应用图案化表面去润湿现象构筑微观有序结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Fabrication of Ordered Microstructures by Dewetting on Patterned Surfaces
  • 作者:李伟
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2007
  • 导师:杨柏
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-10-01
摘要
构筑微观结构的能力逐渐演变为现代科技的核心问题之一,对创造新型的微观结构和小型化现有结构的探索同时带来了更多的机会。各种现代材料的可控微观有序结构化已经成为其器件化和功能高级化的必要前提。本文应用图案化表面控制液体在固体表面的去润湿行为构筑微观有序结构,这种具有方便、廉价和适用物质范围广泛等优点的图案化技术为发展微观有序化和功能化的新工艺提供了一条崭新的思路。我们首先结合微接触印刷技术和表面可控诱导冷凝在亲水的连续相上构造了具有二元图案的有序模板。应用这种模板引发的去润湿行为可以一步得到包括有序环阵列和有序点阵列的二元有序微观结构。继续改变图案化表面连续相和分散相的亲疏水性质后,通过水汽冷凝可以在基底上形成单一的液滴阵列模板。应用这类液滴模板我们通过控制去润湿过程中的各种实验条件得到了有序环阵列、有序点阵列以及有序多孔膜结构等多种二维有序形貌。最后,我们应用聚合物的有序多孔膜结构,结合在聚合物玻璃化转变温度之上的热退火处理引发受自由能控制的各向异性去润湿过程,进一步得到了具有多种规则网孔形状的有序网格状聚合物结构。
The widely application of functional materials has become more and more important for modern society. The realization of the functionalities of many materials relies on the development of miniaturization and patterning capability. Along with the traditional“top-down”photolithography technique showed its bottleneck, another kind of strategy, which is called“bottom-up”strategy steps into many scientists’sights. In former studies, researchers found that combing both“top-down”and“bottom-up”strategies showed enormous potential. On the other hand, dewetting phenomenon influences the quality of membrane preparation and thermal treatment in industry fields such as coating, lubrication, corrosion resistant and semiconductor. Thanks to the continuous development of surface patterning techniques, it now can also be applied for microstructure fabrication. Under this background, combing“top-down”and“bottom-up”strategy, applying dewetting effects to fabricate ordered microstructures that are hard or impossible manufactured by other techniques, has its practical contents in theory and clearly applicable prospects. In this thesis, we utilize“top-down”techniques such as microcontact printing to fabricate patterned surfaces, then we applied these surfaces to control the liquid dewetting process on it. Many ordered structures could be formed by this strategy. We believe this cheap, convenient, and widely applicable method will offer us a new way for micro-machining and functionality realization.
     In chapter 2, we exploited microcontact printing technique to fabricate patterned chemical heterogeneous surfaces, and combined these patterns varied in wettabilities with surface-induced vapor deposition to form templates with ordered water droplets arrays and wettability patterns together. After a dewetting process which was initiated by evaporation of the solvents during dip-coating process of applied materials solution, we fabricate binary patterns of organic electroluminescent small molecular (mdppy)BF in one step. Optical microscopy, SEM and AFM were used to analyze the ordered binary patterns. We suggested that two dewetting processes happened during the pattern formation, the second dewetting process, together with a selective wetting process, directly led to the formation of binary patterns. Considering the influences of solution concentration and underlying templates, we make a conclusion that this process is a surface-directed and concentration-controlled dewetting process. The dimension of the as-prepared patterns could be simply adjusted by experimental conditions.
     In chapter 3, we firstly fabricated ordered two-dimensional rings array, dots array and patterned porous film by integrating surface-induced vapor deposition and dewetting phenomenon. Then, we changed the solution viscosity, the size of the water droplets and recorded the dewetting process in-situ by video captured equipment. The results showed the formation of these three ordered morphologies intrinsically resulted from a surface-directed and solution viscosity controlled dewetting process. We put forward the formation mechanisms of these patterns respectively and subsequently extended the morphology diversities by delicate design of the underlying chemical patterns. This method could also be applied to other materials which could be dissolved or dispersed in organic solvents, for instance, polymeric materials, nanoparticles coated with polymers, functional organic molecules, inorganic salts, colloidal particles etc. The as-prepared morphologies could also be used as templates to fabricate more complex structures in the following treatment.
     In chapter 4, we applied thermal annealing process at a temperature higher than the Tg of the polymer we used to initiate a morphological transformation from circular pores into polygonal meshes by using patterned porous polymer films. 2D polymer latticeworks were finally fabricated after this process. AFM results of the samples before and after thermal annealing revealed that this morphological transition was a thermal-initiated, Gibbs free energy-controlled and self-organized anisotropic dewetting process. The speed of the film dewetting was faster at the directions pointing to the centers of arrangement cells resulted in the formation of latticeworks morphology. Following this strategy, we successfully fabricated multiform lattice shapes by simply changing the underlying chemical patterns. PS was used only as an model chemical here, the requirements for the applying materials are they could be solved in chloroform and kept stable in the thermal annealing process. We also established an empirical equation based on conservation of matter to guide the formation of final morphology. Therefore, the cross-sectional area of the meshes in the latticeworks could be controlled via the ordered arrays of the hydrophilic circles predesigned as well as the experimental parameters such as the concentration of solution. Moreover, after an etching process of the underlying Au layer, these“through”polymeric structures we fabricated could be peeled off and transferred to other substrates for further applications as single layer or multi-layers. It could also be used as templates in replicate molding and directly copy its morphology to the surface of another material.
引文
[1] Sze, S. M. Semiconductor devices: Physics and Technology, John Wiley, New York 1985.
    [2] Moreau, W. M. Semiconductor Lithography: Principles and Materials, Plenum, New York 1988.
    [3] Handbook of Microlithography, Micromachining, and Microfabrication (Ed: P. Rai-Choudhury), SPIE Optical Engineering Press, Bellingham, WA 1997.
    [4] Microlithography-Science and Technology (Eds: Sheats, J. R.; Smith, B. W.), Marcel Dekker, New York 1998.
    [5] Menz, W.; Mohr, J. Paul, O. Microsystem Technology, 2nd ed., Wiley-VCH, Weinheim, Germany 2001.
    [6] Madou, M. Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC Press, Boca Raton, FL 2001.
    [7] Barrett, C. R. Mater, Res. Soc. Bull. 1993, 3.
    [8] Service, R. F. Science 1996, 273, 1834.
    [9] Schaller, R. R. IEEE Spectrum 1997, 53.
    [10] Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey. J.; Feng, Y.; Charbonneau, S. Science 1996, 274, 1350.
    [11] Faist, J.; Capasso, F.; Sivco, D. L.; Sirtori, C.; Hutchinson, A. L.; Cho, A. Y. Science 1994, 264, 553.
    [12] Devoret, M. H.; Esteve, D.; Urbina, C. Nature 1992, 360, 547.
    [13] Petit, C.; Taleb, A.; Pileni, M.-P. Adv. Mater. 1998, 10, 259.
    [14] Bell, L. D.; Kaiser, W. J. Phys. Rev. Lett. 1988, 61, 2368.
    [15] Hutley, M. C. Diffraction Gratings, Academic Press: New York. 1982.
    [16] Heinze, J. Angew. Chem. Int. Ed. Engl. 1993, 32, 1268.
    [17] Bube, R. H. Electrons in Solids. Academic: New York, 1981.
    [18] Ingber, D. E. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 3579.
    [19] Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Science 1997, 276, 1425.
    [20] Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Biotechnol. Prog. 1998, 14, 356.
    [21] Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: New York, 1997.
    [22] Kumar, A.; Abbott, N. L.; Kim, E.; Biebuyck, H. A.; Whitesides, G. M. Acc. Chem. Res. 1995, 28, 219.
    [23] Kastner, M. A. Phys. Tody 1993, 24.
    [24] Reed, M. A. Sci. Am. 1993, 118.
    [25] Likharev, K. K.; Claeson, T. Sci. Am. 1992, 80.
    [26] LiKharev, K. K. IBM J. RES. Dev. 1988, 32, 144.
    [27] Vijayakrishnan, V.; Chainani, A.; Sarma, D. D.; Rao, C. N. R. J. Phys. Chem. 1992, 96, 8679.
    [28] Rohrer, H. Microelectron. Eng. 1996, 32, 5.
    [29] Tolles, W. M. Nanotechnology 1996, 7, 59.
    [30] Buot, F. A. Phys, Rep. 1993, 243, 73.
    [31] Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
    [32] Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1171.
    [33] Whitesides, G. M.; Love, J. C. Scientific American 2001, 285, 38
    [34] Lin, B. J. C. R. Physique 2006, 7, 858.
    [35] Bates, A. K.; Rothschild, M.; Bloomstein, T. M.; Fedynyshyn, T. H.; Kunz, R. R.; Liberman, V.; Switkes, M. IBM J. Res. Dev. 2001, 45, 605.
    [36] Garcia, R.; Martinez, R. V.; Martinez, J. Chem. Soc. Rev. 2006, 35, 29.
    [37] Whitesides, G. M.; Xia, Y. Angew. Chem. Int. Ed. 1998, 37, 550.
    [38] Guo, L. J. Adv. Mater. 2007, 19, 495.
    [39] Whitesides, G. M.; Xia, Y. Annu. Rev. Mater. Sci. 1998, 28, 153.
    [40] Xia, Y.; McClelland, J. J.; Gupta, R.; Qin, D.; Zhao, X. M.; Sohn, L. L.; Celotta, R. J.; Whitesides, G. M. Adv. Mater. 1997, 9, 147.
    [41] Chen, C. S.; Ruiz, S. A. Soft Matter 2007, 3, 168.
    [42] Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823.
    [43] Hartsuch, P. Chemistry of Lithography, Lithographic Technical Foundation, New York 1961
    [44] Berggren, K. K.; Younkin, R.; Cheung, E.; Prentiss, M.; Black, A. J.; Whitesides, G. M.; Ralph, D. C.; Black, C. T.; Tinkham, M. Adv. Mater. 1997, 9, 52.
    [45] Smith, H. I.; Craighead, H. G. Phys. Today 1990, 24.
    [46] White, D.; Bjorkholm, L. Solid State Technol. 1991, 37.
    [47] Dunn, P. N. Solid State Technol. 1994, 49.
    [48] Cerrina, F.; Marrian, C. Mater. Res. Soc. Bull. 1996, 56.
    [49] Amirfazli, A.; Hanig, A.; Muller, A.; Neumann, A. W. Langmuir 2000, 16, 2024.
    [50] Levenson, M. D. ibid. 1995, 38, 57.
    [51] Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 30.
    [52] Kraemer, S.; Fuierer, R. R.; Gorman, C. B. Chem. Rev. 2003, 103, 4367.
    [53] Nyffenegger, R. M.; Penner, R. M. Chem. Rev. 1997, 97, 1195.
    [54] Wouters, D.; Schubert, U. S. Angew. Chem., Int. Ed. 2004, 43, 2480.
    [55] Zhang, H.; Chung, S.-W.; Mirkin, C. A. Nano Lett. 2003, 3, 43.
    [56] Rozhok, S.; Piner, R.; Mirkin, C. A. J. Phys. Chem. B 2003, 107, 751.
    [57] Schwartz, P. V. Langmuir 2002, 18, 4041.
    [58] Woodson, M.; Liu, J. Phys. Chem. Chem. Phys. 2007, 9, 207.
    [59] Maoz, R.; Frydman, E.; Cohen, S. R.; Sagiv, J. Adv. Mater. 2002, 14, 524.
    [60] Liu, S.; Maoz, R.; Sagiv, J. Nano Lett. 2004, 4, 845.
    [61] Matsumoto, K.; Gotoh, Y.; Maeda, T.; Dagata, J. A.; Harris, J. S. Appl. Phys. Lett. 2000, 76, 239.
    [62] Salaita, K. Angew. Chem. Int. Ed. 2006, 45, 1480.
    [63] Rolandi, M.; Suez, I.; Dai, H.; Frechet, J. M. J. Nano Lett. 2004, 4, 889.
    [64] Bouzehouane, K.; fusil, S.; Bibes, M.; Carrey, J.; Blon, T.; du, M. L.; Seneor, P.; Cros, V.; Vila, L. Nano Lett. 2003, 3, 1043.
    [65] Liu, S.; Maoz, R.; Schmid, G.; Sagiv, J. Nano Lett, 2002, 2, 1055.
    [66] Sun, S.; Chong, K. S. L.; Leggett, G. J. J. Am. Chem. Soc. 2002, 124, 2414.
    [67] Sun, S.; Leggett, G. J. Nano Lett. 2004, 4, 1381.
    [68] Henzie, J; Barton, J. E.; Stender, C. L. and Odom, T. W; Acc. Chem. Res. 2006,39, 249-257
    [69] Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; feld, M. S., J. Phys,: Condens. Matter. 2002, 14, R597-R624.
    [70] Xia, Y.; Halas, N. J., MRS Bull. 2005, 30, 338-348.
    [71] Kumar, A.; Whitesides, G. M. Appl. Phys. Lett. 1993, 63, 2002.
    [72] Xia, Y. N.; Kim, E.; Zhao, X. M.; Rogers, J. A.; Prentiss, M.; Whitesides, G. M. Science 1996, 273, 347.
    [73] Zhao, X. M.; Xia, Y. N.; Whitesides, G. M. Adv. Mater. 1996, 8, 837.
    [74] Kim, E.; Xia, Y. N.; Whitesides, G. M. Nature 1995, 376, 581.
    [75] Kim, E.; Xia, Y. N.; Zhao, X. M.; Whitesides, G. M. Adv. Mater. 1997, 9, 651.
    [76] Xia, Y. N.; Whitesides, G. M. Angew. Chem. Int. Ed. Engl. 1998, 37, 550.
    [77] Aizenberg, J.; Black, A. J.; Whitesides, G. M. J. Am. Chem. Soc. 1999, 121, 4500.
    [78] Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Biomaterials 1999, 20, 2363.
    [79] Suh, K. Y.; Lee, H. H. Adv. Funct. Mater. 2002, 12, 405.
    [80] Bruinink, C. M.; Peter, M.; de Boer, M.; Kuipers, L.; Huskens, J.; Reinhouldt, D. N. Adv. Mater. 2004, 16, 1086.
    [81] Marzolin, C.; Smith, S. P.; Prentiss, M.; Whitesides, G. M. Adv. Mater. 1998, 10, 571.
    [82] Kim, E.; Xia, Y. N.; Whitesides, G. M. Adv. Mater. 1996, 8, 245.
    [83] Choi, J.; Kim, D.; Yoo, P. J.; Lee, H. H. Adv. Mater. 2005, 17, 166.
    [84] Yan, X.; Yao, J.; Lu, G.; Li, X.; Zhang, J.; Han, K.; Yang, B. J. Am. Chem. Soc. 2005, 127, 7688.
    [85] Yan, X.; Yao, J.; Lu, G.; Chen, X.; Zhang, K.; Yang, B. J. Am. Chem. Soc. 2004, 126, 10510.
    [86] Haverkorn van Rijsewijk, H. C.; Legierse, P. E. J.; Thomas, G. E. Philips Technol. Rev. 1982, 40, 287.
    [87] Emmelius, M.; Pawlowski, G.; Vollmann, H. W. Angew. Chem. Int, Ed. Engl. 1989, 28, 1445.
    [88] Masuda, H.; Fukuda, K. Science 1995, 268, 1466.
    [89] Terris, B. D.; Mamin, H. J.; Best, M. E.; Logan, J. A.; Rugar, D. Appl. Phys. Lett. 1996, 69, 4262.
    [90] Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272, 85.
    [91] Wuff, G. Angew, Chem. In. Ed. Engl. 1995, 34, 1812.
    [92] Kriz, D.; Ramstrom, O.; Mosbach, K. Anal. Chem. 1997, 345A
    [93] Chou, S. Y. MRS Bull. 2001, 26, 512.
    [94] Geissler M.; Xia, Y. Adv. Mater. 2004, 16, 1249.
    [95] Emmelius, M.; Pawlowsky, G.; Wollmann, H. W. Angew. Chem. Int. Ed. Engl. 1989, 28, 1445.
    [96] Schulz, H.; Lyebyedyev, D.; Scheer, H.-C.; Pferffer, K.; Bleidiessel, G.; Grutzner, G.; Ahopelto, J. J. Vac. Sci. Technol. B 2000, 18, 3582.
    [97] Kloosterboer, J. G.; Loppits, G. J. M.; Meinders, H. C. Philips Tech. Rev. 1982, 40, 198.
    [98] Terris, B. D.; Mamin, H. J.; Best, M. E.; Logan, J. A.; Rugar, D. Appl. Phys. Lett. 1996, 69, 4262.
    [99] Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. J. Vac. Sci. Technol. B 1996, 14, 4129.
    [100] Zhang, W.; Chou, S. Y. Appl. Phys. Lett. 2003, 83, 1632.
    [101] Tan, H.; Gelbertson, A.; Chou, S. Y. J. Vac. Sci. Technol. B 1998, 16, 3926.
    [102] Hoff, J. D.; Cheng, L.-J.; Meyhoefer, E.; Guo, L. J.; Hunt, A. J. Nano Lett. 2004, 853.
    [103] Li, H.-W.; Huck, W. T. S. Nano Lett. 2004, 4,1633.
    [104] Behl, M.; Seekamp, J.; Zankovych, S.; Torres, C. M. S.; Zentel, R.; Ahopelto, J. Adv. Mater. 2002, 14, 588.
    [105] Finder, C.; Beck, M.; Seekamp, J.; Pferffer, K.; Carlberg, P.; Maximov, I; Reuther, F.; Sarwe, E. L.; Zankovych, S.; Ahopelto, J.; Montelius, L.; Mayer, C.; Sotomayor Torres, C. M. Microelectron. Eng. 2003, 67-68, 623.
    [106] Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L.; Zhuang, L. J. Vac. Sci. Technol. B 1997, 15, 2897.
    [107] Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 4581
    [108] Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216.
    [109] Delamarche, E.; Michel, B.; Kang, H.; Gerber, C. Langmuir 1994, 10, 4103.
    [110] Swalen, J. D.; Annu. Rev. Phys. Chem. 1992, 43, 437.
    [111] Bishop, A. R.; Nuzzo, R. G. Curr. Opin. Coll. Interf. Sci. 1996, 1, 127.
    [112] Xia, Y. N.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 3274.
    [113] Biebuyck, H. A.; Larsen, N. B.; Delamarche, E.; Michel, B. IBM J. Res. Dev. 1997, 41, 159.
    [114] Zheng, Z.; Azzaroni, O.; Vickers, M. E.; Huck, W. T. S. Adv. Funct. Mater. 2006, 16, 805.
    [115] Jacobs, H. O.; Whitesides, G. M. Science 2001, 291, 1763.
    [116] Cho, A. Y.; MRS Bull. 1995, 21.
    [117] Dolan, G. J. Appl. Phys. Lett. 1977, 31, 337.
    [118] Zhu, N.; Cacouris, T.; Scarmozzino, R.; Osgood, R. M. Jr. Appl. Phys. Lett. 1991, 58, 1178.
    [119] Matsui, S.; Ochiai, Y. Nanotechnology 1996, 7, 247.
    [120] Fasol, G.; Runge, K. Appl. Phys. Lett. 1997, 70, 2467.
    [121] Masuda, H.; Yasui, K.; Nishio, K. Adv. Mater. 2000, 12, 1031.
    [122] Aizenberg, J.; Black, A. J.; Whitesides, G. M. Nature 1998, 394, 868.
    [123] Toh, K. K. H.; Dao, G.; Singh, R.; Gaw, H. Proc. SPIE-Int. Soc. Opt. Eng. 1991, 27, 1496.
    [124] Pfeiffer, L.; West, K. W.; Stormer, H. L.; Eisenstein, J. P.; Baldwin, K. W.; Gershoni, D.; Spector, J. Appl. Phys. Letts. 1990, 56, 1697.
    [125] Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Baolato, A.; Petroff, P. M.; Heath, J. R. Science 2003, 300, 112.
    [126] Aizenberg, J.; Black, A. J.; Whitesides, G. M. Nature 1999, 398, 495.
    [127] Flanders, D. C.; White, A. E. J. Vac. Sci. Technol. 1981, 19, 892.
    [128] Xu, Q.; Gates, B.; Whitesides, G. M. J. Am. Chem. Soc. 2004, 126, 1332.
    [129] Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120.
    [130] Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Langmuir 2002, 18, 5314.
    [131] Love, J. C.; Paul, K. E.; Whitesides, G. M. Adv. Mater. 2001, 12, 604.
    [132] Cherniavskaya, O.; Adzic, A.; Knutson, C.; Gross, B. J.; Zang, L.; Liu, R.; Adams, D. M. Langmuir 2002, 18, 7029.
    [133] Shimomura, M.; Sawadaishi, T. Current Opinion in Colloid & Interface Science 2001, 6, 11.
    [134] Gleiche, M.; Chi, L. F.; Fuchs, H. Nature 2000, 403, 173.
    [135] Lu, N.; Gleiche, M.; Chi, L. F. Adv. Mater. 2002, 14, 1812.
    [136] Mahnke, J.; Vollhardt, D.; Stockelhuber, K. W. Langmuir, 1999, 15, 8220.
    [137] Huang, J. X.; Kim, F.; Yang, P. D. Nature Mater. 2005, 4, 896.
    [138] Purrucker, O.; Jordan, R.; Tanaka, M. J. Am. Chem. Soc. 2005, 127, 1258.
    [139] Whang, D.; Jin, S.; Lieber, C. M. Nano Lett. 2003, 3, 1255.
    [140] Lu, N.; Rogach, L.; Chi, L. F. Nano Lett. 2004, 4, 885.
    [141] Forster, S.; Antonietti, M.; Adv. Mater. 1998, 10, 195.
    [142] Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, February, 32.
    [143] Fasolka, M. J.; Meyes, A. M. Annu. Rev. Mater. Res. 2001, 31. 323.
    [144] Yokoyama, H.; Mates, T. E.; Kramer, E. J. Macromolecules 2000, 33, 1888.
    [145] Guarini, K. W.; Black C. T.; Yeung, S. H. I. Adv. Mater. 2002, 144, 1290.
    [146] Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J. Macromolecules 2003, 36, 3272.
    [147] Segalman, R. A.; Schaefer, K. E.; Fredrickson, G. H.; Framer, R. J.; Magonov, S. Macromolecules 2003, 36, 4498.
    [148] Park, M.; Harrison, C.; Chailin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    [149] Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
    [150] Li, R. P.; Dapkus, P. D.; Thompson, M. E.; Jeong, W. G.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H.; Appl. Phys. Lett. 2000, 76, 1689.
    [151] Kim, H.–C.; Jia, X.; Stafford, C. M.; Kim, D. H.; McCarthy, T. J.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Adv. Mater. 2001, 13, 795.
    [152] Lopes, W. A.; Jaeger, H. M. Nature 2001, 414, 735.
    [153] Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
    [154] Kim, S. O.; Solak, H. H.; Stoykovic, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Nature 2003, 424, 411.
    [155] Francois, B.; Pitois, O.; Francois, J. Adv. Mater. 1995, 7, 1041.
    [156] Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C. S.; Manz, A. Science, 1993, 261, 895.
    [157] Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
    [158] Krishnamoorthy, S.; Hinderling, C.; Heinzelmann, H. Materials Today 2006, 9, 40.
    [159] Manne, S.; Gaub, H. E. Science 1995, 270, 1480.
    [160] Manne, S.; Cleveland, J. P.; Gaub, H. E.; Stucky, G. D.; Hansma, P. K. Langmuir 1994, 10, 4409.
    [161] Manne, S.; Sch?ffer, T. E.; Huo, Q.; Hansma, P. K.; Morse, D. E.; Stucky, G. D.; Aksay, I. A. Langmuir 1997, 13, 6382.
    [162] aschke, M.; Butt, H. J.; Gaub, H. E.; Manne, S. Langmuir 1997, 13, 1381.
    [163] Patrick, H. N.; Warr, G. G.; Manne, S.; Aksay, I. A. Langmuir 1997, 13, 4349.
    [164] Lu, Y. Angew. Chem. Int. Ed. 2006, 45, 7664.
    [165] Geissler, M.; McLellan, J. M.; Chen, J.; Xia, Y. Angew. Chem. Int. Ed. 2005, 44, 3596.
    [166] Kempa, K.; Kimball, B.; Rybczynski, J.; Huang, Z. P.; Wu, P. F.; Steeves, D.; Sennett, M.; Giersig, M.; Rao, D. V. G. L. N.; Carmahan, D. L.; Wang, D. Z.; Lao, J. Y.; Li, W. Z.; Ren, Z. F. Nano Lett. 2003, 3, 13.
    [167] Zhang, G.; Wang, D.; Mohwald, H. Nano lett. 2007, 7, 127.
    [168] Choi, D.-G.; Kim, S.; Lee, E.; Yang, S.-M. J. Am. Chem. Soc. 2005, 127, 1636.
    [169] Haynes, C. L.; Duyne, R. P. V. J. Phys. Chem. B 2001, 105, 5599.
    [170] Wang, X.; Summers, C. J.; Wang, Z L. Nano Lett. 2004, 4, 423.
    [171] Hulteen, J. C.; Reichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; van Duyne, R. P. J. Phys. Chem. B 1999, 103, 3854.
    [172] Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K. Small 2006, 2, 458.
    [173] Ozin, G. A.; Yang , S. M. Adv. Funct. Mater. 2001, 11, 95.
    [174] Gates, B.; Qin, D.; Xia, Y. Adv. Mater. 1999, 11, 466.
    [175] Kosiorek, A.; Kandulski, W.; Glaczynska, H.; Giersig, M. Small 2005, 1, 439.
    [176] Francois, B.; Pitois, O.; Francois, J. Adv. Mater. 1995, 7, 1041.
    [177] Widawaki,G.; Rawiso, M.; Francois, B. Nature 1994, 369, 387.
    [178] Pitois, O.; Francois, B. Colloid. Polym. Sci. 1999, 277, 574.
    [179] Pitois, O.; Fransois, B.; Eur. Phys. J. B: Cond. Matter. Phys. 1999, 8, 225.
    [180] Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Science 2001, 292, 79.
    [181] Karthaus, O.; Maruyama, N.; Cieren, X.; Shimonura, M.; Hasegawa, H.; Hashimoto, T. Langmuir 2000, 16, 6071.
    [182] Nishikawa, T.; Cokura, R.; Nishida, J.; Sawadaishi, T.; Shimomura, M. Riken Review 2001, 37, 43.
    [183] Cui, L.; Peng, J.; Ding, Y.; Li, X.; Han Y. C. Polymer 2005, 46, 5334.
    [184] Vlasov, Y. A.; Bo, X. Z.; Sturm, J. C.; Norris, D. J. Natrue 2001, 414, 289.
    [185] Suh, K. Y.; Lee, H. H. Adv. Funct. Mater. 2002, 12, 405.
    [186] Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Nature 1998, 393, 146.
    [187] Eggers, J. Rev. Mod. Phys. 1997, 69, 865.
    [188] Suh, K. Y. SMALL 2006, 2, 832.
    [189] Vyawahare, S.; Craig, K. M.; Scherer, A. Nano Lett. 2006, 6, 271.
    [190] Suematsu, N.; Ogawa, Y.; Yamamoto, Y.; Yamaguchi, T. J. Coll. & Interf. Sci. 2007, 310, 648.
    [191] Karthaus, O.; Grasjo, L.; Maruyama, N.; Shimomura, M. Thin Solid Films 1998, 327-329, 829.
    [192] Hashimoto, Y.; Karthaus, O. J. Coll. & Interf. Sci. 2007, 311, 289.
    [193] Lin, Z.; Granick, S. J. Am. Chem. Soc. 2005, 127, 2816.
    [194] Hong, S. W.; Xia, J.; Lin Z. Adv. Mater. 2007, 19, 1413.
    [195] Mijatovic, D.; Eijkel, J. C. T.; van den Berg, A. Lab Chip 2005, 5, 492.
    [196] Cheng, J. Y.; Ross, C. A.; Smith H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
    [197] Xia, Y. N.; Yin, Y. D.; Lu, Y.; McLellan, J. Adv. Funct. Mater. 2003, 13, 907.
    [198] Register, R. A. Nature 2003, 424, 378.
    [199] Henzie, J.; Kwak, E. –S.; Odom, T. W. Nano Lett. 2005, 5, 1199.
    [200] Bae, E. J.; Choi, W. B.; Jeong, K. S.; Chu, J. U.; Park, G. –S.; Song, S.; Yoo, K. Adv. Mater. 2002, 14, 277.
    [201] Wu, Y.; Cheng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.; Fredrickson, G. H.; Stucky, G. D. Nat. Mater. 2004, 3, 816.
    [202] Giermann, A. L.; Thompson, C. V. Appl. Phys. Lett. 2005, 86, 121903.
    [203] Kumacheva, E.; Golding, R. K.; Allard, M.; Sargent, E. H. Adv. Mater. 2002, 14,221.
    [204] Craig, G. S. W.; Nealey, P. F. J. Photopol. Sci. Technol. 2007, 20, 511.
    [205] Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H. Appl. Phys. Lett. 1997, 72, 2770.
    [206] Yoo, P. J.; Suh, K. Y.; Park, Y.; Lee, H. H. Adv. Mater. 2002, 14, 1383.
    [207] Sferrazza, M.; Heppenstall-Butler, M.; Bucknall, J. W. D.; Jones, R. A. L. Phys. Rev. Lett. 1998, 81, 5173.
    [208] Sharma, A. Langmuir 1993, 9, 861.
    [209] Kheshgi, H. S.; Scriven, L. E. Chem. Eng. Sci. 1991, 46, 519.
    [210] Reiter, G. Phys. Rev. Lett. 1992, 68, 75.
    [211] Reiter, G. Langmuir 1993, 9, 1344.
    [212] Henn, G. D.; Bucknall, G.; Stamm, M.; Vanhoorne, P.; Jerome, R. Macromolecules 1996, 29, 4305.
    [213] Stange, T. G.; Evans, D. F.; Hendrickson, W. A. Langmuir 1997, 13, 4459.
    [214] Zhang, J.; Fredin, N. J.; Lynn, D. M. Langmuir, 2007, 23, 11603.
    [215] Muller-Buschbaum, P.; Gutmann, J. S.; Lorenz-Haas, C.; Wunnicke, O.; Stamm, M.; Petry, W. Macromolecules 2002, 35, 2017.
    [216] Reiter, G.; Sharma, A.; Casoli, A.; David, M. O.; Khanna, R.; Auroy, P. Langmuir 1999, 15, 2551.
    [217] Herminghaus, S.; Jacobs, K.; Mecke, K.; Bischof, J.; Fery, A.; Ibn-Elhaj, M.; Schlagowski, S. Science 1998, 282, 916.
    [218] Padmakar, A. S.; Kargupta, K.; Sharma, A. J. Chem. Phys. 1999, 110, 1735.
    [219] Kargupta, K.; Konnur, R.; Sharma, A. Langmuir 2000, 16, 10243.
    [220] Kargupta, K.; Konnur, R.; Sharma, A. Langmuir 2001, 17, 1294.
    [221] G.Petrov, J.; Ralston, J.; Hayes, R. A. Langmuir 1999, 15, 3365.
    [222] Brochard-Wyart, J. D. F. Can. J. Phys. 1990, 68, 1084.
    [223] Karapanagiotis, I.; Evans, D. F.; Gerberich, W. W. Colloids and surfaces A: Physicochem. Eng. Aspects 2002, 207, 59.
    [224] Higgins, A. M.; Jones, R. A. L. Nature 2000, 404, 476.
    [225] Huang, J.; Kim, F.; Tao, A. R.; Connor, S.; Yang, P. Nat. Mater. 2005, 806.
    [226] van Hameren, R.; Schon, P.; van Buut, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A.; Nolte, R. J. M. Science 2006, 314, 1433.
    [227] Benor, A.; Hoppe, A.; Wagner, V.; Knipp, D. Thin Solid Films 2007, 515, 7679.
    [228] Kim, Y. S.; Lee, H. H. Adv. Mater. 2003, 15, 332.
    [229] Celio, H.; Barton, E.; Stevenson, K. J. Langmuir, 2006, 22, 11426.
    [230] Zhang, X.; Xie, F.; Tsui, O. K. C. Polymer 2005, 46, 8416.
    [231] Bao, Z. Nat. Mater. 2004, 3, 137.
    [232] Lian, J.; Wang, L.; Sun, X.; Yu, Q.; Ewing, R. C. Nano Lett. 2006, 6, 1047.
    [233] Barnes, W. L.; Dereux, A.; Ebbeen, T. W. Nature 2003, 424, 824.
    [234] Auletta, T.; Dordi, B.; Mulder, A.; Sartori, A.; Onclin, S.; Bruinink Christiaan, M.; Peter, M.; Nijhuis Christian, A.; Beijleveld, H.; Schonherr, H.; Vancso, G. J.; Casnati, A.; Ungaro, R.; Ravoo Bart, J.; Huskens, J.; Reinhoudt, D. N. Angew, Chem. 2004, 43, 369.
    [235] Optical Lithography, a special issue of IBM. J. Res. Rev. 1997, 1-2, 3.
    [236] Lu, G.; Li, W.; Yao, J.; Zhang, G.; Yang, B.; Shen, J. Advance Materials 2002, 14, 1049.
    [237] Liu, Y.; Guo, J.; Zhang, H.; Wang, Y. Angew. Chem. Inter. Ed. 2002, 41, 182.
    [238] Kumar, A., Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498.
    [239] Beysens, D.; Knobler, C. M. Phys. Rev. Lett. 1986, 57, 1433.
    [240] Briscoe, B. J.; Galvin, K. P. Phys. Rev. A, 1991, 43, 1906.
    [241] Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R. Science 1999, 283, 46.
    [242] Herminghaus, S.; Gau, H.; M?nch, W. Adv. Mater. 1999, 11, 1393.
    [243] Kumar, A.; Whitesides, G. M. Science 1994, 263, 60.
    [244] López, G. P.; Biebuyck, H. A.; Frisbie, D.; Whitesides, G. M. Science 1993, 260, 647.
    [245] Wilbur, J. L.; Biebuyck, H. A.; MacDonald, J. C.; Whitesides, G. M. Langmuir 1995, 11, 825.
    [246] Olson, T.; Hamill, P. J. Chem. Phys. 1996, 104, 210.
    [247] Blackman, J. A.; Brochard, S. Phys. Rev. Lett. 2000, 84, 4409.
    [248] Braun, G. –H.; Meyer, E. Thin Solid Film 1999, 345, 222.
    [249] Takano, H.; Kenseth, J. R.; Wong, S.; O'Brien, J. C.; Porter, M. D. Chem. Rev. 1999, 99, 2845.
    [250] Green, J. D.; McDermott, M. T.; Porter, M. D.; Siperko, L. M. J. Phys. Chem. 1995, 99, 10960.
    [251] Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 2790.
    [252] Karapanagiotis, I.; Evans, D. F.; Gerberich, W. W., Langmuir 2001, 17, 3266.
    [253] Thiele, U.; Mertig, M.; Pompe, W. Phys. Rev. Lett. 1998, 80, 2869.
    [254] Mitlin, V. S. J. Colloid Interface Sci. 1993, 156, 491.
    [255] Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
    [256] Jager, E. W. H.; Smela, E.; Ingan?s, O. Science 2000, 290, 1540.
    [257] Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H. Nature 2001, 414, 293.
    [258] Service, R. F. Science 1997, 278, 383.
    [259] Kim, C.; Burrows, P. E.; Forrest, S. R. Science 2000, 288, 831.
    [260] Huang, Z.; Wang, P.; MacDiarmid, A. G.; Xia, Y.; Whitesides, G. M. Langmuir 1997, 13, 6480.
    [261] Qin, D.; Xia, Y.; Xu, B.; Yang, H.; Zhu, C.; Whitesides, G. M. Adv. Mater. 1999, 11, 1433.
    [262] Park, M. H.; Jang, Y. J.; Sung-Suh, H. M.; Sung, M. M. Langmuir 2004, 20, 2257.
    [263] Sehgal, A.; Ferreiro, V.; Douglas, J. F.; Amis, E. J.; Karim, A. Langmuir 2002, 18, 7041.
    [264] Kargupta, K.; Sharma, A. Langmuir 2003, 19, 5153.
    [265] Nishikawa, T.; Ookura, R.; Nishida, J.; Arai, K.; Hayashi, J.; Kurono, N.; Sawadaishi, T.; Hara, M.; Shimomura, M. Langmuir 2002, 18, 5734.
    [266] B?ltau, M.; Walheim, S.; Mlynek, J.; Krausch, G.; Steiner, U. Nature 1998, 391, 877.
    [267] Khanna, R.; Sharma, A. J. Colloid Interface Sci. 1997, 195, 42.
    [268] Xia, Y.; Qin, D.; Yin, Y. Curr. Opin. Coll. Inter. Sci. 2001, 6, 54.
    [269] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Nature 1997, 389, 827.
    [270] Deegan, R. D. Phys. Rev. E 2000, 61, 475.
    [271] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Phys. Rev. E 2000, 62, 756.
    [272] Sun, H.; Zhang, J.; Zhang, H.; Li, W.; Wang, C.; Li, M.; Tian Y.; Zhang, D.; Chen, H.; Yang, B., Macromol. Mater. Eng. 2006, 291, 929.
    [273] López, G. P.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1993, 9, 1513.
    [274] Yang, X. M.; Tryk, A. A.; Hasimoto, K.; Fujishima, A. Appl. Phys. Lett. 1996, 69, 4020.
    [275] Suh, K. Y.; Langer, R. Appl. Phys. Lett. 2003, 83, 1668.
    [276] 潘祖仁,《高分子化学》(第三版),化学工业出版社,2004.
    [277] Wang, J. Z.; Zheng, J. H.; Li, H. W.; Huck, W. T.; Sirringhaus, S. H., Nat. Mater. 2004, 3, 171.
    [278] Pitarke, J. M.; Perdew, J. P. Phys. Rev. B 2003, 67 (4): Art. No. 045101.
    [279] Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogues, J.Nature 2003, 423, 850.
    [280] Klaui, M.; Rothman, J.; López-Diaz, L.; Vaz, C. A. F.; Bland, J. A. C. Appl. Phys. Lett. 2001, 78, 3268.
    [281] Fu, L.; Liu, X.; Zhang, Y.; Dravid, V. R.; Mirkin, C. A. Nano Lett. 2003, 3, 757.
    [282] Song, W.; Li, W.; Cheng, Y.; Jia, H.; Zhao, G.; Zhou, Y.; Yang, B.; Xu, W.; Tian, W.; Zhao, B. Jounal of Raman Spectroscopy 2006, 37, 755.
    [283] Nie, Y.; Li, W.; An, L.; Zhu, D.; Wang, Z.; Yang, B. Colloids and surfaces A: Physicochem. Eng. Aspects 2006, 278, 229.
    [284] D’Iorio, M. Canadian Journal of Physics 2000, 78, 231.
    [285] Wang, Q.; Wang, L. M.; Yu, L. P. Macromol. Rap. Comm. 2000, 21, 723.
    [286] Perrier, S. Surface Coating International Part B-Coatings Transactions 2004, 87, 235.
    [287] Fernandes, E. G.; Pietrini, M.; Chiellini, E. Biomacromolecules 2004, 1200.
    [288] Jagur-Grodzinski, J. Polymers for Advanced Technologies 2006, 17, 395.
    [289] White, C. E.; Henderson, C. L. Jounal of Vacuum Science & Technology B 2003, 21, 2926.
    [290] Heeger, A. J. Reviews of modern physics 2001, 73, 681.
    [291] Schaffer, E.; Thurn-Albrecht, T.; Russell, T. P.; Steiner, U. Nature 2000, 403, 874.
    [292] Schaffer, E.; Harkema, S.; Roerdink, M.; Blossey, R.; Steiner, U. Adv. Mater. 2003, 15, 514.
    [293] Sun, Z. G.; Mizuguchi, M.; Manago, T.; Akinaga, H. Appl. Phys. Lett. 2004, 85, 5643.
    [294] Wang, Y.; Liu, Z.; Han, B.; Huang, Y.; Zhang, J.; Sun, D.; Du, J. J., Phys. Chem. B 2005, 109, 12376.
    [295] Gan, D. J.; Cao, W. J.; Puat, N. E. High Performance Polymers 2001 13, 259.
    [296] Suh, K. Y.; Kim, Y. S.; Lee, H. H. Adv. Mater. 2001, 13, 1386.
    [297] Peng, J.; Wang, H.; Li, B.; Han, Y. Polymer, 2004, 8013.
    [298] Landau, L. D.; Levich, B. Acta Physicochimica. U.R.S.S. 1942, 17, 42-54.
    [299] Wilson, S. D. R. J. Eng. Math. 1982, 16, 209.
    [300] Darhuber, A. A.; Troian, S. M.; Davis, J. M.; Scott, M.; Wagner, M. S. J. Appl. Phys. 2000, 88, 5119.
    [301] O' Dwyer, C.; Gay, G.; Viaris de Lesegno, B.; Weiner, J.; Ludolph, K.; Albert, D.; Oesterschulze, E. J. Appl. Phys. 2005, 97, 114309.
    [302] Bietsch, A.; Hegner, M.; Lang, H. P.; Gerber, C. Langmuir 2004, 20, 5119.
    [303] Vogelaar, L.; Lammertink, R. G. H.; Barsema, J. N.; Nijdam, W. L.; Bolhuis-Versteeg, A. M.; van Rijn, C. J. M.; Wessling, M. SMALL 2005, 1, 645.
    [304] Leoni, L.; Desai, T. A. IEEE Trans. Biomed. Eng. 2001, 48, 1335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700