电力系统非线性动力学行为分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统非线性动力学行为分析与控制要研究电力系统中发生的分岔、混沌现象及其与电力系统中非线性振荡、次同步谐振以及电压崩溃的关系,研究电力系统分岔、混沌的控制策略以确保电力系统的稳定性,因此,它成为了电力系统稳定与控制的研究热点。
     本文在总结了当前电力系统非线性动力学行为分析与控制研究现状的基础上,对电力系统的分岔、混沌现象进行了分析,提出了相应的控制策略,同时对能够消除或抑制电力系统分岔和混沌现象的有关装置进行了非线性控制器的设计。主要内容如下:
     (1)针对不确定连续混沌系统提出了状态观测器结合非线性H_∞鲁棒控制器的混沌系统稳定化控制策略,确保控制器在系统状态不能全部测量的情况下对干扰的鲁棒性;运用多变量逆推自适应控制方法设计了参数不确定混沌系统的稳定化控制器。
     (2)运用自适应控制律与非线性反馈控制相结合设计了参数不确定非线性系统的Hopf分岔控制器,消除了非线性系统的Hopf分岔现象,而且控制器与系统参数的变化范围无关。
     (3)运用Melnikov方法分析了受周期性负荷扰动简单电力系统发生混沌振荡的条件,利用逆系统方法、自适应Backstepping控制方法、最优自适应控制方法来稳定电力系统。
     (4)运用线性反馈控制方法设计了简单电力系统的静态分岔控制器;运用Hopf分岔的定义或Hopf分岔的代数判据研究了含电压调节器(AVR)的单机无穷大系统发生Hopf分岔的条件和其实际含义,提出了Hopf分岔控制器的设计方法;针对面向电压稳定分析的简单电力系统模型,提出分岔控制的方法,从而提高电压的稳定域,延迟电压崩溃。
     (5)运用自适应逆推方法设计了电力系统的非线性控制器来提高电力系统稳定性。这些控制器是发电机的励磁控制器、发电机励磁和汽门开度的综合控制器、TCSC稳定控制器以及多机系统TCSC鲁棒控制器。
The research of analysis and control for electric power system nonlinear dynamical behavior consists of the bifurcation and chaos phenomena in electric power systems, and the mechanism of nonlinear oscillation, sub synchronous resonance and voltage collapse, and the control strategies for the bifurcation and chaos to ensure power system stability, which has become the research hotspot of power system stability and control.On the base of summarizing recent work in analysis and control for electric power system dynamical behavior, this dissertation analyses the bifurcation and chaos phenomena in electric power systems, and proposes corresponding control strategies. Designing of nonlinear controllers for some devices which can eliminate or restrain the bifurcation and chaos phenomena has been developed. The main contents and results in this dissertation are as follows:1. The stability control law for a class of uncertain continuous chaotic systems combining the state observer with the nonlinear H robust controller has been designed. The controller has robustness to outside disturbance in which the system state variables can not be all measured. The controller based on multi-variable adaptive backstepping method has been designed for uncertain parameter chaotic systems. Computer simulation results illustrate the validity of the controllers.2. Combining adaptive control law with nonlinear feedback control, Hopf bifurcation controller has been developed for uncertain parameter systems. The maximal characteristic of this controller is that it is irrelevant to the parameter of the system and can eliminate Hopf bifurcation.3. The condition that power system emerges chaotic oscillation under periodic load perturbation has been developed by Melnikov method. The controllers have been designed to stabilize the power system by means of inverse system method, adaptive backstepping control method and optimal adaptive control method respectively.4. With linear feedback control method, the static bifurcation controller for simple power system has been designed to eliminate SNB. The condition that Hopf bifurcation occurs in Single Machine Infinite Busbar Power System with AVR (Automatic Voltage Regular) has been found. The ways to design Hopf bifurcation controller have been
引文
1 K.L. Praprost, K.A. Loparo. A stability theory for constrained dynamic systems with applicationsto electric power systems. IEEE Transactions on Automatic Control, 1996, 41(11): 1605-1617.
    2 K. H. Yasir, DU Dongyun, TANG Yun. Association of SIB points with the non-degenerate equilibria of the extended DAE system. Tsinghua Science and Technology, 2003, 18(5): 568-572.
    3 周双喜,朱凌志,郭锡玖,等.电力系统电压稳定性及其控制[M].北京:中国电力出版社,2004.
    4 L. Chen, H. Tanaka, K. Katou, et al. Stability analysis for digital controls of power systems. Electric Power Systems Research, 2000, 55(2): 79-86.
    5 K.N. Srivastava, S.N. Singh, S.C. Srivastava. Effect of multiple equilibria on power system stability, Electric Power Systems Research, 2000, 55(3): 165-172.
    6 Zhujun Jing, Dashun Xu, Yu Chang, et al. Bifurcations, chaos, and system collapse in a three node powersystem, Int. J. of Electrical Power & Energy Systems, 2003, 25(6): 443-461.
    7 Denis Lee Hau Aik, Goran Andersson. Nonlinear dynamics in HVDC systems. IEEE Transactions on PowerDelivery, 1999, 14(4): 1417-1426.
    8 贾宏杰,余贻鑫,李鹏.电力系统环面分岔与混沌现象.中国电机工程学报,2002,22(8):6-10.
    9 刘曾荣.混沌的微扰判据.上海:上海科技教育出版社,1994.
    10 张强.电力系统非线性振荡研究.电力自动化设备,2002,22(5):17-19.
    11 张伟年,张卫东.一个非线性电力系统的混沌振荡.应用数学和力学,1999,20(10):1094-1100.
    12 刘劲,孙扬声,陈德树.周期参数扰动电力系统中的倍周期分叉、混沌和奇怪吸引子.电网技术,1996,20(8):1-3.
    13 柳明,吴捷.微扰电力系统中的次谐及混沌轨道.电力系统自动化,2002,26(15):9-14.
    14 周桐,徐健学,傅卫平.弯扭耦合振动对次同步谐振响应的影响.应用力学学报,2000,17(1):12-17.
    15 W.Zhu, R.R. Mohler. Hopf bifurcation analysis for an electric power system experiencing Subsynchronous resonance. Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, 1: 613-614
    16 W.Zhu, R.R. Mohler. Hopfbifurcation in a SMIB power system with SSR. IEEE Trans. On PWRS, 1996, 11(3): 1579-1584.
    17 A.H. Nayfeh, A.M. Harb, C-M. Chin. Application of bifurcation theory to subsynchronous resonance in power Systems. Int. J. of Bifurcation andChaos, 1998, 8(1): 157-172.
    18 傅卫平,徐健学,蒋耀林.高维机电耦合系统Hopf分岔的识别.西安交通大学学报,1997,31(6):89-94.
    19 Y. Mitani, K. Tsuji. Bifurcation associated with sub-synchronous resonance. IEEE Trans. On. PWRS, 1998, 13(1): 139-144.
    20 A.M. Harb, L. Mili, A.H. Nayfeh, C-M. Chin. On the effect of the machine saturation on SSR in power systems. Electric Machines and Power Systems, 2000, 28(11): 1019-1035.
    21 薛禹胜,周海强,顾晓荣.电力系统分岔与混沌研究述评.电力系统自动化,2003,26(16):9-15.
    22 V. Venkatasubramanian, W. Ji. Coexistence of four different attractors in a fundamental power system model. IEEE Trans. on Circ. and sys.-Ⅰ, 1999, 46(3): 405-409.
    23 H.D. Chiang, P.P. Varaiya, M.G. Lauby. Chaos in a simple power system. IEEE Trans. on PWRS, 1993, 8(4): 1407-1414.
    24 B-T. Alona, K. Vivien, W. Graeme. Banded chaos in power systems. IEEE Trans. on Power Delivery, 2001, 16(1): 105-110.
    25 H.O. Wang, E.H. Abed, Anan M.A. Hamdan. Bifurcations, chaos, and crises in voltage collapse of a model power System. IEEE Trans. on Circ. and sys.-Ⅰ: Fundamental Theory and Applications, 1994, 41(3): 294-301.
    26 Chin-Woo Tan, M. Varghese, P. Varaiya, et al. Bifurcation, chaos, and voltage collapse in power systems. Proceedings of the IEEE, 1995, 33(11): 1484-1495.
    27 B. Lee, V. Ajjarapu. Period-doubling route to chaos in an electrical power system, IEE Proceedings-C, 1993, 140(6): 490-496.
    28 Yixin Yu, Hongjie Jia, Peng Li, et al. Power systems instability and chaos. Electric Power Systems Research, 2003, 65(3): 187-195.
    29 Yu Yixin, Jia Hongjie, Wang Chengshan. Chaotic phenomena and small stability region of electrical power systems. Science in China (Series E), 2001, 44(2): 187-199.
    30 贾宏杰.余贻鑫,王成山.电力系统混沌现象及相关研究.中国电机工程学报,2001.21(7):26-30.
    31 贾宏杰,余贻鑫,李鹏,等.电力系统混沌现象与不同失稳模式之间的关系.中国电机工程学报,2003,23(2):1-4.
    32 仝庆贻,颜钢锋,赵光宙.微分代数混杂系统稳定性及其在电力系统中的应用.电工技术学报,2004,19(6):51-57.
    33 K.L. Lo, T.X. Zhu. Chaotic motions and diffusion in a power system. Proceedings of EMPD, 1998, 1: 323-328.
    34 Chia-Chi Chu: Chaotic motions of simplepower system models. Proceedings of International Conference on Control of Oscillations and Chaos, 1997, 1: 323-328.
    35 张浩,马西奎.一种基于washout滤波器技术的参数受扰混沌系统的控制.物理学报,2003,52(10):2415-2420.
    36 K.N. Srivastava, S.C. Srivastava. Quasi-periodic route to chaos and its control in a power system model. European Transactions on Electrical Power, 1999, 9(4): 241-245.
    37 Zhujun Jing, Dashun Xu, Yu Chang, et al. Bifurcations, chaos, and system collapse in a three node powersystem. Int. J. of Electrical Power & Energy Systems, 2003, 25(6): 443-461.
    38 Niu Xize, Qiu Jiajun. Investigation of torsional instability, bifurcation, and chaos of a generator set. IEEE Trans. on Energy Conversion, 2002, 17(2): 164-168.
    39 程浩忠,曾嵘,张焰.简单电力系统的局部分岔数值计算分析.电网技术,1999,23(11):25-27.
    40 Rajesh G. Kavasseri, K.R. Padiyar. Analysis of bifurcations in a power system model with excitation limits, Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11(9): 2509-2516.
    41 K.L. Lo, T. X. Zhu. Arnold diffusion in a particular multi-machine power system, IEE Proceedings. Part C, 1998, 145(3): 257-264.
    42 H-D. Chiang, I. Dobson, J.S. Lazhar. On voltage collapse in electric power systems. IEEE Trans. on PWRS, 1990, 5(2): 601-607.
    43 邓集祥.电力系统分歧浅析.控制与决策,1993,8(2):111-115.
    44 邓集祥,马景兰.电力系统中非线性奇异现象的研究.电力系统自动化,1999,23(22):1-4.
    45 陈予恕,唐云,陆启韶,等.非线性动力学中的现代分析方法.北京:科学出版社,2000.
    46 J. Li, V. Venkatasubramanian. Study of Hopf bifurcations in a simple power system model. Proceedings of the 39th IEEE Conference on Decision and Control, 2000, 3075-3079.
    47 C.D. Vournas, M.A. Pai, P.W. Sauer. The effectof automatic voltage regulation on the bifurcation evolution in power systems. IEEE Trans. on PWRS, 1996, 11(4): 1683-1688.
    48 E.H. Abed, P.P. Varaiya. Nonlinear oscillations in power systems. Electrical Power & Energy Systems, 1984, 6(1): 37-43.
    49 V. Ajjarapu, B. Lee. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Trans. on PWRS, 1992, 7(1): 424-431.
    50 余贻鑫.电压稳定研究述评.电力系统自动化,1999,23(21):1-8.
    51 H.G. Kwatny, A.K. Pasrija, L.Y. Bahar. Static bifurcation in electric power networks: Loss of steady-state stability and voltage collapse. IEEE Trans. on Circ. and Syst., 1986, CAS-33(10): 981-991.
    52 I. Dobson, H.D. Chiang. Towards a theory of Voltage collapse in electric power systems. Syst. andCont. Lett., 1989, 13(3): 253-262.
    53 I. Dobson. Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems. IEEE Trans. on Circ. and sys.-Ⅰ. Fundamental Theory and Applications, 1992, 39(3): 240-243.
    54 C. Grebogi, E. Ott, J.A. Yorke. Chaos attractors in crisis. Physical Rev. Lett., 1982, 48(22): 1507-1510.
    55 C. Grebogi, E. Ott, J.A. Yorke. Crises, sudden changes in chaotic attractors, and transient chaos. PhysicalD, .1983, 7(1-3): 181-200.
    56 P-A. Lof, G Andersson, D J Hill. Voltage stability indices for stressed power systems. IEEE Trans. on PWRS, 1993, 8(1): 326-332.
    57 F. Alvarado, I. Dobson, Y. Hu. Computation of closest bifurcations in power systems. IEEE Trans. on PWRS, 1994, 9(2): 918-924.
    58 H.D. Chiang, Rene Jean-Jumeau. A more efficient formulation for computation of the maximum loading points in electric power systems. IEEE Trans. on PWRS, 1995, 10(2): 635-644.
    59 S. Greene, I. Dobson, F.L. Alvarado. Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters. IEEE Trans. on PWRS, 1997, 12(1): 262-272.
    60 N. Yorino, S. Harada, H. Cheng. A method to approximate a closest loadability limit using multiple load flow solutions. IEEE Trans. on PWRS, 1997, 12(1): 424-429.
    61 C.A. Canizares. Calculating optimal system parameters to maximize the distance to saddle-node bifurcations. IEEE Trans. on Circ. and sys.-Ⅰ, 1998, 45(3): 225-237.
    62 V. Ajjarapu, Zhihong Fang. A novel approach for voltage collapse analysis and control. Proceedings of International Conference on Power System Technology, 1998, 2: 1499-1503.
    63 H. Mori, F. Iizuka. An efficient method for calculating power flow solutions and the closest bifurcation point using mathematical programming. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998, 3: 570-573.
    64 S.K. Joshi, S.C. Srivastava. Estimation of closest saddle node bifurcation using ANN based analog simulation. Proceedings of International Conference on Power System Technology, 2000, 1: 503-508.
    65 Zhihong Feng, V. Ajjarapu, B. Long. identification of voltage collapse through direct equilibrium tracing. IEEE Trans. on PWRS, 2000, 15(1): 342-348.
    66 B. Deifino, G.B. Denegri, M. Invernizzi, et al. Dynamic index assessment for voltage stability in electric power systems. Proceedings of International Conference on Power System Technology, 2000, 1: 397-402.
    67 曹国云,王冲.陈陈.中心流形方法降维分析电压崩溃中Fold分岔.中国电机工程学报,2002,22(7):40-43.
    68 H. Ohta, Y. Ueda. Unstable limit cycles in an electric power system and basin boundary of voltage collapse. Chaos, Solition andFractals, 2001, 12(1): 159-172.
    69 Q. Wu, D.H. Popovic, D.J. Hill, et al. System security enhancement against voltage collapse via coordinated control. IEEE Power Engineering Society, 1999 Winter Meeting, 1999: 755-760.
    70 M. Glavic, N. Prljaca, I. Dzafic, et al. Optimum control direction to avoid voltage collapse in power systems application to Bosnian power system. The 14th World Congress of International Federation of Automatic Control, Beijing, P.R. China, 1999: 197-200.
    71 Y. Wang, H. Chen, R. Zhou. A nonlinear controller design for SVC to improve power system voltage stability. Electrical Power and Energy Systems, 2000, 22(7): 463-470.
    72 H. Chen, Y. Wang, R. Zhou. Analysis of voltage stability enhancement via unified power flow controller. Proceedings of International Conference on Power System Technology, 2000, 1 : 403-408.
    73 S.A. Shahrestani, D.J. Hill. Global control with application to bifurcating power systems. System & controltetters, 2000, 41(3): 145-155.
    74 Andre A. P. Lerm. Control of Hopf bifurcation in power systems via a generation redispatch. 2001 IEEE Porto power tech conference, 2001, 2: 259-266.
    75 N. Mithulananthan, C,A. Canizares, J. Reeve. Hopfbifurcation control in power systems using, power system stabilizers and static Var compensators. Available from http://thunderbox.uwaterloo,ca/~claudio/papers/svc_naps99.pdf
    76 N. Mithulananthan. C.A. Canizares, J. Reeve, et al. Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations. IEEE Trans. on PWRS, 2003, 18(2): 786-792.
    77 K.N. Srivastava, S.C. Srivastava. Elimination of dynamic bifurcation and chaos in power systems Using Facts devices. IEEE Trans. on Circ. and sys.-Ⅰ: Fundamental Theory and Applications, 1998, 45(1): 72-77.
    78 M. Watanabe, P. Miao, Y. Mitani, et al. Assessment and control of power system global stability determined by unstable limit cycle. 2001 IEEE Porto Power Tech Conference, 2001, 2: 48-52.
    79 奥野光,金成靖彦,竹下正洋.三機无限大母線系统OGY制御.電気学会论文B,2003,123(9):1047-1053.
    80 A.M. Harb, M.S. Widyan. Controlling chaos and bifurcation ofsubsynchronous resonance in power system. Nonlinear Analysis: Modelling and Control, 2002, 7(2): 15-36.
    81 S.K. Gupta, A.K. Gupta, N. Kumar. Damping subsynchronous resonance in power systems, IEE Proc.-Gener. Trans. Distrib., 2002, 149(6): 679-688.
    82 Wei Tang, Xiangdong Liu, Wenhu Huang. Controlling chaos in power systems by fuzzy delayed feedback. DYMAC 1999, 319-322.
    83 张卫东,张伟年.电力系统混沌振荡的参数分析.电网技术,2000,24(12):17-20.
    84 Naoto kakimoto, Arian Phongphanphanee. Subsynchronous resonance damping control of thyristor-controiled series capacitor. IEEE Trans. on Power Delivery, 2003, 18(3): 1051:1059.
    85 H. Outa, Y. Ueda. Global bifurcation caused by unstable limit cycle leading to voltage collapse in an electric power system. Chaos, Solitons andFractals, 1998, 9(6): 825-843.
    86 S.V.Jayaram Kumar, Arindam Ghosh. Damping of subsynchronous resonance oscillations with TCSC and PSS and their control interaction. Electric Power System Research, 2000, 54(1): 29-36
    87 杨正瓴,林孔元.短期负荷可预报天数的初步研究.电力系统自动化,2002,26(11):14-18.
    88 蒋传文,侯志俭,李承军.基于混沌理论的电力负荷短期预报的神经网络方法.水电能源科学,2001,19(3):59-61.
    89 丁军威,孙雅明.基于混沌学习算法的神经网络短期负荷预测.电力系统自动化,2000,24(2):32-35.
    90 O'Neill Carrillo E, Heydt G T, Kostelich E J. Chaotic Phenomena in Power Systems: Detection and Applications. Electric Machines and Power Systems, 1999, 27(1): 79-91.
    91 李天云,刘自发.电力系统负荷的混沌特性及预测.中国电机工程学报,2000,20(11):36-40.
    92 温权,张勇权,程时杰.负荷预报的混沌时间序列分析方法.电网技术,2001,25(10): 13-16.
    93 吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    94 梁志珊,王丽敏,付大鹏,等.基于Lyapunov指数的电力系统短期负荷预测.中国电机工程学报,1998,18(5):369-371.
    95 张步涵,刘小华.万建平.基于混沌时间序列的负荷预测及其关键问题分析.电网技术,2004,28(13):32-35.
    96 张化光,王智良,黄玮.混沌系统的控制理论.沈阳:东北大学出版社,2003.
    97 胡刚,萧井华,郑志刚.混沌控制.上海:上海科技教育出版社,2002.
    98 赵光宙,齐冬莲.混沌控制理论及其应用.电工技术学报,200l,16(5):77-82.
    99 Ott E, GrebogiC, YorkJA. Controlling chaos. Phys. Rev. Lett., 1990, 64: 1196-1199.
    100 K. Yagasaki, T. Uozumi. A new approach for controlling chaotic dynamical systems. Physics Letters A, 1998, 238(6): 349-357.
    101 G. Chen, X. Dong. On feedback control of chaotic continuous-time systems. IEEE Trans. Circ. & Syst., 1993, 40(9): 591-601.
    102 G. Chen, X. Dong. Controlling discrete-time chaotic dynamic systems. Proc. Amer. Control Conf, Chicago, 1992: 2234-2235.
    103 G. Chen, X. Dong. Controlling Chua's circuit. J. of Circ., Syst., andcomput., 1993, 3.. 139-148.
    104 G. Chen, X. Dong. On feedback of chaotic dynamic system. Int. J. Bifurcation and Chaos, 1992, 2: 407-411.
    105 闵富红,徐振源,须文波.利用x|x|控制混沌系统.物理学报,2003,52(6):1360-1364.
    106 尹逊和,薛月菊,冯汝鹏,等.Rossler系统的混沌控制.控制与决策,2000,15(5):605-608.
    107 陈立群,刘延柱.用精确线性化控制Lorenz混沌.应用数学和力学,1998,19(1):63-69.
    108 C. C. Fuh, H.H. Tsai. Control of discrete-time chaotic systems via feedback iinearization. Chaos, Solitons and Fractals. 2002, 13(2): 285-294.
    109 C.C. Fuh, P.C. Tung. Controlling chaos using differential geometric methods. Phys. Rev. Lett., 1995, 75(16): 2952-2955.
    110 Y.M. Liaw, P.C. Tung. Application of the differential geometric method to control a noisy chaotic system via dither smoothing. Phys. Lett. A, 1998, 239(1-2): 51-58.
    111 Chen Li Qun, Liu Yan Zhu. Modified exact linearization control for chaotic oscillators. Nonlinear Dynamics, 1999, 20(4): 309-317.
    112 K. Yagasaki, T. Uozumi. A new approach for controlling chaotic dynamical systems. Physics Letters A, 1998, 238(6): 349-357.
    113 Wolfram Just, Hartmut Benner, Ekkehard Reibold. Theoretical and experimental aspects of chaos control by time-delayed feedback. Chaos, 2003, 13(1): 259-266.
    114 Chen Guanrong,. Yu Xinghuo. On time-delayed feedback control of chaotic systems. IEEE Trans. Circ. and Syst. Ⅰ, 1999, 46(6): 767-772.
    115. Morgul O. On the stability of delayed feedback controllers. Physics Letters. A, 2003, 314(4): 278-285.
    116 Holyst JA., Urbanowicz K. Chaos control in economical model by time-delayed feedback method. Physica A, 2000, 287(3-4): 587-598.
    117 蔡朝洪,须文波,徐振源,等.延迟反馈引导混沌系统到周期解.控制与决策,2002,17(4):457-460.
    118 裴文江,黄俊.自适应延迟反馈控制混沌.控制理论与应用,1999,16(2):297-300.
    119 清水能理,宫崎道雄,李羲旗,et al.未知対DFC PFC型制御.電気学会论文志.C,2003,123(1):26-34.
    120 T. Yang, L. O. Chua. Impulsive stabilization for control and synchronization of chaotic systems: theory find application to secure communicatiOn. IEEE Trans. on Circ. and Syst.-Ⅰ, 1997, 44(10): 976-988.
    121 T. Yang, Li-Bao Yang, C. M. Yang. Impulsive control of Lorenz system. Physica. D, 1997, 110(1-2): 18-24.
    122 W. X. Xie, C. Y. Wen,. Z. D. Bainov. Impulsive control for the stabilization and synchronization of Lorenz system. Physics Letters A, 2000, 275(1-2): 67-72
    123 卢俊国.混沌系统控制方法及其应用研究[博士学位论文],南京理工大学,2001.
    124 T. Yang, L.O. Chua. Control of chaos using sampled-date feedback control, Int. J. Bifurcation and chaos, 1998, 8(12): 2433-2438.
    125 C I Byrnes, A Isidori, J C Wiilems. Passivity, feedback equivalence and the global stabilization of minimum phase nonlinear systems. IEEE Trans. on Automatic Control, 1991, 36(11): 1228-1240.
    126 Wen Yu. Passive equivalence of chaos in Lorenz system. IEEE Trans. on Circ. and Syst. Ⅰ, 1999, 46(7): 876-878.
    127 高为炳.变结构控制理论基础.北京:中国科学技术出版社,1990.
    128 F. M. M. Kakmeni, S. Bowong, C. Tehawoua. chaos control and synchronization of a Phi(6)-Van der pol oscillator. Physics Letters A, 2004, 322(5-6): 305-323.
    129 陈小山,张伟江,迟毓东.基于变结构的混沌控制.上海交通大学学报.1999,33(5):581-583.
    130 Aldayr D. Araujo, Sahjendra N. Singh: Output feedback adaptive variable structure control of chaos in Lorenz system. Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12(3): 571-582.
    131 Krstic M, Kanellakopoulos I, Kokotovic P, Nonlinear and adaptive control design. New York: John Wiley & Sons, 1995.
    132 Kevin Barone, Sahjendra N. Singh. Adaptive feedback linearizing control of Chua's circuit. Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12(7): 1599-1604.
    133 C. Wang, S. S. Ge. Adaptive backstepping control of uncertain Lorenz system. Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11 (4): 1115-1119.
    134 Saverio Mascolo, Giuseppe Grassi. Controlling chaotic dynamics using backstepping design with application to the lorenz system and Chua's circuit. Int. J. of Bifurcation and Chaos in ApptiedSciences and Engineering, 1999, 9(7): 1425-1434
    135 JunguoLu, Rong Wei, Xiaofan Wang, et al. Backstepping control of discrete-time chaotic systems with application to the Henon system. IEEE Trans. on Automatic control, 2001, 48(11): 1359-1363.
    136 Yu Yong-Guang, Zhang Suo-Chun. Adaptive backstepping control of uncertain Lu system. Chinese Physics, 2002, 11(12): 1249-1253.
    137 S. S. GE, C. Wang, T. H. Lee. Adaptive backstepping control of a classical of Chaotic system. Int. J. Bifurcation and chaos, 2000, 10(5): 1149-1156.
    139 B A Huberman. Dynamics of adaptive systems. IEEE Trans. on Circ. and Syst., 1990, 37(4): 547-550.
    139 S Sinha. Adaptive control in nonlinear dynamics. Phys. D, 1990, 43: 118-128.
    140 D Vassiliadis. Parametric adaptive control and parameter identification of low-dimensional chaotic systems. Phys. D, 1994, 71(3-4): 319-341.
    141 Jong Tae CHOI, Yoon Ho CHOI. Fuzzy neural network based predictive control of chaotic nonlinear systems. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2004, E87-A(5): 1270-1279.
    142 LI Dong-Mei, WANG Zheng-Ou. Control of nuknown chaotic systems based on neural predictive control. Communications in Theoretical Physics. 2003, 40(4): 439-442.
    143 Cong Wang, Guanrong Chen, Shuzhi S. Ge. Smart neural control of uncertain non-linear systems. Int. J. of Adaptive Control and Signal Processing. 2003, 17(6): 467-488.
    144 Tan Wen, Wang Yao-Nan, Zeng Zhao-Fu. Adaptive regulation of uncertain chaos with dynamic neural networks. Chinese Physics, 2004, 13(4): 459-463.
    145 K. Tanaka, T. lkeda. A unified approach to controlling chaos via an LMl-based fuzzy control system design. IEEE Trans. on Circ. and Syst. Ⅰ, 1998, 45(10): 1021-1040.
    146 Kuang-Yow Lian, Peter Liu, Tsu-Cheng Wu, et al. Chaotic control using fuzzy model-based methods. Int: J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12(8): 1827-1841.
    147 CW. Park, CH. Lee, M Park. Design of an adaptive fuzzy model based controller for chaotic dynamics in Lorenz systems with uncertainty. Information Sciences, 2002, 147(1-4): 245-266.
    148 Liang Chen, Guanrong Chen. fuzzy predictive control of uncertain chaotic systems using time series. Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering. 1999, 9(4): 757-767.
    149 Oscar Calvo, H. E. Julyan. Cartwright fuzzy control of chaos. Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 8(8): 1743-1747.
    150 Liu Ya, Hu Shou-Song. Robust H_∞ control for multiple time-delay uncertain nonlinear system based on fuzzy model and neural network. Acta Automatica sinica, 2003, 29(6): 859-865.
    151 杨晓松.一类混沌系统观测器.物理学报,2000,49(10):1919-1921.
    152 姚利娜,高金峰.基于状态观测器实现一类混沌系统的控制.物理学报,2002,51(3):487-489.
    153 TL Liao. Observer-based approach for controlling chaotic systems. Physical Review E, 1998, 57(2): 1604-1610.
    154 Guan Xin-Ping; He Yan-Hui. Stabilizing Unstable Equilibrium Point of Unified Chaotic Systems with Unknown Parameter Using Sliding Mode control. Chinese Physics Letters, 2004, 21(2): 227-229.
    155 Shigeru Yamamoto, Toru Hino, Toshimitsu Ushio. Delayed feedback control with a minimal-order observer for stabilization of chaotic discrete-time systems. Int. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12(5): 1047-1055.
    156 E. H. Abed, H. O. Wang. Stabilization of period doubling bifurcation and implications for control of chaos. Proceedings of the 31st IEEE Conference on Decision and Control, 1992, 2: 2119-2124.
    157 H. O. Wang, E. H. Abed. Bifurcation control of a chaotic system. Automatica, 1995, 31(10): 1213-1226.
    158 H. O. Wang, E. H. Abed. Robust control of period doubling bifurcation and implications for control of chaos. Proc. of 33rd IEEE on Decision and Control, Orlando, 1994, 3287-3292.
    159 余耀南著.动态电力系统.何大愚等译.北京水利电力出版社,1985.
    160 Alberto Isidori. Nonlinear control system Ⅱ. London: Springer, 1999.
    161 Cao Y J, Wu Q H, Jiang L, et al. Nonlinear control of power system multi-mode oscillations. Electrical Power & Energy System, 1998, 20(1): 61-68.
    162 卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993.
    163 Taylor D G. Nonlinear control of Electric machines: an overview. IEEE Control. System Magazine, 1994, 14(6): 41-51.
    164 Marino R. An example of a nonlinear regulator. IEEE Trans. on Automatic Control, 1984, 29(3): 276-279.
    165 李春文,苗原,冯元琨.非线性系统控制的逆系统方法(Ⅱ):多变量控制理论.控制与决策,1997,12(6):626-630.
    166 李春文,冯元琨.多变量非线性控制的逆系统方法.北京:清华大学出版社,1991.
    167 Tang Taonan, Wei Shoupin, Li Liqing, et al. The inverse system method applied to derivation of power system nonlinear control law. J. of Huazhong University of Science and Tecenology, 1998, 26(Suppl.): 47-49.
    168 王宝华.可控串补电容装置控制策略研究:[硕士学位论文].南京:南京理工大学动力学院,2001年.
    169 Gao L, Chen L. A nonlinear control design for power system. Automatica, 1992, 28(3): 975-979.
    170 Huayuan Chen, Youyi Wang, Rujing Zhou. Voltage stability boundary affected by nonlinear SVC control. Electric Machines and Power Systems, 2000, 28(8): 689-702.
    171 Y. Wang, H. Chen, R. Zhou. A nonlinear controller design for SVC to improve power system voltage, stability. Int. J. of Electrical Power & Energy Systems, 2000, 22(7): 463-470.
    172 Chunlei Zhu, Rujing Zhou. A new decentralized nonlinear voltage controller for multimachine power systems, IEEE Trans. on Power Systems, 1998, 13(1): 211-216.
    173 Wang Y Y, Tan Y L. Robust nonlinear coordinated generator excitation and SVC control for power systems, Int. J. of Electrical Power & Energy System, 2000, 22(3): 187-195.
    174 孙元章,卢强,孙春晓.电力系统鲁棒非线性控制研究.中国电机工程学报,1996,16(6):361-365.
    175 Sun C, Zhao Z. Design of nonlinear robust excitation control for multi-machine power system. IEE Proceedings—Generation, Transmission and Distribution, 1996, 143(3): 253-257.
    176 Wang Youyi, Hill D J. Robust nonlinear coordinated control of power system. Automatica, 1996, 32(4): 611-618.
    177 Guo Yi, Hill D J, Wang Youyi. A nonlinear decentralized control of a large-scale power systems. Automatica, 2000, 36(9): 1275-1289.
    178 Bazanella A S, Kokotovic P V, Esilva A S. A dynamic extension for L_gV controllers. IEEE Trans. on Automatic Control, 1999, 44(3): 588-592.
    179 Arjan Van Der Schaft. L_2-gain and passivity techniques in nonlinear control. Berlin: Springer-Verlag Press, 2000.
    180 Jonghoon Park, Wan. Kyun Chung. Analytic nonlinear H_∞ inverse-optimal control for Euler-Lagrange systems. IEEE Trans. on Robotics and Automation, 2000, 16(6): 847-854.
    181 Maschke Bernhard, Ortega Romeo, Arian Van Der Schaft. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. on Automatic Control, 2000, 45(8): 1498-1502.
    182 Li G J, Lie T T, Soh C B. Decentralized nonlinear control H_∞ for stability enhancement in power systems, IEE Proceedings—Generation, Transmission and Distribution, 1999, 146(1): 19-24.
    183 于占勋,陈学允.非线性变结构控制理论及在电力系统中的应用.电力系统自动化.1999,21(7):86-88.
    184 于占勋,段献忠,陈德树,等.多机电力系统智能变结构PSS的研究.中国电机工程学报,1998,18(3):186-189.
    185 G. El-Saady. A variable structure static phase shifting transformer for power system stabilization. Electrio Power Systems Research, 1999, 50(1): 71-78.
    186 Yijia Cao, Lin Jiang. A nonlinear variable structure stabilizer for power system stability. IEEE Trans. on Energy Conversion, 1994; 9(3): 489-495.
    187 Wang Y., Mohler R. R.. Variable-structure FACTS controllers for power, system transient stability. IEEE Trans. on Power Systems, 1992, 7(1): 307-313.
    188 A. S. R. Murty, S. Parameswaran, K. Ramar. Design of variable structure stabilizer using pole assignment technique. Electric Machines and Power Systems, 1998, 26(2): 185-206.
    189 Vesely V. Decentralized variable structure control of complex systems. Int. J of Systems Science, 1998, 29(3): 311-321.
    190 Samarasinghe V G C C, Pahalawaththa N C. Stabilization of a multi-machine power system using nonlinear robust variable structure control. Electric Power System Research, 1997, 43(1): 11-17.
    191 M. H. Haque, P. Kumkratug. Application of Lyapunov stability criterion to determine the control strategy of a STATCOM. IEE Proceedings-Generation, Transmission and Distribution, 2004, 15(3): 415-420.
    192 Quanyuan Jiang, Shijie Cheng, Yijia Cao. Lyapunov stability analysis of turbine-generator including shaft system. Int. J. of Electrical power & Energy systems, 2003, 25(9): 741-746.
    193 Uros Gabrijel, Rafael Mihalic. Direct methods for transient stability assessment in power systems comprising controllable series devices. IEEE Trans. on Power Systems, 2002, 17(4): 1116-1122.
    194 Mehrdad Ghandhari, Goran Andersson, Ian A. Hiskens. Control Lyapunov functions for controllable series devices. IEEE Trans. on Power Systems, 2001, 16(4): 689-694.
    195 H. Cai, Zhihua Qu, J. F. Dorsey. Robust decentralized excitation control for Large-scale power systems. Control and Intelligent Systems, 2001, 29(1): 8-17.
    196 A. M. Harb, M. A. Zohdy. Chaos and bifurcation control using nonlinear recursive controller. Nonlinear Analysis: Modeling and Control, 2002, 7(2): 37-43.
    197 李文磊,井元伟,刘晓平.非线性汽门控制器的自适应鲁棒逆推设计.中国电机工程学报.2003,23(1):155-158.
    198 Shen T L, Mei S W, Lu Q, Hu W, et al. Adaptive nonlinear excitation control with L_2 disturbance attenuation for power systems. Automatica, 2003, 39(1): 81-89.
    199 MEI Shengwei, JIN Minjie, SHEN Tielong. Adaptive excitation control with L_2 disturbance attenuation for multi-machine power systems, Tsinghua Science and Technology, 2004, 9(2): 197-201.
    200 D Cheng, Z Xi, Q Lu, et al. Geometric structure of generalized controlled Hamiltonian systems and its application. Science in China(Series E), 2000, 43(6): 365-379.
    201 Y. Sun, Y. H. Song, X. Li. Novel energy-based Lyapunov function for controlled power systems. IEEE Power Engineering Review, 2000, 20(5): 55-57.
    202 Z. Xi, D. Cheng. Passivity-based stability and control of the Hamiitonian control systems with dissipation and application to power systems. Int. J. of Control, 2000, 73(18): 1686-1691.
    203 Sun Y. Z., Li X., Zhao M., et al. New Lyapunov function for transient stability analysis and control of power system with excitation. Electric Power Systems Research, 2001, 57(2): 123-131.
    204 刘前进.基于能量的控制方法及其FACTS应用:[博士学位论文].北京:清华大学电机系,2002年.
    205 Jain, S., Khorrami F.. Adaptive nonlinear excitation control of power systems with unknown interconnections. IEEE Trans. on Control Systems Technology. 1994, 2(4): 436-446.
    206 Q. H. Wu, L. Jiang. Nonlinear adaptive coordinated control of multimachine power systems. Trans. of the Institute of Measurement and control, 2002, 24(3): 195-213.
    207 X. X. Zhou, J. Liang. Nonlinear adaptive control of TCSC to improve the performance of power systems, IEE proceedings(Part C), 1999, 146(3): 301-305.
    208 Martha Galaz, Romeo Ortega, Alexandre Bazanella. On parameter estimation for excitation control of synchronous generators, Int. J. of Adaptive Control and Signal Processing, 2004, 18(5): 443-455.
    209 Ritonja J., Dolinar D.. Simple adaptive control for a power-system stabilizer, IEE Proceedings(Part D), 2000, 147(4): 373-380.
    210 梅生伟,黎雄,卢强等.基于反馈线性化方法的励磁系统非线性H_∞控制研究,电力系统及其自动化学报,1999,11(4):1-6.
    211 周少武,章兢.一种改进的Lipschitz非线性系统观测器的设计.系统工程学报,2001,16(4):302-304.
    212 陆启韶.分岔与奇异性.上海:上海科技教育出版社,1997.
    213 陈关荣.控制动力系统的分岔现象.控制理论与应用.2001,18(2):152-159.
    214 杨明,王德石,蒋兴舟.鱼雷纵向运动的分叉特性分析.兵工学报,2001,22(3):338-341.
    215 Guanrong Chen, Jorge L. Moiola, Hua O. Wang. Bifurcation control: theories, methods, and applications. Int. J. of Bifurcation Chaos, 2000, 10(3): 511-548.
    216 Dong S. Chen, Hua O. Wang, Guanrong Chen. Anti-control of Hopf bifurcations. IEEE Transaction on Circuits and System-Ⅰ, 2001, 48(6): 661-671.
    217 Diego M. Alonso, Eduardo E. Paolini, Jorge L. Moiola. An experimental application of the anticontrol of Hopf bifurcations. Int. J. of Bifurcation Chaos, 2001, 11(7): 1977-1987.
    218 曹建福,韩崇昭,方洋旺.非线性系统理论及其应用.西安:西安交通大学出版社,2001.57-70.
    219 王庆红,周双喜,胡国根.电力系统静态分岔及其控制.电网技术,2004,28(13):6-12.
    220 李光琦.电力系统暂态分析.第二版.北京:中国电力出版社,1995.
    221 张继业,杨翊仁,曾京.Hopf分岔的代数判据及其在车辆动力学中的应用.力学学报,2000(5):596-605.
    222 CARSON W. TAYLOR. Power system voltage stability. 北京:中国电力出版社,2001.
    223 余贻鑫,王成山.电力系统稳定性理论与方法.北京:科学出版社,1999.
    224 S. C. TRIPATY. Study of dynamic voltage stability of power systems. Int. J. of Electrical Engineering Education, 2000, 37(4): 374-383.
    225 朱新坚,邵惠鹤,张钟俊.一类非线性系统Hopf分岔的控制.上海交通大学学报,1997,31(6):52-55.
    226 于占勋,陈学允.一种新型变结构励磁控制器的设计.电力系统自动化,1997,21(10):21-23.
    227 葛友,李春文.H_∞滑模鲁棒励磁控制器设计.中国电机工程学报,2002,22(5):1-4.
    228 卢强,梅生伟,申铁龙,等.非线性H_∞励磁控制器的逆推设计.中国科学(E辑),2003,30(1):70-78.
    229 Singh S N. Nonlinear state-variable-feedback excitation and governor control design using decoupling theory. IEE Proceedings, 1980, 127(3): 63-77.
    230 黄健,涂光瑜,陈德树.发电机的非线性综合控制.电网技术,1997,21(3):5-9.
    231 葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用.中国电机工程学报,2001,21(4):1-4.
    232 张腾,戴先中,陆翔.基于逆系统方法的汽轮发电机综合控制器.电力系统自动化,2001,25(6):27-30.
    233 吴青华,蒋林.非线性控制理论在电力系统控制中应用综述.电力系统自动化,2001,25(31:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700