γ-分泌酶组分基因APH-1A和PEN-2的转录调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PS/γ分泌酶负责老年痴呆症相关蛋白β淀粉样蛋白前体蛋白(APP)、信号转导受体Notch和其他Ⅰ型跨膜蛋白的剪切,其组成单位至少有四种:presenilins(PS,包括PS1和PS2)、nicastrin(NCT)、APH-1和PEN-2。尽管人们对这四种组分在蛋白质水平上的有机的相互调解作用已经有所了解,但是,关于它们的转录调控却只知之甚少。在这项研究中,我们克隆了PEN-2和APH-1A两种基因启动子区,并通过荧光素酶活性分析鉴定了这两种基因启动活性必需的最小启动子区。序列分析表明,在这些区域存在许多潜在的转录因子的结合位点。点突变和胶迁移实验揭示AP4和HIF-1结合到APH-1A启动子上,而CREB结合到PEN-2启动子上。进一步的研究表明,由forskolin激活的CREB显著地促进PEN-2 mRNA和蛋白质的表达,而对γ-分泌酶的其他组分没有影响。通过NiCl_2处理(一种模拟缺氧的化学条件)激活HIF-1,APH-1AmRNA和蛋白质的水平显著增加,而PEN-2和PS1的蛋白水平只是在长时间的NiCl_2处理条件下才会增加。更为重要的是,APP蛋白酶解的各种代谢产物的水平在forskolin或者NiCl_2处理的条件下也发生了改变。总之,我们的结果表明,APH-1A和PEN-2的转录分别受HIF-1和CREB的特异性调控,并且这种调控的特异性可能赋予APH-1和PEN-2其他特有的生理功能。
The intramembrane proteolytic cleavages of Alzheimer'sβ-amyloid precursor protein (APP) and signaling receptor Notch are mediated by the PS/γ-secretase complex, which comprises of presenilins (PS, including PS1 and PS2), nicastrin (NCT), APH-1 and PEN-2. Although the four components have been shown to coordinately regulate each other at the protein level, information regarding their transcriptional regulation is scarce. In the present study, we characterized upstream regions of the human PEN-2 and APH-1A genes and identified sequences critical for their promoter activity. Sequence analysis of these regions revealed several potential transcription factor binding sites. Site mutations and gel shift assays showed that CREB binds to PEN-2 promoter, whereas AP4 and HIF-1 bind to APH-1A promoter. Furthermore, activation of CREB by forskolin treatment dramatically promoted the expression of PEN-2 mRNA and protein, but not the expression of the other threeγ-secretase components. Activation of HIF-1 by nickel (chemical hypoxia) significantly promoted the expression of APH-1A mRNA and protein; whereas increased protein levels of PEN-2 and PS1 were only observed after chronic nickel treatment. Importantly, the levels of various proteolytic metabolites of APP were also altered by forskolin or nickel treatment. Together, our results demonstrate the differential transcriptional regulation of PEN-2 and APH-1A expression, and suggest additional physiological functions uniquely assigned to PEN-2 and APH-1A.
引文
[1]. Nussbaum, R.L. and C.E. Ellis, Alzheimer's disease and Parkinson's disease[J]. N Engl J Med, 2003. 348(14): p. 1356-64.
    [2]. Selkoe, D.J., Alzheimer's disease: genotypes, phenotypes, and treatments[J]. Science, 1997. 275(5300): p. 630-1.
    [3]. Selkoe, D.J., Presenilin, Notch, and the genesis and treatment of Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11039-41.
    [4]. Selkoe, D.J., Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001. 81(2): p. 741-66.
    [5]. Grundke-Iqbal, I., et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology[J]. Proc Natl Acad Sci U S A, 1986. 83(13): p. 4913-7.
    [6]. Masters, C.L., et al., Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. Proc Natl Acad Sci U S A, 1985. 82(12): p. 4245-9.
    [7]. Glenner, GG. and C.W. Wong, Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein[J]. Biochem Biophys Res Commol/Lun, 1984. 122(3): p. 1131-5.
    [8]. Kang, J., et al., The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. [J]. Nature, 1987. 325(6106): p. 733-6.
    [9]. Goldgaber, D., et al., Isolation, characterization, and chromosomal localization of human brain cDNA clones coding for the precursor of the amyloid of brain in Alzheimer's disease, Down's syndrome and aging[J]. J Neural Transm Suppl, 1987. 24: p. 23-8.
    [10]. Golde, T.E., et al., Expression of beta amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer's disease using PCR[J]. Neuron, 1990. 4(2): p. 253-67.
    [11]. Kang, J. and B. Muller-Hill, Differential splicing of Alzheimer's disease amyloid A4 precursor RNA in rat tissues: PreA4(695) mRNA is predominantly produced in rat and human brain[J]. Biochem Biophys Res Commol/Lun, 1990. 166(3): p. 1192-200.
    [12]. Neve, R.L., E.A. Finch, and L.R. Dawes, Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron[J], 1988. 1(8): p. 669-77.
    [13]. Zheng, H., et al., beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell, 1995. 81(4): p. 525-31.
    [14]. Heber, S., et al, Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precurso protein family members[J]. j. neurosci., 2000. 20: p. 7951-7963.
    [15]. Suzuki, S., et al., The effects of amylin on insulin secretion from Rin m5F cells and glycogen synthesis and lipogenesis in rat primary cultured hepatocytes[J]. Diabetes Res Clin Pract, 1992. 15(1): p. 77-84.
    [16]. Weidemann, A., et al., Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein[J]. Cell, 1989. 57(1): p. 115-26.
    [17]. Gouras, G.K., et al., Generation and regulation of beta-amyloid peptide variants by neurons[J]. J Neurochem, 1998. 71(5): p. 1920-5.
    [18]. Weidemann, A., et al., A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing[J]. Biochemistry, 2002. 41(8): p. 2825-35.
    [19]. Cao, X. and T.C. Sudhof, A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60[J]. Science, 2001. 293(5527): p. 115-20.
    [20]. Sastre, M., et al., Presenilin-dependent gammol/La-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch[J]. EMBO Rep, 2001. 2(9): p. 835-41.
    [21]. Gu, Y., et al., Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gammol/La-secretase-like cleavage of Notch[J]. J Biol Chem, 2001. 276(38): p. 35235-8.
    [22]. Yu, C., et al., Characterization of a presenilin-mediated amyloid precursor protein carboxyl- terminal fragment gammol/La. Evidence for distinct mechanisms involved in gammol/La - secretase processing of the APP and Notchl transmembrane domains[J]. J Biol Chem, 2001. 276(47): p. 43756-60.
    
    [23]. Jarrett, J.T., E.P. Berger, and P.T. Lansbury, Jr., The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease[J]. Biochemistry, 1993. 32(18): p. 4693-7.
    [24]. Hilbich, C., et al., Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer's disease[J]. J Mol Biol, 1991. 218(1): p. 149-63.
    [25]. Gravina, S.A., et al., Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immol/Lunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43 [J]). J Biol Chem, 1995. 270(13): p. 7013-6.
    [26]. Iwatsubo, T., et al., Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43) [J]. Neuron, 1994. 13(1): p. 45-53.
    [27].Miller, D.L., et al., Peptide compositions of the cerebrovascular and senile plaque core . amyloid deposits of Alzheimer's disease[J]. Arch Biochem Biophys, 1993. 301(1): p. 41-52.
    [28]. Mullan, M., et al., A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid[J]. Nat Genet, 1992. 1(5): p. 345-7.
    [29]. Citron, M., et al., Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production[J]. Nature, 1992. 360(6405): p. 672-4.
    [30]. Murrell, J., et al., A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease[J]. Science, 1991. 254(5028): p. 97-9.
    [31]. Chartier-Harlin, M.C., et al., Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene[J]. Nature, 1991. 353(6347): p. 844-6.
    [32]. Levy, E., et al., Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type[J]. Science, 1990. 248(4959): p. 1124-6.
    [33]. Cai, X.D., T.E. Golde, and S.G. Younkin, Release of excess amyloid beta protein from a mutant amyloid beta protein precursor[J]. Science, 1993. 259(5094): p. 514-6.
    [34]. McLean, C.A., et al., Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease[J]. Ann Neurol, 1999. 46(6): p. 860-6.
    [35]. Lue, L.F., et al., Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease[J]. Am J Pathol, 1999. 155(3): p. 853-62.
    [36]. Kayed, R., et al., Commol/Lon structure of soluble amyloid oligomers implies commol/Lon mechanism of pathogenesis[J]. Science, 2003. 300(5618): p. 486-9.
    [37]. Walsh, D.M., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo[J]. Nature, 2002. 416(6880): p. 535-9.
    [38]. Lambert, M.P., et al., Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies[J]. J Neurochem, 2001. 79(3): p. 595-605.
    [39]. Hartley, D.M., et al., Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons[J]. J Neurosci, 1999. 19(20): p. 8876-84.
    [40]. Sisodia, S.S., Beta-amyloid precursor protein cleavage by a membrane-bound protease[J]. Proc Natl Acad Sci U S A, 1992. 89(13):p. 6075-9.
    [41]. Buxbaum, J.D., et al., Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor[J]. J Biol Chem, 1998. 273(43): p. 27765-7.
    [42]. Allinson, T.M., et al., ADAMs family members as amyloid precursor protein alpha-secretases[J]. J Neurosci Res, 2003. 74(3): p. 342-52.
    [43]. Lammol/Lich, S., et al., Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease[J]. Proc Natl Acad Sci U S A, 1999. 96(7): p. 3922-7.
    [44]. Postina, R., et al., A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model[J]. J Clin Invest, 2004. 113(10): p. 1456-64.
    [45]. Lin, X., et al., Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein[J]. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1456-60.
    [46]. Yan, R., et al., Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity[J]. Nature, 1999. 402(6761): p. 533-7.
    [47]. Hussain, I., et al., Identification of a novel aspartic protease (Asp 2) as beta-secretase[J]. Mol Cell Neurosci, 1999. 14(6): p. 419-27.
    
    [48]. Vassar, R., et al., Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. Science, 1999. 286(5440): p. 735-41.
    [49]. sinha, S., j.p.anderson, r.barbour, et al, purification and cloning of amyloid precursor protein beta-secretase from human brain[J]. nature, 1999. 402: p. 537-40.
    [50]. Ohno, M., et al., BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease[J]. Neuron, 2004.41(1): p. 27-33.
    [51]. Luo, Y., et al., Mice deficient in BACEl, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation[J]. Nat Neurosci, 2001. 4(3): p. 231-2.
    [52]. Roberds, S.L., et al., BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics[J]. Hum Mol Genet, 2001. 10(12): p. 1317-24.
    [53]. Cai, H., et al., BACE1 is the major beta-secretase for generation of Abeta peptides by neurons[J]. Nat Neurosci, 2001. 4(3): p. 233-4.
    [54]. Aleister J. Saunders, et al. BACE Maps to Chromosome 11 and a BACE Homolog, BACE2, Reside in the Obligate Down Syndrome Region of Chromosome 21[J]. Science, 1999. 286(5443): p. 1255.
    [55]. Hussain, I., et al., ASPl (BACE2) cleaves the amyloid precursor protein at the beta-secretase site[J]. Mol Cell Neurosci, 2000. 16(5): p. 609-19.
    [56]. Iwatsubo, T., The gammol/La-secretase complex: machinery for intramembrane proteolysis[J]. Curr Opin Neurobiol, 2004. 14(3): p. 379-83.
    [57]. Kimberly, W.T., et al., Gammol/La-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2[J]. Proc Natl Acad Sci U S A, 2003. 100(11): p. 6382-7.
    [58]. De Strooper, B., Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gammol/La-Secretase complex[J]. Neuron, 2003. 38(1): p. 9-12.
    [59]. Fraering, P.C., et al., Purification and characterization of the human gammol/La-secretase complex[J]. Biochemistry, 2004. 43(30): p. 9774-89.
    [60]. Levy-Lahad, E., et al., A familial Alzheimer's disease locus on chromosome 1[J]. Science, 1995. 269(5226): p. 970-3.
    
    [61]. Schellenberg, G.D., et al., Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14.Science,1992.258(5082):p.668-71.
    
    [62].Levy-Lahad,E.,et al.,Candidate gene for the chromosome 1 familial Alzheimer's disease locus[J].Science,1995.269(5226):p.973-7.
    [63].Rogaev,E.I.,et al.,Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene[J].Nature,1995.376(6543):p.775-8.
    [64].Sherrington,R.,et al.,Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.Nature,1995.375(6534):p.754-60.
    [65].Doan,A.,et al.,Protein topology ofpresenilin 1.Neuron,1996.17(5):p.1023-30.
    [66].Li,X.and I.Greenwald,Membrane topology of the C.elegans SEL-12presenilin[J].Neuron,1996.17(5):p.1015-21.
    [67].Ratovitski,T.,et al.,Endoproteolytic processing and stabilization of wild-type and mutant presenilin[J].J Biol Chem,1997.272(39):p.24536-41.
    [68].Thinakaran,G,et al.,Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo[J].Neuron,1996.17(1):p.181-90.
    [69].Capell,A.,et al.,The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex[J].J Biol Chem,1998.273(6):p.3205-11.
    [70].Luo,W.J.,et al.,PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1[J].J Biol Chem,2003.278(10):p.7850-4.
    [71].De Strooper,B.,et al.,Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein[J].Nature,1998,391(6665):p.387-90.
    [72].Herreman,A.,et al.,Total inactivation of gammol/La-secretase activity in presenilin-deficient embryonic stem cells[J].Nat Cell Biol,2000.2(7):p.461-2.
    [73].Steiner,H.and C.Haass,Intramembrane proteolysis by presenilins[J].Nat Rev Mol Cell Biol,2000.1(3):p.217-24.
    [74].Wolfe,M.S.,et al.,Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gammol/La-secretase activity[J].Nature,1999.398(6727):p.513-7.
    [75]. Borchelt, D.R., et al., Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo[J]. Neuron, 1996. 17(5): p. 1005-13.
    [76]. Citron, M., et al., Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice[J]. Nat Med, 1997. 3(1): p. 67-72.
    [77]. Murayama, O., et al., Enhancement of amyloid beta 42 secretion by 28 different presenilin 1 mutations of familial Alzheimer's disease[J]. Neurosci Lett, 1999. 265(1): p. 61-3.
    [78]. De Strooper, B., et al., A presenilin-1-dependent gammol/La-secretase-like protease mediates release of Notch intracellular domain[J]. Nature, 1999. 398(6727): p. 518-22.
    [79]. Hwang, D.Y., et al., Changes in presenilin 2-binding Wnt proteins, behavior, amyloid-beta 42, gammol/La-secretase activity, and testosterone sensitivity in transgenic mice coexpressing tetracycline-controlled transactivator and human mutant presenilin 2[J]. Neuromolecular Med, 2006. 8(3): p. 415-32.
    [80]. Uemura, K., et al., Presenilin 1 mediates retinoic acid-induced differentiation of SH-SY5Y cells through facilitation of Wnt signaling[J]. J Neurosci Res, 2003. 73(2): p. 166-75.
    [81]. Kawamura, Y., et al., Inhibitory effect of a presenilin 1 mutation on the Wnt signalling pathway by enhancement of beta-catenin phosphorylation[J], Eur J Biochem, 2001. 268(10): p. 3036-41.
    [82]. Marambaud, P., et al., A presenilin-1/gammol/La-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions[J]. Embo J, 2002. 21(8): p. 1948-56.
    [83]. Culvenor, J.G., et al., Characterization of presenilin complexes from mouse and human brain using Blue Native gel electrophoresis reveals high expression in embryonic brain and minimal change in complex mobility with pathogenic presenilin mutations[J]. Eur J Biochem, 2004. 271(2): p. 375-85.
    [84].. Li, Y.M., et al., Presenilin 1 is linked with gammol/La-secretase activity in the detergent solubilized state[J].Proc Natl Acad Sci U S A, 2000. 97(11): p. 6138-43.
    [85]. Yu, G., et al., The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin[J]. J Biol Chem, 1998. 273(26): p. 16470-5.
    [86]. Seeger, M., et al., Evidence for phosphorylation and oligomeric assembly of presenilin 1[J]. 65 Proc Natl Acad Sci U S A, 1997. 94(10): p. 5090-4.
    [87]. Thinakaran, G., et al., Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors[J]. J Biol Chem, 1997. 272(45): p. 28415-22.
    [88]. Baumann, K., et al., Distinct processing of endogenous and overexpressed recombinant presenilin 1[J]. Neurobiol Aging, 1997. 18(2): p. 181-9.
    [89]. Goutte, C., et al., aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling[J]. Development, 2000. 127(11): p. 2481-92.
    [90]. Goutte, C, et al., APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos[J]. Proc Natl Acad Sci U S A, 2002. 99(2): p. 775-9.
    [91]. Yu, G, et al., Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing[J]. Nature, 2000. 407(6800): p. 48-54.
    [92]. Yang, D.S., et al., Mature glycosylation and trafficking of nicastrin modulate its binding to presenilins[J]. J Biol Chem, 2002. 277(31): p. 28135-42.
    [93]. Gu, Y, et al., APH-1 interacts with mature and immol/Lature forms of presenilins and nicastrin and may play a role in maturation of presenilin.nicastrin complexes[J]. J Biol Chem, 2003. 278(9): p. 7374-80.
    [94]. Shirotani, K., et al., Gammol/La-secretase activity is associated with a conformational change of nicastrin[J]. J Biol Chem, 2003. 278(19): p. 16474-7.
    [95]. Hu, Y., Y. Ye, and M.E. Fortini, Nicastrin is required for gammol/La-secretase cleavage of the Drosophila Notch receptor. [J]. Dev Cell, 2002. 2(1): p. 69-78.
    [96]. Chung, H.M. and G. Struhl, Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila[J]. Nat Cell Biol, 2001. 3(12): p. 1129-32.
    
    [97]. Francis, R., et al., aph-1 and pen-2 are required for Notch pathway signaling, gammol/La- secretase cleavage of betaAPP, and presenilin protein accumulation[J]. Dev Cell, 2002. 3(1): p. 85-97.
    
    [98]. Hu, Y. and M.E. Fortini, Different cofactor activities in gammol/La-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex[J]. J Cell Biol, 2003. 161(4): p. 685-90.
    99. Takasugi, N., et al., The role of presenilin cofactors in the gammol/La-secretase complex[J]. Nature, 2003. 422(6930): p. 438-41.
    [100]. LaVoie, M.J., et al., Assembly of the gammol/La-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin[J]. J Biol Chem, 2003. 278(39): p. 37213-22.
    [101]. Lee, S.F., et al., Mammol/Lalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch[J]. J Biol Chem, 2002. 277(47): p. 45013-9.
    [102]. Steiner, H., et al., PEN-2 is an integral component of the gammol/La-secretase complex required for coordinated expression of presenilin and nicastrin[J]. J Biol Chem, 2002. 277(42): p. 39062-5.
    [103]. Forma, R.R., et al., Membrane topology and nicastrin-enhanced endoproteolysis of APH-1, a component of the gammol/La-secretase complex[J]. J Biol Chem, 2004. 279(5): p. 3685-93.
    [104]. Crystal, A.S., et al., Membrane topology of gammol/La-secretase component PEN-2[J]. J Biol Chem, 2003. 278(22): p. 20117-23.
    [105]. Hebert, S.S., et al., Coordinated and widespread expression of gammol/La-secretase in vivo: evidence for size and molecular heterogeneity[J]. Neurobiol Dis, 2004. 17(2): p. 260-72.
    [106]. Kim, S.H., et al., Regulated hyperaccumulation of presenilin-1 and the "gammol/La-secretase" complex. Evidence for differential intramembranous processing of transmembrane subatrates[J]. J Biol Chem, 2003. 278(36): p. 33992-4002.
    [107]. Morais, V.A., et al., The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the gammol/La-secretase complex[J]. J Biol Chem, 2003. 278(44): p. 43284-91.
    [108]. Lee, S.F., et al., A conserved GXXXG motif in APH-1 is critical for assembly and activity of the gammol/La-secretase complex[J]. J Biol Chem, 2004. 279(6): p. 4144-52.
    [109]. Zhang, Y.W., et al., Nicastrin is critical for stability and trafficking but not association of . other presenilin/gammol/La-secretase components[J]. J Biol Chem, 2005. 280(17): p. 17020-6.
    [110]. Moussaoui, S., et al., Immol/Lunohistochemical analysis of presenilin-1 expression in the mouse brain[J]. FEBS Lett, 1996. 383(3): p. 219-22.
    [111]. Xu, H., et al., Metabolism of Alzheimer beta-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system[J]. Proc Natl Acad Sci U S A, 1996. 93(9): p. 4081-4.
    [112]. Cook, D.G., et al., Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites[J]. Proc Natl Acad Sci U S A, 1996. 93(17): p. 9223-8.
    [113]. Baulac, S., et al., Functional gammol/La-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and gammol/La-secretase substrates[J]. Neurobiol Dis, 2003. 14(2): p. 194-204.
    [114]. Song, W., et al., Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations[J]. Proc Natl Acad Sci U S A, 1999. 96(12): p. 6959-63.
    [115]. Ni, C.Y., et al., gammol/La -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase[J]. Science, 2001. 294(5549): p. 2179-81.
    [116]. Lammol/Lich, S., et al., Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide[J]. J Biol Chem, 2002. 277(47): p. 44754-9.
    [117]. Kang, D.E., et al., Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors. Selectivity of PS2 in platelet-derived growth factor signaling[J]. J Biol Chem, 2005. 280(36): p. 31537-47.
    [118]. Thinakaran, G. and A.T. Parent, Identification of the role of presenilins beyond Alzheimer's disease[J]. Pharmacol Res, 2004. 50(4): p. 411-8.
    [119]. Leem, J.Y., et al., Presenilin 1 is required for maturation and cell surface accumulation of nicastrin[J]. J Biol Chem, 2002. 277(21): p. 19236-40.
    [120]. Sisodia, S.S., S.H. Kim, and G. Thinakaran, Function and dysfunction of the presenilins[J]. Am J Hum Genet, 1999. 65(1): p. 7-12.
    [121]. Donoviel, D.B., et al., Mice lacking both presenilin genes exhibit early embryonic patterning defects[J]. Genes Dev, 1999. 13(21): p. 2801-10.
    [122]. Li, J., et al., Positive and negative regulation of the gammol/La-secretase activity by nicastrin in a murine model[J]. J Biol Chem, 2003. 278(35): p. 33445-9.
    [123]. Li, T., et al., Nicastrin is required for assembly of presenilin/gammol/La-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammol/Lals[J]. J Neurosci, 2003. 23(8): p. 3272-7.
    [124]. Ma, G, et al., APH-1a is the principal mammol/Lalian APH-1 isoform present in gammol/La-secretase complexes during embryonic development[J]. J Neurosci, 2005. 25(1): p. 192-8.
    [125]. Wang, H., et al., Presenilins and gammol/La-secretase inhibitors affect intracellular trafficking and cell surface localization of the gammol/La-secretase complex components[J]. J Biol Chem, 2004. 279(39): p. 40560-6.
    [126]. Herreman, A., et al., gammol/La-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation[J]. J Cell Sci, 2003. 116(Pt 6): p. 1127-36.
    [127]. Koistinaho, J. and T. Hokfelt, Altered gene expression in brain ischemia[J]. Neuroreport, 1997. 8(2): p. i-viii.
    [128]. Koistinaho, J., et al., Expression of beta-amyloid precursor protein mRNAs following transient focal ischaemia[J]. Neuroreport, 1996. 7(15-17): p. 2727-31.
    [129]. Nowak, K., et al., The transcription factor Yin Yang 1 is an activator of BACE1 expression[J]. J Neurochem, 2006. 96(6): p. 1696-707.
    [130]. Lange-Dohna, C, et al., Cloning and expression of the rat BACE1 promoter[J]. J Neurosci Res, 2003. 73(1): p. 73-80.
    [131]. Wenger, R.H., Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and 02-regulated gene expression[J]. Faseb J, 2002. 16(10): p. 1151-62.
    [132]. Semenza, GL. and GL. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992. 12(12): p. 5447-54.
    [133]. Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension[J]. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4.
    [134]. Salceda, S. and J. Caro, Hypoxia-inducible factor lalpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes[J]. J Biol Chem, 1997. 272(36): p. 22642-7.
    [135]. Huang, L.E., et al., Regulation of hypoxia-inducible factor lalpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci U S A, 1998. 95(14):p. 7987-92.
    [136]. Jiang, B.H., et al., Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1[J]. J Biol Chem, 1996. 271(30): p. 17771-8.
    [137]. Shih, S.C. and K.P. Claffey, Hypoxia-mediated regulation of gene expression in mammol/Lalian cells[J]. Int J Exp Pathol, 1998. 79(6): p. 347-57.
    [138]. Namiki, A., et al., Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells[J]. J Biol Chem, 1995. 270(52): p. 31189-95.
    [139]. Graven, K.K., et al., Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia[J]. J Biol Chem, 1994. 269(39): p. 24446-53.
    [140]. Graven, K.K., R.J. McDonald, and H.W. Farber, Hypoxic regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase[J]. Am J Physiol, 1998. 274(2 Pt 1): p. C347-55.
    [141]. Salnikow, K., et al., Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors[J]. Carcinogenesis, 1999. 20(9): p. 1819-23.
    [142]. Bazan, N.G. and W.J. Lukiw, Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells[J]. J Biol Chem, 2002. 277(33): p. 30359-67.
    [143]. Mattson, M.P., et al., Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis[J]. J Neurosci, 2000. 20(4): p. 1358-64.
    [144]. Mohuczy, D., K. Qian, and M.I. Phillips, Presenilins in the heart: presenilin-2 expression is increased by low glucose and by hypoxia in cardiac cells[J]. Regul Pept, 2002. 110(1): p. 1-
    7.
    [145]. Matsuzaki, S., et al., Metals accelerate production of the aberrant splicing isoform of the presenilin-2[J]. J Neurochem, 2004. 88(6): p. 1345-51.
    [146]. Sato, N., et al., A novel presenilin-2 splice variant in human Alzheimer's disease brain tissue[J]. J Neurochem, 1999. 72(6): p. 2498-505.
    [147]. Sun, X., et al., Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACEl gene expression[J]. Proc Natl Acad Sci U S A, 2006. 103(49): p. 18727-32.
    [148]. Zhang, X., et al., Hypoxia inducible factor lalpha (HIF-1alpha )-mediated hypoxia increases BACEl expression and beta -amyloid generation[J]. J Biol Chem, 2007.
    [149]. Xue, S., L. Jia, and J. Jia, Hypoxia and reoxygenation increased BACE1 mRNA and protein levels in human neuroblastoma SH-SY5Y cells[J]. Neurosci Lett, 2006. 405(3): p. 231-5.
    [150]. Silva, A.J., et al., CREB and memory[J]. Annu Rev Neurosci, 1998. 21: p. 127-48.
    [151]. Mayr, B. and M. Montminy, Transcriptional regulation by the phosphorylation-dependent factor CREB[J]. Nat Rev Mol Cell Biol, 2001. 2(8): p. 599-609.
    [152]. Montminy, M.R., et al., Identification of a cyclic-AMP-responsive element within the rat somatostatin gene[J]. Proc Natl Acad Sci U S A, 1986. 83(18): p. 6682-6.
    [153]. Montminy, M.R. and L.M. Bilezikjian, Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene[J]. Nature, 1987. 328(6126): p. 175-8.
    [154]. Hoeffler, J.P., et al., Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA[J]. Science, 1988. 242(4884): p. 1430-3.
    [155]. Chrivia, J.C., et al., Phosphorylated CREB binds specifically to the nuclear protein CBP[J]. Nature, 1993. 365(6449): p. 855-9.
    [156]. Parker, D., et al., Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism[J]. Mol Cell Biol, 1996. 16(2): p. 694-703.
    [157]. Mitsuda, N., et al., Activated cAMP-response element-binding protein regulates neuronal expression of presenilin-1[J]. J Biol Chem, 2001. 276(13): p. 9688-98.
    [158]. Mitsuda, N., et al. Transcriptional regulation of the presenilin-1 gene by cAMP-response element binding protein[J]. Nippon Ronen Igakkai Zasshi, 2001. 38(6): p. 772-4.
    [159]. Walter, J., et al., Proteolytic fragments of the Alzheimer's disease associated presenilins-1 and -2 are phosphorylated in vivo by distinct cellular mechanisms [J]. Biochemistry, 1998. 37(17): p. 5961-7.
    [160]. Francis, Y.I., A. Stephanou, and D.S. Latchman, CREB-binding protein activation by presenilin 1 but not by its M146L mutant[J]. Neuroreport, 2006. 17(9): p. 917-21.
    [161]. Pastorcic, M. and H.K. Das, Alternative initiation of transcription of the human presenilin 1 gene in SH-SY5Y and SK-N-SH cells. The role of Ets factors in the regulation of presenilin 1[J]. Eur J Biochem, 2004. 271(22): p. 4485-94.
    [162]. Lu, H., et al., Carcinogenic effect of nickel compounds[J]. Mol Cell Biochem, 2005. 279(1-2): p. 45-67.
    [163]. Maxwell, P. and K. Salnikow, HIF-1: an oxygen and metal responsive transcription factor. Cancer Biol Ther, 2004. 3(1): p. 29-35.
    [164]. Costa, M., et al., Nickel carcinogenesis: epigenetics and hypoxia signaling[J]. Mutat Res, 2005. 592(1-2): p. 79-88.
    [165]. Gustafsson, M.V., et al., Hypoxia requires notch signaling to maintain the undifferentiated cell state[J]. Dev Cell, 2005. 9(5): p. 617-28.
    [166]. Jogi, A., et al., Hypoxia alters gene expression in human neuroblastoma cells toward an immol/Lature and neural crest-like phenotype[J]. Proc Natl Acad Sci U S A, 2002. 99(10): p. 7021-6.
    [167]. Seta, K., et al., Genomic and physiological analysis of oxygen sensitivity and hypoxia tolerance in PC12 cells[J]. Ann N Y Acad Sci, 2002. 971: p. 379-88.
    [168]. Gasparini, L., et al., Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling[J]. JNeurosci, 2001. 21(8): p. 2561-70.
    [169]. Tarassishin, L., et al., Processing of Notch and amyloid precursor protein by gammol/La-secretase is spatially distinct[J]. Proc Natl Acad Sci U S A, 2004. 101(49): p. 17050-5.
    [170]. Schroeter, E.H., J.A. Kisslinger, and R. Kopan, Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain[J]. Nature, 1998. 393(6683): p. 382-6.
    [171]. Yoon, S.O., S. Shin, and A.M. Mercurio, Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin[J]. Cancer Res, 2005. 65(7): p. 2761-9.
    [172]. Greenfield, J.P., et al., Estrogen lowers Alzheimer beta-amyloid generation by stimulating trans-Golgi network vesicle biogenesis[J].J Biol Chem,2002.277(14):p.12128-36.
    
    [173].Pastorcic,M.and H.K.Das,Activation of transcription of the human presenilin 1 gene by 12-O-tetradecanoylphorbol 13-acetate[J].Eur J Biochem,2002.269(23):p.5956-62.
    [174].Golde,T.E.,The Abeta hypothesis:leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease[J].Brain Pathol,2005.15(1):p.84-7.
    [175].Greenfield,J.P.,et al.,Cellular and molecular basis of beta-amyloid precursor protein metabolism[J].Front Biosci,2000.5:p.D72-83.
    [176].Marambaud,P.,et al.,Post-transcriptional contribution of a cAMP-dependent pathway to the formation of alpha- and beta/gammol/La-secretases-derived products of beta APP maturation in human cells expressing wild-type and Swedish mutated beta APP[J].Mol Med,1998.4(11):p.715-23.
    [177].Ohashi,M.and W.B.Huttner,An elevation of cytosolic protein phosphorylation modulates trimeric G-protein regulation of secretory vesicle formation from the trans-Golgi network[J].J Biol Chem,1994.269(40):p.24897-905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700