正交异性板扁平钢箱梁若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交异性板扁平钢箱梁最早的应用是英国1966年建成的Severn桥,当时采用扁平钢箱梁的主要目的是为了改善大跨度悬索桥的抗风性能。扁平钢箱梁代替桁架梁被认为如同飞机工业中双翼飞机改进为单翼飞机的革命性变革。同时,正交异性板扁平钢箱梁保留了正交异性桥面板具有自重轻、刚度大、维护方便等优点,所以,继Severn桥之后,法国、丹麦、土耳其、日本、中国等均将正交异性板扁平钢梁作为大跨缆索支承桥梁加劲梁的主要形式之一。事实上,正交异性板扁平钢箱梁适合于任何把自重和梁高作为重要指标的桥梁。
     近些年来,国内外已建成的扁平钢箱梁桥在运营过程中发现一些与结构、构造和制造工艺相关的重要问题,并且随服役时间的增长越来越突出。扁平钢箱梁的正交异性桥面板既有桥面系的功能,直接承受交通荷载,又构成横梁和纵梁的上翼缘,结构受力复杂;因剪力滞后效应、畸变翘曲、构造细节和焊接工艺造成的应力集中等原因,应力变化梯度大;而桥面系局部刚度不足也导致铺装层过早破坏。如果正交异性桥面板因疲劳或其它原因损坏而需要修复或者更换时,将十分困难。所以,有些国家的桥梁工程师一直谨慎使用正交异性桥面板作为扁平箱梁翼缘的结构形式。在美国,桥梁界从上个世纪50年代就开始深入、系统地研究正交异性板梁,而直到2003年建成的卡圭尼兹第三大桥才首次使用正交异性板扁平钢箱梁作为较大跨度悬索桥的加劲梁。可以看到,人们对正交异性板扁平钢箱梁的结构性能认识还不是非常统一和成熟,对相关问题有必要进行更深入的研究。
     本文以一座实桥的扁平钢箱梁为模型用有限元方法和ANSYS软件研究了正交异性板扁平钢箱梁的三个问题:
     1.研究了节段正交异性板扁平钢箱梁受弯、受扭的力学性能。考察了钢箱梁顶板、底板和隔板等各个部分的应力分布特点和应力幅值,包括剪力滞效应、扭转翘曲正应力、斜底板以及箱形棱角处的应力水平,以期为确定主梁的钢材强度和其他力学性能提供依据,也为推测扁平钢箱梁的断裂危险部位提供依据,为分析整个桥梁建设的经济性提供参考;
     2.研究了扁平钢箱梁U形肋与面板的焊接残余应力。在ANSYS程序中用热-结构顺序耦合的方法模拟已知焊缝熔合线的焊接产生的残余应力,以期为计算正交异性桥面板的极限承载能力提供重要的初始条件,同时为疲劳强度的分析提供有价值的应力幅,为使用寿命的预测提供参考;
     3.研究了扁平钢箱梁正交异性桥面板的构造设计。主要研究了横隔板为使U形肋贯穿所开缺口的应力集中和U形肋内设置小隔板对改善桥面板受力的作用,以期为桥面板的抗疲劳设计提供依据,为精确计算桥面板的刚度和交通荷载作用下的位移提供依据,为桥面铺装相关研究和施工提供依据和参考。
     通过对上述问题的理论研究和ANSYS计算分析,得到一些结论和数据,以期对扁平钢箱梁强度设计、疲劳设计、制造安装、桥面铺装、运营维护和寿命评估等提供有价值的参考。
The Severn Bridge is the first bridge in the world to be built with a orthotropic deck steel box girder of aerodynamic cross-section and inclined hangers. Using this section mostly idea to reduce aerodynamic instability. Simultaneity, orthotropic deck provide an excellent solution for any large-scale structures where weight is an issue. So, this type of construction was used later for a bridge over the Bosporus at Istanbul, the Littebelt bridge in Denmark, and the Humber bridge in Northern England. In fact, orthotropic deck steel box girders are suited any bridge where weight or hight of gieder is an important issue.
     Box girders are susceptible to cross sectional distortion under eccentric loading condition.It is important to analysis the ratio of the distortional warping normal stress to the bending normal stress. Steel box girder is a welded, all-steel superstructure, weld residual stress strongly affect its fatigue life. Another most challenge to design for fatigue is the connection detail between the longitudinal ribs and the diaphragm plate.
     Research of performance characteristics of this structure with finite element analysis is presented in this thesis. Three level finite element models of a real steel orthotropic deck flat box girder are presented in this thesis.
     1. The 3D shell model of the steel orthotropic deck box girder block includes deck plate, bottom plate, ribs, diaphragm and web. This model can consider the girder bending and torsion action as well as warping, shear lag, and the interaction of structural element.
     2. A second level model can be developed for considering weld residual stress of U rib to deck plate and made up of 3D block element, it’s a thermal-structure sequentially couple field analysis. The stress spectra obtained from this model can be used to study ultimate strength and fatigue strength of U rib orthotropic deck, and to predict the life of this box girder.
     3. The third model be mainly made up for considering geometry detail of orthotropic deck. Stress concentration nearly cutout and stress of deck plate, U ribs and its diaphragm plate are simulated. All these studies aim to deeply understand structure characters of steel orthotropic deck box girder, the results can be used to aid design, fabrication, erection and health monitor of those girders.
引文
1. The Iron Bridge ,[EB/OL],www.ironbridge.org.uk/d_bridge.asp
    2. M.S.Troitsky, Stiffened Plates ---Bending, Stability and Vibrations, Elsevier Scientific Publishing Company, Amsterdam,1976
    3. Eads Bridge (1874) ,[EB/OL],www.structurae.de/structures/data/index.cfm
    4. Alfred R.Mangus, Orthotropic Design Meets Cold Weather Challenges, Welding Innovation, 2002,(1)
    5. C.P.Heins,D.A.Firmage,Design of Modern Steel Highway Bridges[M],John Wiley & Son,1979
    6. K.C.Rockey,et al,Developments in Bridge Design and Construction,Crosby Lockwood&Son LTD,1972
    7. Severn Bridge, [EB/OL],www.severnbridge.co.uk
    8. M. Bocciolone, F. Cheli, A. Curami, A. Zasso, Wind measurements on the Humber Bridge and numerical simulations, J. Wind Eng. Ind. Aerodyn. 41–44 (1992) 1393–1404.
    9. 黄铁生编译,大岛大桥钢箱梁设计概要,世界桥梁,1988
    10. Yabuno Masashi,et al,Design of “Tatara Bridge”,2003,36(2) ,IHI Engineering Review
    11. Satou Yoshiyuki,et al Erection of “Tatara Bridge”,2003,36(2) ,IHI Engineering Review
    12. Uesugi Hideo,et al, Fabrication of “Tatara Bridge”,2003,36(2) ,IHI Engineering Review
    13. 周世忠,江阴长江大桥建设中的重大技术问题,桥梁建设,2000 (2)
    14. 曾宪武,裴岷山,崔冰,冯良平,许春荣,南京长江第二大桥斜拉桥的设计与施工, 中国公路学会 2001 学术交流会
    15. 吴洪峰,潘春华,邱全林,润扬长江公路大桥北汊桥总体设计,中国公路学会桥梁和结构工程学会 2001 年桥梁学术研讨会,
    16. 张喜刚,苏通大桥总体设计,公路,2004 (7)
    17. H. Katsuchi, N.P. Jones, R.H. Scanlan, H. Akiyama, Multi-mode flutter and buffeting analysis of the Akashi–Kaikyo bridge, Proceedings of the Eighth US National Conference on Wind Engineering, The Johns Hopkins University, Baltimore, 1997.
    18. 小山 知之,来島海峡第一大橋補剛桁の工事報告,サクラダ技報 NO.11
    19. A. Jain, N.P. Jones, R.H. Scanlan, Coupled aeroelastic and aerodynamic response analysis of longspanbridges, J. Wind Eng. Ind. Aerodyn. 60 (1996) 69–80.
    20. K. Ogawa et al.Aerodynamic characteristics of a 2-box girder section adaptable for a super-long span suspension bridge [J]Wind Eng. Ind. Aerodyn. 2002(90),2033–2043
    21. 金增洪 编译,明石海峡大桥简介,[J],国外公路, 21(1),2001.02,
    22. 艾国柱,夏华唏,悬索桥的加劲桁架—明石海峡大桥加劲桁架和加劲箱梁的比选,国外桥梁,2000,04,
    23. 卢桂臣,张红芬,杨泳昕,葛耀君,西堠门大桥初步设计钢箱梁断面气动选型, [J],西南交通大学学报,2005 ,40 (4)
    24. M. Belloli, M. Bocciolone, F. Resta, A. Tosi, Forced motion and free motion aeroelastic tests on a newconcept dynamometric section model of the Messina suspension bridge, 11th International Conference on Wind Engineering, Lubbock, Texas, June 2003.
    25. T.Y. Lin, Design of The Ling-Tie Bridge,
    26. 万鹏,郑凯锋,钢箱梁正交异性桥面板体系应力不同计算方法的比较,中国钢结构协会桥梁钢结构协会第三次学术年会论文集,2002
    27. 郑凯锋等,中国大跨悬索桥全焊钢箱梁的技术进展,钢结构,1998,13(2)
    28. Alfred R. Mangus,A Fresh Look at Orthotropic Technology,[J],Public Roads,March/April 2005
    29. 项海帆,姚玲森,高等桥梁结构理论,人民交通出版社,2001
    30. 周远棣,徐君兰,钢桥,人民交通出版社,1991.6
    31. 张士铎,邓小华,王文洲,箱形薄壁梁剪力滞效应[M],人民交通出版社,1998
    32. Nam-Hoi Park et al,A consideration on intermediate diaphragm spacing in steel box girder bridges with a doubly symmetric section,Engineering Structures 25 (2003) 1665–1674
    33. Dong Y. Yoona,Sung C. Leeb,Chai H. Yooa,Analytical investigation of access holes in load-bearing diaphragms of steel box girders,Journal of Constructional Steel Research ,61 (2005) 113–131
    34. Nam-Hoi Park,Young-Joon Choil,Gyu-Sei Yie,Young-Jong Kang,Distortional Analysis of Steel Box Girders,Steel Structures 2002,2:51-58
    35. 郭金琼,箱形梁设计理论,人民交通出版社,1991.12
    36. John Fisher, et al, Full-Scale Fatigue Tests of Steel Orthotropic Decks for the Williamsburg Bridge, Journal of Bridge Engineering, Volume 8, September/October, 2003. 2.
    37. Qi Ye et al, Analysis and Design of Steel Orthotropic Decks,IABSE Symposium, 2004, ShangHai ,
    38. Sheng-Jin Chen,Kuo-Chen Yang,Inelastic behavior of orthotropic steel deck stiffened by U-shaped stiffeners,Thin-Walled Structures 40 (2002) 537–553
    39. M.S. Troitsky, Stiffened Plates ---Bending, Stability and Vibrations, Elsevier Scientific Publishing Company, Amsterdam,1976
    40. Bernt Johansson,Rene′ Maquoi,Gerhard Sedlacek, New design rules for plated structures in Eurocode 3,[J]Constructional Steel Research 2001(57) p279–311
    41. Jeom Kee Paik,Recent Advances and Future Trends in Ultimate Limit State Design of Steel-Plated Structures,International Workshop on Recent Advances and Future Trends in Thin-Walled Structures Technology, Loughborough University, Loughborough, U.K., 25th June 2004
    42. 颜海,大跨度斜拉桥扁平钢箱梁整体-局部相关稳定问题研究,[D],同济大学,2003.11
    43. 郑凯锋,陈宁,张晓翘,桥梁结构仿真分析技术研究,[J],桥梁建设,1998,2
    44. M S Cheung,D T Lau,W C Li,Recent developments on computer bridge analysis and design,Prog Struct Engng Mater. 2000; 2: 376-385
    45. Mabsout ME, Tarhini KM, Frederick GR ,Tayar C. Finite-element analysis of steel girder highway bridges. Journal of Bridge Engineering 1997: 2(3):83-87.
    46. Akihiro Uemura,et al,Design, Fabrication and Erection of the Stiffening Girder of 3rd Kurushima Kaikyo Bridge,[J],KAWASAKI STEEL TECHNICAL REPORT No. 47 December 20
    1. 项海帆,姚玲森,高等桥梁结构理论,人民交通出版社,2001
    2. 郭金琼,箱形梁设计理论,人民交通出版社,1991.12
    3. Vlasov.V.Z,Thin-walled elastic beams,OTS61-11400, National Science Foundation, Washington,D.C
    4. Maisel.B.I,Review of literature related to the analysis and design of thin-walled beams.Tech. Rep. No. 42440, Cement and Concrete Association, London.1970,
    5. Swann. R. A, A feature survey of concrete box spine-beam bridges. Technical Rep. 42.469, Cement and Concrete Association, London.1972,
    6. Maisel.B.I,Analysis of concrete box beams sing small-computer capacity. Cement and Concrete Association.1982
    7. ASCE-AASHTO Subcommittee of Box Girder Bridges of the Committee on Flexural Members.,Trend in the design of steel box-girder bridges.[J] Structure Division, 1967,93(3), 165–180.
    8. ASCE-AASHTO Task Committee on Curved Box Girders of the Committee on Flexural Members of the Committee on Metals of the ASCE. Curved steel box-girder bridges: a survey.[J]. Structure Division, 1978,104(11), 1697–1718,
    9. ASCE-AASHTO Task Committee on Curved Box Girders of the Committee on Flexural Members of the Committee on Metals of the ASCE. Curved steel box-girder bridges: state-of-the-art.[J]. [J] Structure Division,1978, 104(11), 1719–1739,
    10. Canadian highway bridge design code , CHBDC 2000 . Ontario Ministry of Transportation and Communications, Downsview, Ontario, Canada.
    11. AASHTO, AASHTO LRFD Bridge Design Specifications (2000 Interim Revisions),Washington, DC, pp.9-19 to 9-24.
    12. AASHTO, AASHTO Standard Specifications For Highway Bridge, 16th edition, Washington, DC, pp24, 224-231, 1996.
    13. AASHTO, Guide Specifications for Horizontally Curved Highway Bridges,Washington DC, 1993.
    14. C.P.Heins, D.A.Firmage, Design of Modern Steel Highway Bridges[M],John Wiley & Son,1979,
    15. 周远棣,徐君兰,钢桥,人民交通出版社,1991.6
    16. M.S. Troitsky, Stiffened Plates --Bending, Stability and Vibrations, Elsevier Scientific Publishing Company, Amsterdam, 1976
    17. 王应良,大跨度斜拉桥考虑几何非线性的静、动力分析和钢箱梁的第二体系应力研究, [D],西南交通大学,2000, 5
    18. M.V.Deo, P.Michaleris,Experimental Verification of Distortion Analysis of Welded Stiffeners,[J], Journal of Ship Production, 2002,4
    19. E.C. Hambly, bridge deck behavior, John Wiley and Sons New York,1976
    20. M.S.Troistsky, Orthotropic Bridge Theory and Design, Second Edition, The James F. Lincon Arc Welding Foundation Cleveland,Ohio,1968,
    21. C.P.Heins, C.T.G.Looney, bridge Analysis Using Orthotropic Plate Theory, [J]. Structure Division, 1968, 565–592;
    22. K.J.Williams, A.C.Scordelis, Analysis of Orthotropic Folded Plate with Eccentric Stiffener, SESM Report No 70-2, University of California, Berkeley,1970,
    23. M S Cheung, D T Lau, W C Li, Recent developments on computer bridge analysis and design, Prog Struct Engng Mater. 2000; 2: 376-385
    24. 张士铎,邓小华,王文洲,箱形薄壁梁剪力滞效应[M],人民交通出版社,1998
    25. 靳欣华,郑凯锋,陈艾荣,分析桥梁结构剪力滞效应的新方法,[J],重庆交通学院学报,2002,21(4)
    26. 郑凯锋,陈宁,张晓翘,桥梁结构仿真分析技术研究,[J],桥梁建设,1998,2,
    27. 罗旗帜,薄壁箱形梁剪力滞计算的梁段有限元法[J],湖南大学学报,1991,18 (2) P33-39.
    28. 吴幼明,薄壁箱梁剪力滞计算的梁段有限元法,[J],中国铁道科学,2003,24(4)
    29. Nam-Hoi Park,Young-Joon Choil,Gyu-Sei Yie,Young-Jong Kang,Distortional Analysis of Steel Box Girders,Steel Structures 2002,2:51-58
    30. Mabsout ME, Tarhini KM, Frederick GR ,Tayar C. Finite-element analysis of steel girder highway bridges. [J],Journal of Bridge Engineering 1997: 2(3):83-87.
    31. 谢旭,黄剑源,薄壁箱型梁桥约束扭转下翘曲、畸变和剪滞效应的空间分析, [J],土木工程学报,1995,08
    32. Nam-Hoi Park et al, Spacing of intermediate diaphragms in horizontally curved steel box girder bridges,[J] Finite Elements in Analysis and Design ,41 (2005) 925–943
    33. BSI, BS5400, Part 10:Steel, concrete and composite bridges.[S] 1980,P.1~48
    34. Nam-Hoi Park et al, A consideration on intermediate diaphragm spacing in steel box girder bridges with a doubly symmetric section, [J],Engineering Structures 25 (2003) 1665–1674
    35. 王应良等,流线形扁平钢箱梁横隔板的应力分析和设计, [J],公路,1999,(2)
    36. 裴眠山,郝超,宽幅扁平钢箱梁中纵隔板的作用分析,[J],公路,2001,11
    1. Bernt Johansson, Rene Maquoi, Gerhard Sedlacek, New Design Rules for Plated Structures in Eurocode 3,[J]Constructional Steel Research 2001(57) p279–311
    2. Jeom Kee Paik,Recent Advances and Future Trends in Ultimate Limit State Design of Steel-Plated Structures,International Workshop on Recent Advances and Future Trends in Thin-Walled Structures Technology, Loughborough University, Loughborough, UK, 25th June 2004
    3. Shen, WenYu, Effects of residual stress, weld toe notch and weld defects on fatigue of welded steel structures,[D]Oregon Graduate Institute of Science and Technology,1992
    4. Kazuhiro Nishikawa, et al, Study on the fatigue of steel highway bridges in Japan,[J],Construction and Building Materials, 1998,12(2),p133-141,
    5. Sheng-Jin Chen, Kuo-Chen Yang, Inelastic behavior of orthotropic steel deck stiffened by U-shaped stiffeners, Thin-Walled Structures 40 (2002) 537–553
    6. T.D.Huang,Residual stresses and distortion in lightweight ship panel structures Technology review journal . spring/summer2003
    7. 汪建华等,预测焊接变形的残余塑变有限元方法,上海交通大学学报,1997,31(4):53-56,
    8. 陈丙森,计算机辅助焊接技术,机械工业出版社,1999
    9. 顾强,陈绍蕃,厚板焊接柱残余应力的有限元分析,钢结构,1996,1(11)
    10. D. Gery, H. Longb, P. Maropoulos,Effects of welding speed, energy input and heat source distributionon temperature variations in butt joint welding[J],Journal of Materials Processing Technology 2005 (167),
    11. S. Fricke, E. Keim, J. Schmidt, Numerical weld modeling -a method for calculating weld-induced residual stresses, [J], Nuclear Engineering and Design 2001(206) p139–150,
    12. J.R. Choa, B.Y. Lee, Y.H. Moon, C.J. Van Tyne, Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments, [J], Journal of Materials Processing Technology 155–156 (2004) 1690–1695
    13. XiangYang Lu, Influence of residual stress on fatigue failure of welded joints,[D],North carolina University,2002
    14. 黎江,三维焊接热应力和残余应力演化虚拟分析技术研究,[D]广西大学,2002
    15. Artem Pilipenko,Computer simulation of residual stress and distortion of thick plates in multi-electrode submerged arc welding,[D],Norwegian University of Science and Technology,2002
    16. H.H. Rykalin,焊接热过程计算,徐碧宇,庄鸿寿译, 北京中国工业出版社,1958
    17. ANSYS 中国公司, ANSYS 非线形分析指南,2000
    18. 杨世铭,传热学基础,高等教育出版社,2003
    19. D.皮茨,L.西索姆著,传热学,科学出版社,2002
    20. British Standard,BS 5950-Part 8: Code of practice for fire resistant design,2003
    21. European Committee for Standardization,Eurocode 3 Part 1.2 Design of steel structures: General rules Structural fire design,2001,10
    1. J.W. Fisher. Fatigue and fracture in steel bridges: case study [M] , John Wiley Sons, 1984
    2. Shunichi Nakamura, Design to Make Steel Bridge More Economical,[J],Constructure Steel Reserch,1998,46(1),
    3. Peter J Massarelli, Fatigue Reliability of Highway Steel Bridge Detail,[D],University of Virginia,1997,January,
    4. Kornel Kiss, Laszl Dunai, Fracture mechanics based fatigue analysis of steel bridge decks by two-level cracked models,Computers and Structures, 2002(80) p2321–2331,
    5. John Fisher, et al, Full-Scale Fatigue Tests of Steel Orthotropic Decks for the Williamsburg Bridge, Journal of Bridge Engineering, Volume 8, September/October, 2003. 2.
    6. Qi Ye etal, Analysis and Design of Steel Orthotropic Decks, IABSE Symposium, 2004, ShangHai,
    7. 顾发祥,强士中译,钢桥设计论文选译,中国铁道出版社,1986
    8. Dowling.P.J, The behaviour of stiffened plate bridge deck under wheel loading ,[D], University of London ,1968
    9. AISC,Structural Details to Increase Ductility of Connections, Steel Tips, April 1995
    10. Kwang-Min Lee,Hyo-NamCho, Young-Min Choi,Life-cycle cost-effective optimum design of steel bridges ,[J] Constructional Steel Research 2004 (60) p1585–1613,
    11. BSI, BS5400, Part 10:Steel, concrete and composite bridges.[S] 1980,P.1~48
    12. AASHTO, AASHTO LRFD Bridge Design Specifications (2000 Interim Revisions),Washington, DC, pp.9-19 to 9-24.
    13. AASHTO, AASHTO Standard Specifications For Highway Bridge, 16th edition, Washington, DC, pp24, 224-231, 1996.
    14. Michèle S. Pfeila,Stress concentration in steel bridge orthotropic decks,[J],Constructional Steel Research 2005(61) p1172–1184,
    15. Zhi-Gang Xiao, Kentaro Yamada, Jirou Inoue, Kouta Yamaguchic,Fatigue cracks in longitudinal ribs of steel orthotropic deck,[J],International Journal of Fatigue 2006(28) p409–416,
    16. Robert.J Connor,A comparison of the in-service response of an orthotropic steel deck with laboratory studies and design assumptions,[D],Lehigh university,May 2002,
    17. Paul A. Tsakopoulos, John W. Fisher, Full-Scale Fatigue Tests of Steel Orthotropic Decks for the Williamsburg Bridge,[J],Journal of Bridge Engineering,2003(323)
    18. Mabsout ME, Tarhini KM, Frederick GR , Kesserwan A. Effect of continuity on wheel load distribution in steel girder bridges. Journal of Bridge Engineering 1998: 3(3): 103-110.
    19. 中华人民共和国交通部,公路桥涵设计通用规范,JTG D60-2004,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700