高性能双马来酰亚胺树脂发泡材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能泡沫材料是一类理想的轻质结构材料,在航天航空等对质轻要求严格的领域扮演越来越重要的角色。随着社会的进步,作为高性能泡沫材料应具有耐高温、高强度、阻燃等的性能特点,而现有泡沫材料自身缺点均难以满足要求。因此,新型高性能泡沫材料的研制成为材料研究领域的热点和重点。
     双马来酰亚胺树脂是耐热树脂的新型品种,而目前针对双马来酰亚胺树脂基泡沫材料的研究鲜见文献报道,因此本文以烯丙基双酚A改性双马来酰亚胺(BDM/BA)树脂为基体,首次展开了高性能双马来酰亚胺树脂基阻燃泡沫材料的研究。
     本文首先进行了双马来酰亚胺树脂泡沫材料的制备工艺的研究。探讨了BDM/BA预聚工艺对泡沫材料的泡孔形态结构的影响,考察了发泡剂的分解速率、预聚体的凝胶时间以及发泡温度与时间对泡沫材料密度和形态结构的影响,确定了BDM/BA泡沫材料的制备工艺为预聚时间为60min,发泡温度为160°C,发泡时间为35min。
     研究了发泡剂的含量对泡沫材料的形态结构、热性能、介电性能及其机械性能的影响。研究结果表明,泡沫材料具备良好的耐热性和力学性能,且泡沫材料的形态结构与介电性能随着发泡剂含量的变化而变化。当发泡剂含量为9%时,泡沫材料的泡孔结构及分布最均匀、泡沫密度最低、孔隙率最高,且其介电常数与损耗值均最小。
     首次采用多壁碳纳米管(MWNTs)和粘土(clay)制备了双马来酰亚胺阻燃泡沫材料。研究结果表明,泡沫材料中添加碳纳米管,在增强材料的同时也改善了阻燃性能。首先,当BDM/BA泡沫材料中添加1%MWNTs时,材料的热释放速率峰值和总热释放值均能降到最低,而压缩强度达最大,且MWNTs的加入不影响泡沫材料的点燃时间;而随着MWNTs的逐渐增加,泡沫材料的质量损失速率显著下降。当泡沫材料中同时添加等量的MWNTs与clay时,这两种填料能发挥协效作用,热释放速率峰值、总热释放值及质量损失速率值比单独添加MWNTs或clay的相应值低,而且能形成有整体外形的炭层。
High performance foams are ideal lightweight structural materials, which play more and more inportant role in fields required light-weight such as aerospace and aviation. High performance foams should have outstanding thermal resistance, high strength and outstanding flame retardance, however, present foams do not completely meet those requirements. Therefore, developing a new kind of high performance foams has been a hot and important subject in the field of material science and technology.
     Bismaleimide resin is one kind of heat-resistant thermosetting resin, but few investigations are related on developing high performance foams based on bismaleimide resin. In this thesis, high performance foams based on diallyl bisphenol A modified bismaleimide (BDM/BA) were developed in the first time, and the structure-properties relationship of BDM/BA foams were intensively studied.
     The preparation technology of BDM/BA foams was firstly investigated. In detail, the effects of prepolymerization condition of BDM/BA foams on morphology and structure of resultant foams, such as the decomposition rate of blowing agent (AC135), gelation time of prepolymer as well as blowing temperature and time, have been discussed. Judging from the results, the optimum prepolymerization condition is 140°C for 60 min, and the foaming condition is 160°C for 35 min.
     The effects of the content of blowing agent on the morphology, thermal behaviors, dielectric properties and mechanical properties were also investigated. Results show that the resultant foams have outstanding thermal stability and mechanical properties, while the morphology and dielectric properties of BDM/BA foams are depended on the content of blowing agent. The BDM/BA foam with 9wt% AC135 has uniform cell distribution, low density, high porosity as well as low dielectric constant and loss.
     Flame-retardant BDM/BA foams were prepared by using carbon nanotubes (MWNTs) and clay as combined flame-retardants for the first time. Results show the incorporation of MWNTs into BDM/BA foam can not only increase the mechanical strength, but also improve the flame-retardancy of the foam. The foam with 1%MWNTs has the minimum peak release rate and total heat release value, and the maximum compressive strength. In addition, the incorporation of MWNTs into BDM/BA foam does not affect the ignition time; with the increase of MWNTs content in foams, the mass loss rate declines significantly. When both MWNTs and clay are added into foams, they not only show obvious synergism effect to reduce the peak heat release rate, the total heat release value and the mass loss rate, but also lead to form a whole carbon layer.
引文
1周文管,王喜顺.泡沫塑料主要力学性能及其力学模型[J].塑料科技, 2003, 6: 17~20
    2何立燕,张广成.国内泡沫塑料高性能化研究进展[J].化工新型材料, 2004, 32(9): 9~12
    3张京珍.泡沫塑料成型加工[M].北京:化学工业出版社, 2005: 14~16
    4吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社, 1999年2月.
    5韩静,唐辉,袁新兵.热固性树脂泡沫材料的制造工艺及应用[J].河北化工, 2006, 29(4): 10~12
    6钱志屏.泡沫塑料[M] .北京:中国石化出版社, 1998, 178
    7杨永超.推广应用聚氨酯防水保温泡沫新材料和聚氨酯现场发泡保温热力管直埋新工艺[J].安徽建筑, 2002, 9(1): 93~93
    8 Santerre J P, Labow R S, Woodhouse K, Laroche G. Understanding the biodegrada tion of polyurethans: from classical implants to tissue engineering materials[J]. Biomaterials 2005, 26: 7457~7470.
    9 Meltem UD, Dileep S, Krishna P. Laboratory investgation of biodegradability of a polyurethane foam under anaerobic conditions[J]. Polymer Degradation and Stability 2007, 92: 1599~1610.
    10朱吕民,刘益军等.聚氨酯泡沫塑料[J].北京:化学工业出版社, 2004年8月.
    11 Lu S M, Li Y C M, Tang J C. Optimum Design of Natural Circulation Solar -Water-Heater by the Taguchi Method[J]. Energy, 2003, 28(7): 741~750
    12 Prociak A, Pielichowski J, Sterzynski T. Thermal Diffusivity of Rigid Polyurethane Foams Blown with Different Hydro-carbons[J]. Polymer Testing, 2000, 19(6): 705~712
    13询雅珍,杨永坤.聚氨酯硬质泡沫塑料在节能复合墙体中的应用[J].节能, 1998, 1: 38~40
    14 Lei Shi, Zhongming Li. Morphology Development of High-Density Rigid Polyurethane Foam upon Compression by On-Line Scanning ElectronicMicroscope[J]. Journal of Applied Polymer Science, 2007, 105: 2008~2011
    15周晓岩,李军,叶蓉.硬质聚氨酯泡沫塑料用于冷库保温工程施工中应注意的问题[J].低温与特气, 2004, 22(1): 35~37
    16尹强,陈全良,黄振利,刘朝辉.聚氨酯硬质泡沫塑料喷涂外墙外保温系统研究(1)[J].施工技术, 2006, 35(1): 89~90
    17陈全良,黄振利,刘朝辉.聚氨酯硬质泡沫塑料喷涂外墙外保温系统研究(2)[J].施工技术, 2006, 35(2): 80~83
    18徐归德.应用于建筑工业的硬质聚氨酯泡沫塑料[J].化学推进剂与高分子材料, 2004, 2(5): 1~4
    19 Zhongbin Xu, Xiling Tang, Aijuan Gu, Zhengping Fang, Lifang Tong. Surface-Modifiers of Clay on Mechanical Properties of Rigid Polyurethane Foams/Organoclay Nanocomposites[J]. Journal of Applied Polymer Science, 2007, 105: 2988~2995
    20盖同曦,蔡卫华.硬质聚氨酯泡沫塑料的性能及在包装中的应用[J].包装与食品机械, 2001, 19(2): 29~31
    21石少卿,张湘冀,刘颖芳,尹平.硬质聚氨酯泡沫塑料在军事工程中的应用[J].工程塑料应用, 2004, 32(8): 36~39
    22李卫宁.聚氨酯泡沫塑料的发展动向[J].塑料包装, 2002, 95: 15~16
    23 Mirta I.Aranguren, Ilona Ra′cz, Norma E.Marcovich. Microfoams Based on Castor Oil Polyurethanes and Vegetable Fibers[J]. Journal of Applied Polymer Science, 2007, 105: 2791~2800
    24秦川江,张冬,张贞浴,康玉范,于国臣.环保型聚氨酯泡沫保温墙体材料的研究[J].化学工程师, 2005, 112(1): 47~49
    25方秀华.聚氨酯泡沫塑料的发展概况[J].聚氨酯工业, 2000, 15(4): 6~10
    26 Jidong Gu. Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: A review[J]. International Biodeterioration and Biodegradation, 2007, 59(3): 170~179
    27 K.Takamatsu, N.Ozaki, K.A.Tanaka, T.Ono, K.Nagai, et al. Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves[J]. Physical Review E(Statistical, Nonlinear, and SoftMatter Physics), 2003, 67(5): 56406~56415
    28 Mehdipour A Shahram, Saidi Samaneh. Preparation and characterization of sulfone-based polyimide nanofoams grafted with poly(propylene glycol) [J]. E-P olymers, 2007, 9: 112
    29赵飞明,徐永祥.聚酰亚胺泡沫材料研究进展[J].宇航材料工艺, 2002, 3: 6~10
    30邱银,汪树军.聚酰亚胺泡沫材料[J].化工新型材料, 2003, 31(8): 15~17
    31 HuiJuan Chu, BaoKu Zhu, YouYi Xu. Polyimide foams with ultralow dielectric constants[J]. Journal of Applied Polymer Science, 2006, 102: 1734~1740
    32 Yihe Zhang, Shanming Ke, Haitao Huang, Lihang Zhao, Li Yu, H. L.W.Chan. Dielectric relaxation in polyimide nanofoamed films with low dielectric constant[J]. Applied Physics Letters, 2008, 92(052910): 1~3
    33 HuiJuan Chu, BaoKu Zhu, YouYi Xu. Preparation and dielectric properties of polyimide foams containing crosslinked structures[J]. Polymers for Advanced Technologies, 2006, 17: 366~371
    34 M.K.Williamsa, D.B.Hollanda, O.Melendeza, E.S.Weiserb, J.R.Brennerc, G.L. Nelson. Aromatic polyimide foams: factors that lead to high fire performance[J]. Polymer Degradation and Stability, 2005, 88: 20~27
    35 Camilo I.Cano, Erik S.Weiser, Thein Kyu, R.Byron Pipes. Polyimide foams from powder: Experimental analysis of competitive diffusion phenomena[J]. Polymer, 2005, 46: 9296~9303
    36庞顺强.聚酰亚胺泡沫材料在舰船上的应用[J].材料开发与应用, 2001, 16(3): 38~41
    37黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社, 2003: 2~3
    38 Maria L.Auad, Lihua Zhao, Hongbin Shen, Steven R.Nutt, Usman Sorathia. Flammability Properties and Mechanical Performance of Epoxy Modified Phenolic Foams[J]. Journal of Applied Polymer Science, 2007, 104: 1399~1407
    39 Chungjen Tseng, Kuangte Kuo. Thermal radiative properties of phenolic foam insulation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72(4): 349~359
    40 Vijaya K.Rangari, Tarig A.Hassan, Yuanxin Zhou, Hassan Mahfuz, Shaik Jeelani, Barton C.Prorok. Cloisite clay-infused phenolic foam nanocomposites[J]. Journal of Applied Polymer Science, 2007, 103(1): 308~314
    41 Haberstroh Edmund, Schlumm Michael. Properties and manufacturing of sandwich parts with phenolic foam cores[J]. Journal of Polymer Engineering, 2006, 26(2-4): 213~226
    42刘钢,王新民,钱金广.酚醛泡沫在建筑节能中的应用[J].新型建筑材料, 2001, (6): 32~33.
    43朱永茂,殷宜初.酚醛泡沫及其夹芯板材开发进展[J].热固性树脂, 2003, 18(5): 30~32
    44攀运泰.净化厂房中使用酚醛泡沫塑料隔热夹芯板的可行性[J].医药工程设计杂志, 2003, 24(2): 18~20
    45颜苏芋,黄翔,文力.酚醛泡沫保温材料在空调系统中的应用[J].制冷与空调,2002, 2(6): 32~37
    46谢建军.酚醛泡沫材料在中央空调风管中的应用[J].技术交流, 2005, 1: 96~102
    47李万利,李航昱,林强,邹友思.酚醛泡沫塑料研究[J].塑料工业, 2003, 31(4): 50~52
    48刘浩.酚醛泡沫塑料的研究[J].绝缘材料通讯, 2000, 2: 12~14
    49梅启林,黄志雄,周祖福,周野.改性酚醛泡沫材料的研究[J].武汉理工大学学报, 2002, 24(6): 21~25
    50尹波,梁应宗,王玉霞.泡沫塑料在节能建筑中的应用[J].中国塑料, 2004, 18(9): 12~16
    51肖文胜,邓祥义,陈雪梅. PVC/NBR共混物的研究与应用[J].湖北化工, 2000(1): 35~36
    52谢遂志,刘登祥,周明峦.橡胶工业手册·第一分册·生胶与骨架材料[M].北京:化学工业出版社, 1989: 1076~1078
    53周琼,徐颖,丛川波. PVC/NBR共混海绵的研究[J].橡胶工业, 2003, 50(3): 133~137
    54汪艳,刘安华,吴璧耀. NBR/PVC泡沫弹性体的研制[J].橡胶工业, 2002, 49(1):26~28
    55陈学武,张军.液体丁腈橡胶改性聚氯乙烯泡沫塑料的研制[J].特种橡胶制品, 1999, 20(1): 5~7
    56张军,梁亚军.阻燃型NBR改性PVC软质泡沫塑料的研制[J].合成橡胶工业, 2001, 24(1): 36~40
    57张军,梁亚军.化学交联模压一步法制备改性PVC泡沫塑料[J].中国塑料, 2000, 14(7): 55~60
    58张俊扬. EVA/EPDM/PVC三元塑料合金软质泡沫体的生产及应用[J].现代塑料加工应用, 1995, 7(1): 15~19
    59汪洪洋,曾常春.氯丁胶改性聚氯乙烯软发泡制品[J].塑料, 1999, 28(4): 24~27
    60钱军民,李旭详.聚合物-无机纤维复合泡沫材料吸声性能的研究[J].高分子材料科学与工程, 2001, 17(4): 145~148
    61钱军民,李旭详. EPR改性PVC泡沫材料吸声性能的研究[J].橡胶工业, 2001, 48(8): 463~465
    62林敏,刘文白,苏跃宏.利用EPS板处理高寒地区软土地基冻害的方法[J].内蒙古公路与运输. 2002(10): 10~11
    63 Duskov M. Materials research on EPS20 and EPS15 under represenlative eondilions in pavement structures[J]. Geotextiles and Geomembrances, 1997(15): 147~181
    64毛块,张俊彦.聚苯乙烯泡沫(EPS)压缩蠕变实验研究[J].材料导报, 2007(21): 468~470
    65史佩栋,等.深基础工程特殊技术问题[M].北京:人民交通出版社, 2004.
    66曾绪斌,韩峥.聚苯乙烯泡沫塑料及其防火性能[J].消防技术与产品信息, 2005, 2: 76~78
    67 Iijima Takao, Hayashi Nobuaki, Oyama Toshiyuki, Tomooi Masao. Modification of bismaleimide resin by soluble poly(ester imide) containing trimellitimide moieties[J]. Polymer International, 2004, 53(10): 1417~1425
    68 Haihu Qin, Patrick T. Mather, Jong-Beom Baek, Loon-Seng Tan. Modification of bisphenol-A based bismaleimide resin (BPA-BMI)with an allyl-terminatedhyperbranched polyimide (AT-PAEKI) [J]. Polymer, 2006, 47: 2813~2821
    69梁国正,顾嫒娟.双马来酰亚胺树脂[M].北京:化学工业出版社, 1997.
    70 Hu XiaoLan, Liang GuoZheng, Jia QiaoYing, Ma XiaoYan. Influence of coupling agents on properties of aluminum borate whiskers modified BMI resin[J]. Material Science and Technology, 2004, 12(3): 307~311
    71孟涛,李玲,董风云.双马来酰亚胺树脂的增韧改性研究[J].化学与黏合, 2005, 27(1): 43~46
    72车剑飞,肖迎红,吉德祥.改性双马来酰亚胺的发泡研究[J].现代塑料加工与应用, 1994, 6(6): 26~30
    73黄志雄,梅启林,周祖福.增韧双马来酰亚胺泡沫体的研究[J].武汉理工大学学报, 2001, 23(4): 5~7
    74 M.Koopman, K.K.Chawla, K.B.Carlisle. Microstructural failure modes in three-phase glass syntactic foams[J]. Syntactic and composite foams, 2006, 41: 4009~4014
    75 V.S.Shabde, K.A.Hoo, G.M.Gladysz. Experimental determination of the thermal conductivity of three-phase syntactic foams[J]. Syntactic and composite foams, 2006, 41: 4061~4073
    76 G.M.Gladysz, B.Perry, G.Mceachen, J.Lula. Three-phase syntatic foams: structure-property relationships[J]. Syntactic and Composite Foams, 2006, 42: 4085~4092
    77王平,陈伟红,郑兰芳.纳米无机阻燃剂在聚合物基复合材料中的应用研究进展[J].材料科学与工程学报, 2003, 21(1): 122~125
    78陈展虹.碳纳米管结构概述[J].福建教育学院学报, 2003, (10): 76~83
    79 Berta M, Lindsay C, Pans G, et al. Effect of Chemical Stucture on Combustion and Thermal Behaviour of Polyurethane Elastomer Layered Silicate Nanocomposites[J]. Polymer Degradation and Stability, 2006, 91(5): 1179~1191
    80 Jeffery W G, Catheryn L A,Alexander B M, et al. Flame Retardants 2000[C]. London: Interscience Communications, 2000: 49~68
    81 Bras M L, Wilkie C A, Bourbigot S, et al.Fire Retardancy of Polymers:New Application of Mineral Fillers[C]. London: The Royal Society of Chemistry, 2005:161~176
    82 Qiu L, Morphology and Thermal Stabilization Mechanism of LLDPE/MMT and LLDPE/ LDH Nanocomposites[J]. Polymer, 2006, 47(3): 922~930.
    83 Zammarans M.Delamination of Organo-modified Layered Double Hydroxides in Polyamide 6 by Melt Processing[J].Polymer, 2006, 47(2): 652~662
    84 Beyer G. Carbon Nanotubes as Flame Retardants for Polymers[J].Fire and Materials, 2002, 26(6): 291~293
    85 Arthur P Ramirez.Carbon Nanotubes for Science and Technology[J].Bell Labs Technical Journal, 2005, 10(3): 171~185
    86王建祺.首届阻燃技术与阻燃材料最新研究进展研讨会论文集[C].北京:北京理工大学国家专业阻燃实验室, 2003: 27~45
    87朴玲钰,李永丹.碳纳米管研究进展[J].化工进展, 2001, 11: 18~22
    88高利珍,李贺,梁奇,等.碳纳米管的生产及其应用[J].科技报道, 2001, 6: 16~19
    89张全勤,张继文.纳米技术进展[M].北京:国防工业出版社, 2005: 128~207
    90 Hirschler M.M. Electric cable fire hazard assessment with the cone calorimeter. Fire hazard and fire risk assessment(ASTM STP 1150) [C]. American society for testing and materials, Philadephia, 1992: 44~65
    91 Babrauskas V., Peacock R.D. Heat release rate:the single most important variable in fire hazard[J]. Fire Safety Journal. 1992, 18: 255~272
    92 Le Bras M., Bourbigot S., Felix E., Pouille C.Siat, Traisnel M. Characterization of a polyamide-6-based intumescent additive for thermoplastic formulations[J]. Polymer. 2000, 41: 5283~5296
    93 Elliot P.J., Whiteley R.H. A Cone calorimeter test for the measurement of flammability properties of insulated wire[J]. Polymer testing. 1999, 64, 577~584
    94谢文峰,黄志雄.高强泡沫复合材料的研制[J].国外建材科技, 2007, 28(1): 29~31
    95耿东兵,曾黎明,黎义,胡兵.双马来酰亚胺树脂的流变特性研究[J].润滑与密封, 2007, 32(1): 149~151
    96裴照卿,王汝敏.用烯丙基化合物改性双马来酰亚胺树脂膜的研究[J].中国胶粘剂, 2007, 16(12): 22~25
    97 Pervin Farhana, Zhou Yuanxin, Rangaree Vijay, Jelanee Shaikh. Evaluation of thermal and mechanical properties of carbon nano fiber resinforced SC-15 epoxy[J]. American Society of Mechanical Engineers, Materials Division (Publication) MD, v 100 MD, Proceedings of the ASME Materials Division 2005, 2005: 7~13
    98 Gu Aijuan, Liang Guozheng. Thermal degradation behavior and kinetic analysis of epoxy/montmorillonite nanocomposites[J]. Polymer Degradation and Stability, 2003, 80: 383~391
    99 TA Instrument publication TA-061
    100晁芬,梁国正.双马来酰亚胺/钛酸钡复合材料介电性能的研究[J].功能材料, 2007, 38: 654~657
    101 Hui- Juan Chu, Bao-Ku Zhu, You-Yi Xu. Preparation and dielectric properties of polyimide foams containing crosslinked structures[J]. Polymers for advanced technologies, 2006, 17: 366~371
    102刘拥军,朱大庆,杨振宇,陆冬生.纳米孔隙聚合物薄膜等效折射率模型和FDTD模拟[J].自然科学进展, 2003, 13(12): 1301~1305
    103霍银磊,张新昌.泡沫塑料的单轴压缩力学性能(上)[J].包装工程, 2007, 28 (6): 22~24
    104霍银磊,刘新朗,张新昌.泡沫塑料的单轴压缩力学性能(下)[J].包装工程, 2007, 28(12): 14~16
    105周文管,王喜顺.泡沫塑料主要力学性能及其力学模型[J].塑料科技, 2003, 12(6): 71~74
    106张广成,陈挺,张翠,刘铁民,史学涛.丙烯腈/甲基丙烯酸共聚物及其泡沫塑料的力学性能[J]. 2006, 24(5): 629~633
    107 Kashiwagi T, Grulke R, Hilding J, et al. Thermal and Flammability Properties of Polypropylene/Carbon Nanotube Nanocomposites[J]. Polymer, 2004, 45(12): 4227~4239
    108欧育湘,辛菲,赵毅,孟征.聚合物/碳纳米管纳米复合材料的制备、热稳定性及阻燃性[J].中国塑料, 2006, 20(8): 1~6
    109唐玉生,顾军渭.碳纳米管改性双马来酰亚胺/碳纤维复合材料力学性能研究[J].塑料工业, 2007, 35(11):53~57
    110 Fengge Gao, Gunter Beyer, Qingchun Yuan. A Mechanistic Study of Fire Retardancy of Fire Retardancy of Carbon Nanotube/EVA and Their Clay Composites[J]. Polymer Degradation and Stability, 2005, 89(3): 559~564
    111 Haiyun Ma, Lifang Tong, Zhongbin Xu, Zhengping Fang. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin[J]. Nanotechnology, 2007, 18:1~8
    112 Peeterbroeck S, Morgan A B, Nagy J B, et al. Polymer-Layered Silicate-Carbon Nonotube Nanocomposites:Unique Nanofiller Synergistic Effect[J]. Compos.Sci. Tech., 2004, 64: 2137~2323
    113 Beyer Gunter. Filler Blend of Carbon Nanotubes and Organoclays with Improved Char as a New Flame Retardant System for Polymers and Cable Applications[J]. Fire Materials, 2004, 2005, 29(2): 61~69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700