Boer OJ, et al . Recent activation of the plaque im mune response in coronary lesions underlying acute coronary syndromes [J]. Heart, 1998,80:14- l8
    [29] Liuzzo G,Kopecky SL,Frye RL,et a1.Perturbation of the T cell repertoire in patients with unstable angina[J]. Circulation,1999,100:2135-2139.
    [30] McLaren M,Alkaabi J,Connacher M . Activated factorⅫ in rheumatoid arthritis [J].Rheumatol Int,2002, 22(5) 182-184.
    [31] Kohler HP,Carter AM,Stickland MH.et a1.Leveh of activated FⅫ in survivors of myocardial infarction——association with circulating risk factors and extent of coronary artery disease [J]. Thromb Heamost, 1998, 79(1):14-18.
    [32] Wallberg-Jonsson S,Cvetkovic JT,Sundqvist KG,et a1.Activation of the immune system and inflammatory activity in relation to markers of atherothrombotic disease and atherosclerosis in rheumatoid arthritis[J].J Rheumatol, 2002,29(5):875-882.
    [33] Oncul O,Top C,Ozkan S. et al. Serum interleukin 2 levels in patients with rheumatoid arthritis and correlation with insulin sensitivity [J]. J InS Med Res,2002,30(4):386-390.
    [34] 寿涛,李芹,林俊,郑红梅,张虹,毕丹艳,梅坚,和芳,严新民。类风湿关节炎患者血管内皮功能研究, 2006,10(9):558–560.
    [35] Sergio Fazio, MD, PhD, and MacRae F. Linton, MD. The Inflamed Plaque: Cytokine Production and Cellular Cholesterol Balance in the Vessel Wall. The AmericanJournal Of Cardiology , 2001 ,July 19,VOL, 88 (2A) .
    [36] 杨光华.病理学[M].第五版.北京:人民卫生出版社,2001:122-126.
    [37] Gouni-Berthold I, Sachinidis A.possible non-classic intracellular and Molecular mechanism of LDL cholesterol action contributing to the development and progression of atherosclerosis[J].Curr Vasc pharmacol,2004,2(4):363-70.
    [38] Witztun JL, Steinbe-rg D. Role of oxidized low density lipoprotein in atherogonesis[J].Clin Invest, 1991, 8(6): 1785-1792.
    [39] Wallenfeldt K,Fagerberg B,Wikstrand J,et a1.Oxidized low-density lipoprotein in plasma is a prognostic marker of subclinical atherosclerosis development in clinically healthy men. J Intern Med, 2004 Nov; 256(5):413-20.
    [40] 田德峰.高密度脂蛋白及其受体的研究进展[J].国外医药学分册,2003,30(1).
    [41] Park YB,Lee SK,Lee W K,et al. Lipid profiles in untreated patients with rheumatoid arthritis[J].J Rheumatol, 1999,26(8):1701-1704.
    [42] Asanutsa Y,Kawai S,Aeshima H,et al.Serum lipoprotein(a) and apolipopro-tein(a) phenotypes in patients with rheumatoid arthritis[J]Arthritis Rheum. 1999, 42(3): 443-447.
    [43] Winyard PG,Tatzber F,Esterbauer H ,et a1.Presence of foam cells containing oxidised low density lipoproteln in the synovial membrane from patients with rheumatoid arthritis[J].Ann Rheum Dis,1993,2(9):677-680.
    [44] Hurt-Camejo E,Paredes S,Masana L,et al. Elevated levels of small,low-density lipoprotein with high affinity for arterial matrix components in patients with rheumatoid arthritis:possible contribution of phospholipase A2 to this atherogenic profile[J]. Arthritis Rheum, 2001, 44(12):2761-2767.
    [45] Tanimoto N ,Kumon Y, Suehiro T,et a1.Serum paraoxonase activity decreases in rheumatoid arthritis[J].Life Sci, 2003, 72(25):2877- 2885.
    [46] Yong-Beom Park, MD, Hyon K. Choi, MD, MPH, Min-Young Kim, MD, Won-Ki Lee, MD, Jungsik Song, MD, Dong-Kee Kim, PhD, Soo-Kon Lee, MD, PhD. Effects of Antirheumatic Therapy on Serum Lipid Levels in Patients with Rheumatoid Arthritis:A Prospective Study. Excerpta Medica Inc, 2002,113,88-193.
    [47] 吴歆华 ,张 华 等.巨噬细胞与动脉粥样硬化.心血管病学进展,2005,26(3),302-306.
    [48] Glass C. Witztum J.Atherosclerosis:the road ahead [J]. Cell, 2001, 104(4):503-516.
    [49] Hansel S,Lassig G,Pistxosch F,et a1.Endothelial dysfunction in young patients with long-term rheumatoid arthritis and low disease activity [J] Atherosclerosis, 2003,170(1): 177-180.
    [50] Yki-Jarvinen H,Bergholm R,Leirlsalo-Repo M. Increased inflammatory activity parallels increased basal nitric oxide production and blunted response to nitric oxide in vivo in rheumatoid arthritis [J]. Ann Rheum Dis,2003,62(7):630-634.
    [51] Park YB,Ahn CW .Choi HK,et a1.Atherosclerosis in rheumatoid arthritis:morphologic evidence obtained by carotid ultrasound [J]. Arthritis Rheum ,2002,46(7):1714-1719.
    [52] Del Rincon 1,W flhams K , Stern MP, et al . Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subjects [J]. Arthritis Rheum,2003,48(7):1833-1840.
    [53] Nagata SM. Inaba M, Goto H, et al. Inflammation and bone resorption as independent factors of accelerated arterial wall thickening in patients with rheumatoid arthritis [J]. Arthritis Rheum,2003,48(u):3061-3067.
    [54] Bloom BJ, Miller LC, Tucker LB, et al. Soluble adhesion molecules in juvenile rheumatoid arthritis. J Rheumatol, 1999,26:2044-2048.
    [55] Veale DJ,Maple C, Kirk G,et al. Soluble cell adhesion molecules-P-selectin and ICAM-1,and disease activity in patients receiving sulphasalazine for active rheumatoid arthritis. Scand J Rheumatol, 1998,27:296-299
    [56] Pedersen LM, Nordin H, Svensson B, et al. Microalbuminuria in patients with rheumatoid arthritis. Ann Rheum Dis, 1995,54:189-192.
    [57] Vaudo G,Marchesi S, Gerli R, et al. Endothelial dysfunction in young patients with rheumatoid arthritis and low disease activity.Ann Rheum Dis,2004,63:31-35
    [58] Paolisso G, Valentini G, Giugliano D, et al. Evidence for peripheral impaired glucose handling in patients with connective tissue diseases. Metabolism, 1991; 40: 902–907.
    [59] Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance. Science, 1996; 271: 665–668.
    [60] McEntegart A, Capell HA, Creran D, et al. Cardiovascular risk factors, including thrombotic variables, in a population with rheumatoid arthritis. Rheumatology, 2001; 40: 640–644.
    [61] Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica, 2000; 85: 967–972.
    [62] Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation, 2000; 101: 2883–2888.
    [63] Chiang EP, Bagley PJ, Selhub J, et al. Abnormal vitamin B6 status is associated with severity of symptoms in patients with rheumatoid arthritis. Am J Med, 2003; 114: 283–287.
    [64] Lazzerini PE, Capecchi PL, Bisogno S, et al. Reduction in plasma homocysteine level in patients with rheumatoid arthritis given pulsed glucocorticoid treatment. Ann Rheum Dis, 2003; 62: 694–695.
    [65] Whittaker M, Floyd CD, Brown P, Gearing AJ: Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 1999, 99(9):2735-2776.
    [66] Verma RP, Hansch C: Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg Med Chem ,2007, 15(6):2223-2268.
    [67] Nagase H, Visse R, Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006, 69(3):562-573.
    [68] Yan C, Boyd DD: Regulation of matrix metalloproteinase gene expression. J Cell Physiol 2007, 211(1):19-26.
    [69] Petignat P, Laurini R, Goffin F, Bruchim I, Bischof P: Expression of matrix metalloproteinase-2 and mutant p53 is increased in hydatidiform mole as compared with normal placenta. Int J Gynecol Cancer 2006, 16(4):1679-1684.
    [70] Visse R, Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res ,2003, 92(8):827-839.
    [71] Chung A, Gao Q, Kao WJ: Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multifunctional matrices via integrin complexation. Biomaterials 2007, 28(2):285-298.
    [72] Sounni NE, Janssen M, Foidart JM, Noel A: Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis. Matrix Biol 2003,22(1):55-61.
    [73] 董惟佳,朱平,肖李冰,张 阳. 类风湿性关节炎滑膜组织中CD147表达的检测. 细胞与分子免疫学杂志,2004,20(2):210~214.
    [74] Tomita T,Naka~e T,Kaneko M,et a1.Expression of extracellular matrix metalloproteinase inducer and enhancement of the extracellular matrix metalloproteinase in rheumatoid arthritis.Arthritis Rheum,2002,46:373-378.
    [75] Mtiller-Ladner U.Gay S.MMPs and rheumatoid synovial fibroblasts:siamese twins in joint destruction? Ann Rheum Dis,2002,61:957-959.
    [76] Schmidt R,Bultmann A,Ungerer M,et a1.Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells : implications in acute myocardial infarction [J].Circulation,2006,113:834.
    [77] Jacob MP,Badier—Commdander C,Fontaine V,et a1.Extracellular matrix remodeling in the vascular wall[J].Pathol Biol,2001,49:326.
    [78] Galis ZS , Khatri JJ . Matrix metalloproteinases invaseular remodeling and atherogenesis:the good,the bad and the ugly[J].Cire Res, 2000,90:251.
    [79] Brown DE, Hibbs MS,Kearney M,et o1.Identification of 92-kD gelatinases in human coronary atherosclerotic lesions[J].Circulation,1995,91:2125.
    [80] Noji Y,Kajinami K,Kawashiri M,et a1.Circulating matrix metal-loproteinase and their inhibitors in premature coronary atherosclerosis[J].Clin Chem Lab Med,2001,39:380.
    [81] Virmani R,Kolodgie FD,Burke AP,et a1.Lessons from sudden coronar, death:a comprehensive morphological classification scheme for atherosclerotic lesions[J]. Arterioscler Th romb Vasc Biol,2000,20:l262.
    [82] Libby P. Current concepts of the pathogenesis of acute coronary syndromes[J].Circulation,2002,104:365.
    [83] Galis ZS,Sukhova GK,Lark MW,et a1.Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques [J].J Clin Invest,1994,94:2493.
    [84] Galis ZS,Sukhova GK,Kranzhofer R,et o1.Maerophage foam cells from experimental atheroma constitutively prod uce matrix degrading proteinases[J].Proe Natl Acad Sci USA,1995,92:402.
    [85] Miyauchi T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, Muramatsu T:Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem (Tokyo) ,1990, 107(2):316-323.
    [86] Miyauchi T, Masuzawa Y, Muramatsu T: The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J Biochem (Tokyo) ,1991, 110(5):770-774.
    [87] Ochrietor JD, Moroz TP, van Ekeris L, Clamp MF, Jefferson SC, deCarvalho AC, Fadool JM, Wistow G, Muramatsu T, Linser PJ: Retina-specific expression of 5A11/Basigin-2, a member of the immunoglobulin gene superfamily. Invest Ophthalmol Vis Sci 2003, 44(9):4086-4096.
    [88] Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K: The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 1995, 55(2):434-439.
    [89] Kasinrerk W, Fiebiger E, Stefanova I, Baumruker T, Knapp W, Stockinger H: Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol 1992, 149(3):847-854.
    [90] Fossum S, Mallett S, Barclay AN: The MRC OX-47 antigen is a member of the immunoglobulin superfamily with an unusual transmembrane sequence. Eur J Immunol 1991, 21(3):671-679.
    [91] Seulberger H, Lottspeich F, Risau W: The inducible blood--brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. Embo J ,1990, 9(7):2151-2158.
    [92] Schlosshauer B, Herzog KH: Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J Cell Biol, 1990, 110(4):1261-1274.
    [93] Koch C, Staffler G, Huttinger R, Hilgert I, Prager E, Cerny J, Steinlein P, Majdic O, Horejsi V, Stockinger H: T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int Immunol 1999, 11(5):777-786.
    [94] Kaname T, Miyauchi T, Kuwano A, Matsuda Y, Muramatsu T, Kajii T: Mapping basigin (BSG), a member of the immunoglobulin superfamily, to 19p13.3. Cytogenet Cell Genet, 1993, 64(3-4):195-197.
    [95] Simon-Chazottes D, Matsubara S, Miyauchi T, Muramatsu T, Guenet JL: Chromosomal localization of two cell surface-associated molecules of potential importance in development: midkine (Mdk) and basigin (Bsg). Mamm Genome ,1992, 2(4):269-271.
    [96] Tang W, Chang SB, Hemler ME: Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell ,2004, 15(9):4043-4050.
    [97] Biswas C,Zhang Y, Decastro R et, al. The human tumor cell-derived collagenase stimulatory factor (Renamed EMMPRIN)is a member of the immunoglobulin [J].Cancer Res, 1995;55:434-439.
    [98] 金伯泉主编.白细胞分化抗原[M].细胞和分子免疫学,第2版.北京:科学出版社,2001:4-7.
    [99] 骞爱荣,商澎,陈志南.CD147结构与功能研究进展.中国免疫学杂志,2003(19):728-731.
    [100] Huang RP, Ozawa M, Kadomatsu K, Muramatsu T: Developmentally regulated expression of embigin, a member of the immunoglobulin superfamily found in embryonal carcinoma cells. Differentiation , 1990, 45(2):76-83.
    [101] Langnaese K, Beesley PW, Gundelfinger ED: Synaptic membrane glycoproteins gp65and gp55 are new members of the immunoglobulin superfamily. J Biol Chem, 1997, 272(2):821-827.
    [102] Igakura T, Kadomatsu K, Taguchi O, Muramatsu H, Kaname T, Miyauchi T, Yamamura K, Arimura K, Muramatsu T: Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem Biophys Res Commun, 1996, 224(1):33-36.
    [103] Renno T, Wilson A, Dunkel C, Coste I, Maisnier-Patin K, Benoit de Coignac A, Aubry JP, Lees RK, Bonnefoy JY, MacDonald HR et al: A role for CD147 in thymic development. J Immunol , 2002, 168(10):4946-4950.
    [104] Staffler G, Szekeres A, Schutz GJ, Saemann MD, Prager E, Zeyda M, Drbal K, Zlabinger GJ, Stulnig TM, Stockinger H: Selective inhibition of T cell activation viaCD147 through novel modulation of lipid rafts. J Immunol ,2003, 171(4):1707-1714.
    [105] Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. Embo J, 2000, 19(15):3896-3904.
    [106] Pushkarsky T, Zybarth G, Dubrovsky L, Yurchenko V, Tang H, Guo H, Toole B, Sherry B, Bukrinsky M: CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci USA ,2001, 98(11):6360-6365.
    [107] Yurchenko V, Zybarth G, O'Connor M, Dai WW, Franchin G, Hao T, Guo H, Hung HC, Toole B, Gallay P et al: Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem, 2002, 277(25):22959-22965.
    [108] Sameshima T, Nabeshima K, Toole BP, Inoue T, Yokogami K, Nakano S, Ohi T, Wakisaka S: Correlation of emmprin expression in vascular endothelial cells with blood-brain-barrier function: a study using magnetic resonance imaging enhanced by Gd-DTPA and immunohistochemistry in brain tumors. Virchows Arch, 2003, 442(6):577-584.
    [109] Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M et al: A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol, 1998, 194(2):152-165.
    [110] Kuno N, Kadomatsu K, Fan QW, Hagihara M, Senda T, Mizutani S, Muramatsu T: Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett, 1998, 425(2):191-194.
    [111] Hori K, Katayama N, Kachi S, Kondo M, Kadomatsu K, Usukura J, Muramatsu T, Mori S, Miyake Y: Retinal dysfunction in basigin deficiency. Invest Ophthalmol Vis Sci ,2000, 41(10):3128-3133.
    [112] Naruhashi K, Kadomatsu K, Igakura T, Fan QW, Kuno N, Muramatsu H, Miyauchi T, Hasegawa T, Itoh A, Muramatsu T et al: Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun ,1997, 236(3):733-737.
    [113] Foda HD, Rollo EE, Drews M, Conner C, Appelt K, Shalinsky DR, Zucker S:Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340). Am J Respir Cell Mol Biol, 2001, 25(6):717-724.
    [114] Liotta LA, Kohn EC: The microenvironment of the tumour-host interface. Nature, 2001, 411(6835):375-379.
    [115] Sun J, Hemler ME: Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res, 2001, 61(5):2276-2281.
    [116] Guo H, Zucker S, Gordon MK, Toole BP, Biswas C: Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem, 1997, 272(1):24-27.
    [117] Nabeshima K, Suzumiya J, Nagano M, Ohshima K, Toole BP, Tamura K, Iwasaki H, Kikuchi M: Emmprin, a cell surface inducer of matrix metalloproteinases (MMPs), is expressed in T-cell lymphomas. J Pathol ,2004, 202(3):341-351.
    [118] Koga K, Nabeshima K, Nishimura N, Shishime M, Nakayama J, Iwasaki H: Microvessel density and HIF-1alpha expression correlate with malignant potential in fibrohistiocytic tumors. Eur J Dermatol ,2005, 15(6):465-469.
    [119] Rosenthal EL, Zhang W, Talbert M, Raisch KP, Peters GE: Extracellular matrix metalloprotease inducer-expressing head and neck squamous cell carcinoma cells promote fibroblast-mediated type I collagen degradation in vitro. Mol Cancer Res, 2005, 3(4):195-202.
    [120] Tang W, Hemler ME: Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem, 2004, 279(12):11112-11118.
    [121] Jia L, Zhou H, Wang S, Cao J, Wei W, Zhang J: Deglycosylation of CD147 down-regulates Matrix Metalloproteinase-11 expression and the adhesive capability of murine hepatocarcinoma cell HcaF in vitro. IUBMB Life ,2006, 58(4):209-216.
    [122] Jia L, Wang S, Zhou H, Cao J, Hu Y, Zhang J: Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol, 2006, 38(9):1584-1593.
    [123] Yan L, Zucker S, Toole BP: Roles of the multifunctional glycoprotein, emmprin(basigin; CD147), in tumour progression. Thromb Haemost, 2005, 93(2):199-204.
    [124] Xu HY, Qian AR, Shang P, Xu J, Kong LM, Bian HJ, Chen ZN: siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett 2006.
    [125] Wilson MC, Meredith D, Halestrap AP: Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem, 2002, 277(5):3666-3672.
    [126] Deora AA, Gravotta D, Kreitzer G, Hu J, Bok D, Rodriguez-Boulan E: The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. Mol Biol Cell ,2004, 15(9):4148-4165.
    [127] Pushkarsky T, Yurchenko V, Vanpouille C, Brichacek B, Vaisman I, Hatakeyama S, Nakayama KI, Sherry B, Bukrinsky MI: Cell surface expression of CD147/EMMPRIN is regulated by cyclophilin 60. J Biol Chem, 2005, 280(30):27866-27871.
    [128] Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G et al: Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol,2002, 20(4):387-392.
    [129] Muraoka K, Nabeshima K, Murayama T, Biswas C, Koono M: Enhanced expression of a tumor-cell-derived collagenase-stimulatory factor in urothelial carcinoma: its usefulness as a tumor marker for bladder cancers. Int J Cancer, 1993, 55(1):19-26.
    [130] Polette M, Gilles C, Marchand V, Lorenzato M, Toole B, Tournier JM, Zucker S, Birembaut P: Tumor collagenase stimulatory factor (TCSF) expression and localization in human lung and breast cancers. J Histochem Cytochem ,1997, 45(5):703-709.
    [131] Caudroy S, Polette M, Tournier JM, Burlet H, Toole B, Zucker S, Birembaut P: Expression of the extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase-2 in bronchopulmonary and breast lesions. J Histochem Cytochem ,1999, 47(12):1575-1580.
    [132] Vigneswaran N, Beckers S, Waigel S, Mensah J, Wu J, Mo J, Fleisher KE, Bouquot J, Sacks PG, Zacharias W: Increased EMMPRIN (CD147) expression during oral carcinogenesis. Exp Mol Pathol, 2006, 80(2):147-159.
    [133] Ishibashi Y, Matsumoto T, Niwa M, Suzuki Y, Omura N, Hanyu N, Nakada K, Yanaga K, Yamada K, Ohkawa K et al: CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. Cancer ,2004, 101(9):1994-2000.
    [134] Nabeshima K, Iwasaki H, Nishio J, Koga K, Shishime M, Kikuchi M: Expression of emmprin and matrix metalloproteinases (MMPs) in peripheral nerve sheath tumors: emmprin and membrane-type (MT)1-MMP expressions are associated with malignant potential. Anticancer Res, 2006, 26(2B):1359-1367.
    [135] Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T, Koono M, Wakisaka S: Expression of emmprin (CD147), a cell surface inducer of matrix metalloproteinases, in normal human brain and gliomas. Int J Cancer, 2000, 88(1):21-27.
    [136] Rosenthal EL, Shreenivas S, Peters GE, Grizzle WE, Desmond R, Gladson CL: Expression of extracellular matrix metalloprotease inducer in laryngeal squamous cell carcinoma. Laryngoscope, 2003, 113(8):1406-1410.
    [137] Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R: EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serousovarian carcinoma. Clin Exp Metastasis ,2003, 20(2):161-169.
    [138] Tsai WC, Sheu LF, Nieh S, Yu CP, Sun GH, Lin YF, Chen A, Jin JS: Association of EMMPRIN and fascin expression in renal cell carcinoma: correlation with clinicopathological parameters. World J Urol, 2006.
    [139] van den Oord JJ, Paemen L, Opdenakker G, de Wolf-Peeters C: Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Am J Pathol ,1997, 151(3):665-670.
    [140] Jiang JL, Zhou Q, Yu MK, Ho LS, Chen ZN, Chan HC: The involvement of HAb18G/CD147 in regulation of store-operated calcium entry and metastasis of human hepatoma cells. J Biol Chem ,2001, 276(50):46870-46877.
    [141] Reimers N, Zafrakas K, Assmann V, Egen C, Riethdorf L, Riethdorf S, Berger J, Ebel S, Janicke F, Sauter G et al: Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res, 2004, 10(10):3422-3428.
    [142] Marieb EA, Zoltan-Jones A, Li R, Misra S, Ghatak S, Cao J, Zucker S, Toole BP: Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res, 2004, 64(4):1229-1232.
    [143] Zheng HC, Takahashi H, Murai Y, Cui ZG, Nomoto K, Miwa S, Tsuneyama K, Takano Y: Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma: a good marker for local invasion and prognosis. Br J Cancer, 2006.
    [144] Cheng MF, Tzao C, Tsai WC, Lee WH, Chen A, Chiang H, Sheu LF, Jin JS: Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: Correlation with clinicopathological parameters. Dis Esophagus, 2006, 19(6):482-486.
    [145] Tsai WC, Chao YC, Lee WH, Chen A, Sheu LF, Jin JS: Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology, 2006, 49(4):388-395.
    [146] Yang JM, O'Neill P, Jin W, Foty R, Medina DJ, Xu Z, Lomas M, Arndt GM, Tang Y, Nakada M et al: Extracellular matrix metalloproteinase inducer (CD147) confers resistance of breast cancer cells to Anoikis through inhibition of Bim. J Biol Chem, 2006, 281(14):9719-9727.
    [147] Yang JM, O'Neill P, Jin W, Foty R, Medina DJ, Xu Z, Lomas M, Arndt GM, Tang Y, Nakada M et al: Extracellular matrix metalloproteinase inducer (CD147) confers resistance of breast cancer cells to Anoikis through inhibition of Bim. J Biol Chem ,2006, 281(14):9719-9727.
    [148] van den Oord JJ, Paemen L, Opdenakker G, de Wolf-Peeters C: Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Am J Pathol, 1997, 151(3):665-670.
    [149] Guillot S, Delaval P, Brinchault G, Caulet-Maugendre S, Depince A, Lena H, Delatour B, Lagente V, Martin-Chouly C: Increased extracellular matrix metalloproteinase inducer (EMMPRIN) expression in pulmonary fibrosis. Exp Lung Res ,2006, 32(3-4):81-97.
    [150] Seppala HP, Maatta M, Rautia M, Mackiewicz Z, Tuisku I, Tervo T, Konttinen YT:EMMPRIN and MMP-1 in keratoconus. Cornea, 2006, 25(3):325-330.
    [151] Igakura T,Kadomatsu K,Kaname T.et a1.A null mutation in basigin,an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and sperm atogenesis[[J].Dev Biol,1998,194:152.
    [152] Billich A, Winkler G, Aschauer H, Rot A, Peichl P: Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J Exp Med, 1997, 185(5):975-980.
    [153] De Ceuninck F, Allain F, Caliez A, Spik G, Vanhoutte PM: High binding capacity of cyclophilin B to chondrocyte heparan sulfate proteoglycans and its release from the cell surface by matrix metalloproteinases: possible role as a proinflammatory mediator in arthritis. Arthritis Rheum ,2003, 48(8):2197-2206.
    [154] Allain F, Vanpouille C, Carpentier M, Slomianny MC, Durieux S, Spik G: Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix. Proc Natl Acad Sci USA, 2002, 99(5):2714-2719.
    [155] Arora K, Gwinn WM, Bower MA, Watson A, Okwumabua I, MacDonald HR, Bukrinsky MI, Constant SL: Extracellular cyclophilins contribute to the regulation of inflammatory responses. J Immunol 2005, 175(1):517-522.
    [156] 丁进,朱平,樊春梅.类风湿关节炎外周血与滑液细胞 CD147 分子表达的研究.中华风湿病学杂志,2003,7(12):742-745.
    [157] Ellis SM, Nabeshima K, Biswas C: Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res, 1989, 49(12):3385-3391.
    [158] Sidhu SS, Mengistab AT, Tauscher AN, LaVail J, Basbaum C: The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene , 2004, 23(4):956-963.
    [159] Ko K, Yazumi S, Yoshikawa K, Konda Y, Nakajima M, Chiba T, Takahashi R: Activation of fibroblast-derived matrix metalloproteinase-2 by colon-cancer cells in non-contact Co-cultures. Int J Cancer ,2000, 87(2):165-171.
    [160] Kanekura T, Chen X, Kanzaki T: Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer, 2002, 99(4):520-528.
    [161] Tang Y, Kesavan P, Nakada MT, Yan L: Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res,2004, 2(2):73-80.
    [162] Egawa N, Koshikawa N, Tomari T, Nabeshima K, Isobe T, Seiki M: Membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-KDA EMMPRIN fragment from tumor cells. J Biol Chem, 2006.
    [163] Schmidt R,Redecke V,Breitfeld Y,et a1.EMMPRIN(CD l47) is a central activator of extracellular matrix degradation by Chlamydia pneumoniae—infected monoeytes.Implcation for plaque rupture [J].Thromb Haemost,2006,95:151.
    [164] Dollery CM, McEwan JR, Henney AM.Matrix metalloproteinase and eardk,vascular disease[J].Circulation Res,1995,77:863877.
    [165] 杨永宗.动脉粥样硬化性心血管病基础与临床[M].北京:科学出版社.2004.
    [166] 李 全 忠 , 杨 永 宗 等 U937 泡 沫 细 胞 模 型 的 建 立 . 中 国 动 脉 硬 化 杂 志 , 1999,7(2):152-154.
    [167] Peng-Yuan Yang, Yao-Cheng Rui .Intercellular adhesion molecule-1 and vascular endothelial growth factor expression kinetics in macrophage-derived foam cells . Life Sciences 74 (2003) 471–480.
    [168] Jun Zhou, Ping Zhu, Jian Li Jiang, Qing Zhang, Zhen Biao Wu, Xi Ying Yao, Hao Tang, Ning Lu, Yong Yang, and Zhi Nan Chen. Involvement of CD147 in overexpression of MMP-2 and MMP-9 and enhancement of invasive potential of PMA-differentiated THP-1. BMC Cell Biol, 2005, 6: 25.
    [169] Tervahartiala T, Kaarniranta K, Tang Y, Yan L.Immunolocalization of EMMPRIN(CD147) in the human eye and detection of soluble form of EMMPRIN in ocular fluids.Crr Eve Res,2006,Nov;31(11):917-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700