聚合物/石墨基纳米复合材料结构的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料的结构问题在材料学研究和实际应用中占有重要地位,而确定纳米复合材料微观结构和复合单体间的相互作用又是解决这一问题重要而又难于处理的一个环节。传统的实验手段在研究复合材料的复合结构、界面相互作用及其微观机理方面遇到了许多困难,成为了材料学研究工作中的瓶颈,因此迫切需要新的方法来对此类问题进行有效而深入的研究。而伴随着计算机硬件和算法的发展,分子模拟在研究复合材料的复合结构、界面相互作用和揭示微观机理方面显示出了区别于传统实验与理论研究的巨大优势和潜力。
     本论文应用分子模拟中的分子动力学方法研究了几类聚合物与石墨复合形成的纳米复合材料,成功创建了一系列研究有机-无机复合材料微观结构及复合机理的新方法,实现了分子模拟技术向传统实验技术靠近的初步探索。论文中具体研究了以树状大分子(以氨Amine、丁二胺Butanediamine为核)/石墨纳米复合材料、聚甲基丙烯酸甲酯(PMMA)/石墨纳米复合材料、聚苯胺(PANI)/石墨纳米复合材料等体系为代表的有机-无机复合材料。在论文中,通过Material Studio软件探索性地使用“层结构模型”来搭建模型研究复合体系的微观结构、能量分布及复合单体间的相互作用机理等。同时论文中还详细论述了模型的搭建过程、构造机理和所涉及的模拟参数的设置和选择,并在每一章结尾对研究结果进行了总结。论文的最后一章还对所研究的三种复合体系中涉及的参数选择、计算方法以及最后结果进行了比较深入地对比和分析,为今后同类课题的进一步研究提供了可供参考的思路。
     本论文主要选择了三类具有代表性的有机聚合物与石墨形成的纳米复合材料,由于这些聚合物本身的研究目前也是材料学中研究的热点问题,因而对它们的研究具有普遍性和代表性。研究结果表明,应用分子动力学模拟方法研究有机-无机纳米复合材料体系,可以成功构建复合材料的计算模型,并能够从能量及其相互作用等性质方面得到复合材料微观作用的机理,这种方法丰富和发展了纳米复合材料的研究技术,拓展了分子模拟技术的应用领域。
The microstructure of composite materials plays very important roles both in the materials research and in practical applications; however, it is rather difficult to precisely measure the microstructure and interactions of inter-molecular or intra-molecular of composite material. Traditional experimental methods sometimes cannot treat them well and cannot give detail information at atomic scale. Meanwhile, the developments of molecular simulation arithmetic make it possible to apply simulation technology to investigate the microstructure, interface interaction, and mechanism of composites material.
     In this study, molecular dynamics simulation method was applied to investigate microstructure and interface interactions of kinds of organic-inorganic nanocomposite materials consisting of polymer and graphite. The layers models of dendrimer/graphite, PAMMA/graphite, PANI/graphite were built by using Materials Studio software package. According to MD computation, the microstructure, energy distributions, interaction mechanism of nanocomposites were discussed. Also, this paper introduced in detail how to choose and set simulation parameters and the simulation results have been summarized in the end of every chapter. The parameter setting, simulation method, and simulation result of three composite systems were compared and analyzed deeply in last chapter. The results will be useful for further research on the properties of nanocomposites.
     At present the organic-inorganic nanocomposite material has been a hot issue in the area of material research. Therefore, the research on polymer/graphite nanocomposites material is of representative. The results indicated that molecular dynamics simulation method can successfully research on organic-inorganic nanocomposite material, including the model building, the interface interaction and properties of material. MD simulation method has enriched and developed the research technology of material.
引文
[1]徐国财,张立德.纳米复合材料.北京:化学工业出版社, 2002.
    [2] Marta Krzesiska, Andrzej I. Lachowski. Elastic properties of monolithic porous blocks of compressed expanded graphite related to their specific surface area and pore diameter. Materials Chemistry and Physics, 2004, 86(1): 105-111.
    [3] F. Suárez-García, A. Martínez-Alonso, J. M. D. Tascó. Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol. Fuel Processing Technology, 2002, 77-78: 401-407.
    [4] Roy R. Ceramics by the Solution-Sol-Gel Route, Science, 1987, 238: 1664-1666.
    [5] Calvert P. Rough guide to the nanoworld. Nature, 1996, 383 (26): 300-306.
    [6] Kada Boukerma, Jean-Yves Piquemal, Mohamed M. Chehimi, etal. Synthesis and inteficial Properties of montmorillonite/polyppyrrole nanocomposites. Polymer, 2006, 47: 569-576.
    [7]符韵林,赵广杰,全寿京.二氧化硅/木材复合材料的微观结构与物理性能.复合材料学报, 2006, 4: 52-59.
    [8] Braga S F, Galv?o D S. Single wall carbon nanotubes polymerization under compression: An atomistic molecular dynamics study[J]. Chemical Physics Letters, 2006, 419: 394-399.
    [9] Pérez-Mendoza M., Schumacher C., Suárez-García F., et al. Analysis of the microporous texture of a glassy carbon by adsorption measurements and Monte Carlo simulation: Evolution with chemical and physical activation. Carbon, 2006, 44: 638-645.
    [10]任鹏刚,梁国正,卢婷利等. ZnO晶须改性石墨纤维/双酚A二氰酸酯复合材料.复合材料学报, 2005, 22 (2): 46-51.
    [11] Dresselhaus M S, Dresselhaus G. Interealation compounds of graphite. Advances in Physics, 1981, 30(2): 139-142.
    [12]曹乃珍,沈万慈,温诗铸等.膨胀石墨的吸附作用.新型碳材料, 1995, 11(4): 51-53.
    [13]陈晓梅,沈经纬.马来酸配接枝聚丙烯/石墨导电纳米复合材料的研究.高分子学报, 2002, 3: 331-335.
    [14]曹乃珍,沈万慈,温诗铮,刘英杰.膨胀石墨表面性能研究.化学通报, 1996, 4: 37-41.
    [15]王慎敏,周群,乔英杰.低硫可膨胀石墨制备新工艺.应用化学, 2000, 17(1): 93-95.
    [16]王慎敏,乔英杰,林茂青.柔性石墨的制备及降低硫含量方法的探讨.化工进展, 2000, 5: 40-42.
    [17] Rudorff W, Hoffman U. Preparation of hydrogen sulfate graphite intercalation compounds. J. Inorg. Chem., 1983, 1: 238-240.
    [18] B.Tryba, A. W. Morawski, K. Kaucki. Trace analyses of gaseous products formed during heat treatment of high stage H2SO4-GICs and expanded graphite. Journal of Physics and Chemistry of Solids, 2004, 65(2): 165-169.
    [19]张瑞军,刘建华.化学法制备可膨胀石墨中KMnO4等氧化剂氧化特性的比较研究.炭素, 1998, 3: 39-42.
    [20] M. Inagaki. Application of graphite intercalation compounds. J. Mater. Res. 1989, 4(6): 1560-1568.
    [21]康飞宇,周洲,刘秀瀛.用溶盐法合成FeCl3-CuCl2三元石墨层间化合物的稳定性.炭素, 1992, 2: 6-12.
    [22]杨楚罗,秦金贵.夹层化合物研究进展.化学通报, 1996, 3: 4-9.
    [23]传秀云.石墨层间化合物GICs的形成机理探讨.新型炭材料, 2000, 15(1): 52-56.
    [24]金为群,张华蓉,权新军,尹伟,崔晓辉.石墨插层复合材料制备及应用现状.中国非金属矿工业导刊, 2005, 4: 8-12.
    [25]黄仁和,王力.纳米石墨薄片及聚合物/石墨纳米复合材料制备与功能特征研究.功能材料, 2005, 36(1): 6-14.
    [26]朱继平.硫酸石墨插层化合物的物性研究.合肥工业大学学报(自然科学版), 2001, 24(6): 1158-1162.
    [27]张玉龙,李长德.纳米技术与纳米塑料.北京:中国轻工业出版社, 2002.
    [28]二十一世纪新材料丛书.复合材料.天津:天津大学出版社, 2000.
    [29] Esther S. Takeuchi, Amy C. Marschilok, Randolph A. Leising, Kenneth J. Takeuchi. Sol–gel synthesis and controlled sintering of silver vanadium oxide. Journal of PowerSources, 2007, 174(2): 552-553.
    [30] Darran R. Cairns, Aaron J. Kessman, Paul J. Richter, Frank J. Bottari, Nicholas X. Randall. Mechanical and tribological investigations of sol–gel derived SiO2 optical coatings. Wear, 2008, 265(3-4): 411-416.
    [31] Zunli Mo, Ping Zhang, Dandan Zuo, Yaling Sun, Hong Chen. Synthesis and characterization of polyaniline nanorods/Ce(OH)3–Pr2O3/montmorillonite composites through reverse micelle template. Materials Research Bulletin, In Press, Corrected Proof, Available online 6 August 2007.
    [32]路清梅,董文生,等. Sol-Gel法制备新型多晶钇-铝石榴石纤维.无机材料学报, 2002, 17(3): 566-570.
    [33]张洪涛,徐重阳,等. Sol-Gel法制备纳米硅碳膜的研究.陶瓷工程, 2000, 34(l): 4-7.
    [34] Zunli Mo, Dandan Zuo, Hong Chen, Yinxia Sun, Ping Zhang. Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 2007, 43: 300-306.
    [35]莫尊理,左丹丹,陈红,孙银霞,张平.纳米石墨薄片/聚吡咯复合材料的制备及导电性能.无机化学学报, 2007, 23(2): 265-269.
    [36]吴翠玲,翁文桂,吴大军,陈国华.原位聚合制备聚苯乙烯/石墨薄片纳米复合导电材料.塑料, 2003, 3: 56-58.
    [37] Pan Y X, Yu Z Z, Ou Y C. A new process of fabrication electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J. Polym. Sic., Part(B): Physics, 2000, 38(12): 1626-1633.
    [38] Lopresto V., Melito V., Leone C., Caprino G. Effect of stitches on the impact behavior of graphite/epoxy composites. Composites Science and Technology, 2006, 66(2): 206-214.
    [39]李侃社,邵水源,闰兰英,任华苗.聚苯胺/石墨导电复合材料的制备与表征.高分子材料科学与与工程, 2002, 18(5): 92-95.
    [40] Zunli Mo, Yinxia Sun, Hong Chen, et. al. Synthesis of PMMA/Ce(OH)3,Pr2O3/ graphite nanosheets composite in reverse micelle template and its properties. Polymer, 2005, 46: 12670-12676.
    [41]莫尊理,孙银霞,陈红,等.反胶束模板制备聚甲基丙烯酸甲酯/无机纳米粒子/石墨纳米复合材料及其表征.化学学报, 2005, 63(14): 1365-1370.
    [42]马家举,徐国财.聚合物纳米复合材料的制备方法.现代化工, 2001, 21(1): 15-17.
    [43]王升高,汪建华.微波等离子体化学气相沉积法低温合成纳米碳管.化学学报, 2002, 65(5): 957-960.
    [44]张春勇,郑纯智,张国华.微波辐射法研制复合半导体光催化材料TiO /ZnO.化学工程师, 2007, 2: 20-23.2
    [45]黎梅,高风格.一种新型的工程材料——膨胀石墨.化学教育, 1999, 4: 1-3.
    [46]田金星,杨华.柔性石墨功能材料的应用研究.矿产保护与利用, 1999, 5: 14-17.
    [47]魏环,宋庆功.石墨插层化合物的结构与特性.河北理工学院学报, 1999, 21(4): 67-72.
    [48] M. S. Dresselhaus, G. Dresslhaus. Intercalation compounds of graphite. Advanced in Physics, 1981, 30(2): 139-326.
    [49] Duquesne S, Bras M L. Expandable graphite:a fire retardant additive for polyurethane coatings. Fire and Materials, 2003, 27: 103-117.
    [50] Baojun Qu, Rongcai Xie. Intumescent char structures and flame-retardant mechanism of expandable graphite-based halogen-free flame-retardant linear low density polyethylene blends. Polymer International, 2003, 52: 1415-1422.
    [51] Expandable graphite systems for halogen-free flame retarding of polyolefins.Ⅱ. Structures of intumescent char and flame-retardant mechanism. J. Appli. Polym. Sci., 2001, 80: 1190-1197.
    [52] Rongcai Xie, Baojun Qu,“Expandable Graphite Systems for Halogen-Free Flame Retarding of Polyolefins. I. Flammability Characterization and Synergistic Effect. J. Appli. Polym. Sci., 2001, 80: 1181-1189.
    [53] Zhengzhou Wang, Baojun Qu, Weicheng Fan, Ping Huang. Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. J. Appl. Polym. Sci, 2001, 81: 206-214.
    [54] Richard E. Lyon , Louise Speitel , Richard N. Walters, Sean Crowley. Fire-resistantelastomers. Fire and Materials, 2003, 27: 195-208.
    [55] Yan Xujia, Yuan Hu, Lei Song, Qinan Wang, Weicheng Fan. Structure and thermal analysis of poly (vinyl alcohol)/graphite oxide intercalated nanocomposite. Journal of Safety and Environment, 2001, 5: 11-13.
    [56] Leach A R. Molecular Modelling-Principles and Applications. Longman, 1996.
    [57] Keseru G M, Kolossvary I. Molecular Mechanics and Conformational Analysis in Drug Design. Blackwell Science, 1999.
    [58] Gubernator K, Bohm Hans-Joachim. Structure-Basedligand Design. WILEY- VCH, 1998.
    [59]余庆森,朱龙观.分子设计导论.北京:高等教育出版社, 2000.
    [60]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计-原理、方法及应用.上海:科学技术出版社, 2000.
    [61] D.罗伯编.计算材料学.项金钟,吴兴惠等译.北京:化学工业出版社, 2002.
    [62]杨小震.分子模拟与高分子材料.北京:科学出版社, 2002.
    [63]陈舜麟.计算材料科学.北京:化学工业出版社, 2005.
    [64]朱宇,陆小华,丁皓等.分子模拟在化工应用中的若干问题及思考.化工学报, 2004, 55(8): 1213-1223.
    [65] Kollman P. A. Theory of complex molecular interactions: computer graphics, distance geometry, molecular mechanics and quantum mechanics. ACC Chem. Res., 1985, 18: 105-120.
    [66] Danziger D. J. Dean P.M. Automated site-directed drug design: a general algorithm for knowledge acquisition about hydrogen-bonding regions at protein surfaces. Proc. R. Soc. London., 1989, B236: 115-121.
    [67] U. Burkert, N. L. Allinger. Molecular Mechanics. Washington, D.C.: ACS Mono- graph Series, 1982.
    [68] D. B. Boyd, K. B. Lipkowitz. Molecular Mechanics: The Method and Its Underlying Philosophy. J. Chem. Educ., 1982, 59: 269-274.
    [69] D. H. Andrews. The relation between the Raman spectra and the structure of organic molecules. Phy. Rev., 1930, 36: 544-554.
    [70] T. Noguti, N. Go.Effieient Monte Carlo Method for simulation of fluctuatingconformations of native proteins. Biopolymers, 1985, 24: 527-546.
    [71]杨玉良,张红东.高分子中的Monte Carlo方法.复旦大学出版社,上海, 1995.
    [72] Y. A. Shneider. Method of Statistical Testing. Progaman Press, Oxford, 1964.
    [73] B. J. Alder, T. E. Wainwright. Studies in molecular dynamics.Ι. General method. J. Chem. Phys., 1959, 31: 459-466.
    [74] A. Rahman. Correlations in motion of atoms in liquid argon. Phys. Rev., 1964, 136, 405-411.
    [75] A. Rahiman, F. H. Stillinger. Molecular dynamics study of liquid Water. J. Chem. Phys., 1971, 55: 3336-3359.
    [76] J. A. McCammon, B. R. Gelin, M. Karplus. Dynamics of folded proteins. Nature, 1977, 267: 585-590.
    [77] L. Mohanambe, S. Vasudevan. Structure of a cyclodextrin funetionalized anionic: XRD analysis, spectroscopy and computer simulations. Langmuir, 2005, 21: 10735- 10742.
    [78] F. E. Porbeni, I. D. Shin, X. T. Shuai, X. W. Wang, J. L. White, X. Jia, A. E. Tonelli. Morphology and dynamics of the poly(epsilon-caprolaetone)-b-poly(L-lactide) diblock copolymer and its inclusion compound with lpha-cyclodextrin: A solid-state C-13 NMR study. J. Polym. Sci. Pol. Phys., 2005, 43, 2086-2096.
    [79] M. Zubiaur, M. De Federieo, K. K. Burusco, I. Bea, A. Virgili, Sanchez-Ferrando F, Jaime C. Experimental(NMR) and theoretical(MD simulations) studies on the conformational preference of three cycloalkanols when included in beta-cyclodextrin. J. Incl. Phenom. Macro., 2005, 51: 241-247.
    [80] Vincenzo Carravetta, Susanna Monti, Peptide-TiO2 Surface Interaction in Solution by Ab Initio and Molecular Dynamics Simulation. J. Phys. Chem. B., 2006, 110: 6160-6169.
    [81] Cornell W. D., Cieplak P., Bayly C. I. A Second Generation Force Field for the Simulation of proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc., 1995, 117: 5179-5197.
    [82] Mackerell A. D., Wiorkeiwicz-Kuczera Jr J., Karplus M. An All-atom empirical energy function for the simulateion of nucleic acids. J. Am. Chem. Soc., 1995, 117:11946-11951.
    [83] Dudek M. J., Ponder J. W. Accurate modeling of the intra-molecular electrostatic energy of proteins. J. Comput. Chem., 1995, 16: 791-796.
    [84] Jorgensen W L, Tirado-Rivers J. The OPLS potential functions for proteins: Energy minimizeation for crystal of cyclic peptides. J. Am. Chem. Soc., 1988, 110: 1657-1661.
    [85] Allinger N L, Yuh Y H, Lii J H. Molecular mechanics: The MM3 force field for hydrocarbons. J. Am. Chem. Soc., 1989, 111: 8551-8560.
    [86] Gaussian, Version 2003, 2003, Inc.Gaussian
    [87] MOPAC, Version4.0, 2004, Fujitsu Ltd.
    [88] InsightII, Version 2005.3, Molecular Simulations Inc. San Diego C.A.
    [89] Sybyl, Version 6.7, 1998, Tripos Associates: St. Louis, MO.
    [90] MacroModel, Version 7.0, 1999, Schrodinger, Inc.
    [91] ChemDraw, Version 8.0, 2004, Cambridge Soft(CS) Inc.
    [92] Materials Studio, Version 3.2, 2005, Aeeelrys Ine. San Diego, 2004.
    [93] M. P. Tarazona, E. Saiz. A conformational model for poly(dichlorophosphazene) derived from molecular dynamics simulations. Polymer, 2000, (41): 3337-3347.
    [94] Balabaev, Darinskij. Molecular dynamics simulation of a two-dimensional polymer melt. Vysokomolekularnye Soedineniya, Ser.A Ser.B Ser.C-Kratkie Soobshcheniya, 2002, 44(7): 1228-1239.
    [95] Lim, Seong Y. Molecular simulation of diffusion and sorption of gases in an amorphous polymer. Journal of Chemical Physics, 2003, 119(1): 496-504.
    [96] B. F. Abu-Sharkh. Glass transition temperature of poly(vinylchloride) from molecular dynamics simulation: explicit atom model versus rigid CH2 and CHCl groups model. Computational and Theoretical Polymer Science, 2001, (1): 29-34.
    [97] Matt J. Kipper, Soenke Seifert, P.Thiyagarajan. Understanding polyanhydride blend phase behavior using scattering, microscopy, and molecular simulations. Polymer, 2004, (45): 3329-3340.
    [98]杨兵,张海全,许海.间位聚苯及其衍生物的构象与电子结构的理论研究.物理化学学报, 2004, 20(12): 1476-1480.
    [99]吴勇华,杨决宽,陈云飞等.超晶格薄膜热传导的分子动力学模拟.东南大学学报, 2003, 33(4): 468-470.
    [100] L. Mao, H. Harold. Simple Lattice Simulation of Chiral Discrimination in Monolayers. J. Chem. Inf. Comput. Sci, 2002, 42(5): 1179-1184.
    [101] Anatoly A., Darinskiia, Anna Zarembo. Molecular dynamics simulation of a flexible polymer network in a liquid crystal solvent; structure and equilibrium properties. Polymer, 2004, (45): 4857-4866.
    [102] Satoshi Tanaka, Shaul Mukamel. Simulation of optical and X-ray sum frequency generation spectroscopy of one-dimensional molecular chain.Journal of Electron Spectroscopy and Related Phenomena. 2004, (136): 185-190.
    [103]胡应杰,黄玉成,肖继军,肖鹤鸣. TATB/氟聚物PBX沿不同晶面力学性能的分子动力学模拟.中国科学B辑:化学, 2005, 35(3): 194-199.
    [104]黄玉成,胡应杰,肖继军,肖鹤鸣. TATB基PBX结合能的分子动力学模拟.物理化学学报, 2005, 21(4): 425-429.
    [105]肖继军,谷成刚,方国勇,朱伟,肖鹤鸣. TATB基PBX结合能和力学性能的理论研究. 2005, 63(6): 439-444.
    [106]马秀芳,肖继军,殷开梁,肖鹤鸣. TATB/聚三氟氯乙烯复合材料力学性能的MD模拟. 2005, 18(1): 55-58.
    [107]程杰,刘波,杨小震.自组装二十烷二羰基-L-谷氨酸纳米管的分子模拟.计算机与应用化学. 2006, 22(1): 1-4.
    [108] Smith, James S. A. Molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Composites Science and Technology. 2003, 63(11): 1599-1605.
    [109] Rong Minzhi, Zhang Ming qiu, Zheng Yongxiang, et al. Structure property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer, 2001, 42: 167-172.
    [110]莫尊理,郭瑞斌,陈红,孙亚玲,李贺军.石墨/树状大分子复合材料的分子动力学模拟.复合材料学报, 2007, 24(4): 58-62.
    [111] Mo Zunli, Sun Yaling, Li Hejun , Chen Hong , Liu Yanzhi. Study on Interaction Energy of PAMAM/ Lanthanide by Molecular Dynamics Method. Journal of rare earths,2007, 25: 129-134.
    [112]莫尊理,刘艳芝,陈红,李贺军,孙亚玲. Sm/PAMAM纳米复合材料的制备与分子动力学模拟.稀有金属材料与与工程, 2007, 36(1): 32-36.
    [113]李险峰,杨小震,赵得禄.高分子链空间构象分布的复杂性——一定条件下能量与尺寸的分布.高分子学报, 1997, 6: 647-652.
    [114]杨勇,李险峰,杨小震.分子动态模拟研究聚丙烯单链的玻璃化转变.高分子学报, 1997, 4: 457-461.
    [115] Kasemagi. H. Molecular dynamics simulation of the effect of nanoparticle fillers on ion motion in a polymer host. Solid State Ionics. 2004, 168(3-4): 249-254.
    [116] Lozano A. E, Vergo Ten G. A Density Functional Theory Study on the Reactivity of Monosubstituted Cycloimmonium Ylides. Journal of Molecular Structure, 1999, 476(15): 105-119.
    [117] Sung-Seen Choi. Structural characteristics of phenol formaldehyde novolak resin depending on polycondensation type using molecular simulation. Polymers for advanced technologies, 2001, 12: 567-572.
    [118] Nakamae K. Experimental determination of the elastic modulus of crystalline regions of some aromatic polyamides, aromatic polyesters, and aromatic polyether keton. Polymer, 1987, 19: 451-455.
    [119] Northolt M. G., Hout R. V. D. Elastic extension of an oriented crystalline fiber. Polymer, 1985, 26: 310-316.
    [120] Allen S. R., Roche E. J. Deformation behavior of kevlar aramid fibers. Polymer, 1989, 30: 996-1003.
    [121] Penning J. P., Van der Werff H., Roukema M. On the theoretical strength of gel spun/hot drawn ultrahigh molecular weigth polyrthylene fibers. Polymer Bull, 1990, 23: 347-352.
    [122] Predechi P., Statton W O. Dislocations caused by chain ends in crystalline polymers. J. Appl. Phys., 1966, 37(11): 4053-4059.
    [123] Morgan R. J., Pruneda C. O., Steele W. J. The relationship between the physical st ructure and the macroscopic deformation and failure processes of poly(p-phenylene terephthalamide) fibers. J. Polym. Sci., Part B: polym Phys, 1983, 21: 1757-1783.
    [124] Bartenev G. M., Valishin A. A. Theoretical strength of polymers in a completely oriented state. Mekhanika Polimerov, 1970, 3: 458-464.
    [125] Matsuda T., Tai K. Computer simulation of the fracture of perfectly oriented polymer fibers. Polymer, 1997, 38(7): 1669-1676.
    [126] Termonia Y., Meakin P., Smith P. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers. Macromolecules, 1985, 18: 2246-2252.
    [127] Termonia Y., Smith P. Theoretical study of the ultimate mechanical properties of poly (p-phenylene terephthalamide) fibers. Polymer, 1986, 27: 1845-1849.
    [128] Termonia Y., Smith P. Effect of chain-end segregation on the theoretical tensile strength of polyrthylene and Kevlar. Polym. Commun., 1989, 30: 66-68.
    [129] Termonia Y. Effect of size on the strength of polymeric fibers. J. Polym. Sci., Part B: polym. Phys., 1995, 33: 147-152.
    [130] Patricia Gestoso, Josée Brisson. Towards the simulation of poly(vinylphenol)/ poly(vinyl methyl ether) blends by atomistic molecular modeling. Polymer, 2003, 44: 2321-2329.
    [131] Frankland, S. J. V. The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Composites Science and Technology, 2003, 63(11): 1655-1661.
    [132]朱申敏,孙辉,程时远等.高性能聚合物聚氨酯酰亚胺的结构和性能的分子模拟.高分子材料科学与工程, 2001, 17(4): 109-113.
    [133] A. S. Ijantkar, U. Natarajan. Atomistic simulations of the structure and thermo- dynamic properties of poly(1,2-vinyl-butadiene) surfaces. Division of Polymer Chemistry. Polymer, 2004, 45: 1373-1381.
    [134] Dumitru Pavel, Robert Shanks. Molecular dynamics simulation of diffusion of O2 and CO2 in blends of amorphous poly(ethylene terephthalate) and related polyesters. Polymer, 2005, 46: 6135-6147.
    [135] Upendra Natarajan, Sanjay Misra, Wayne L.Mattice. Atomistic simulation of a polymer-polymer interface: interfacial energy and work of adhesion. Computational and Theoretical Polymer Science, 1998, 8(3-4): 323-329.
    [136] O. Okadaa, K. Okaa, S. Kuwajimab. Molecular simulation of an amorphous poly(methyl methacrylate)-poly(tetrafluoroethylene) interface. Computational and Theoretical Polymer Science, 2000, 10: 371-381.
    [137] Laguna M. F., Guzmán J., Riande E., et al. Experimental and simulation studies on the transport of argon through poly(pentaerythritoltribenzoate acrylate). Macromolecules, 1998, 31(21): 7488-7494.
    [138] Nagel C., Schmidtke E., Gulnther-Schade K., et al. Free volume distributions in glassy polymer membranes: Comparison between molecular modeling and experiments. Macromolecules, 2000, 33 (6): 2242-2248.
    [139] Kyoungsei Choi, Won Ho Jo. Effect of chain flexibility on selectivity in the gas separation process molecular dynamics simulation. Macromolecules, 1995, 28(25): 8598-8603.
    [140] Tamai Y., Tanaka H., Nakanishi K. Molecular simulation of permeation of small penetrants through membranes. 1.diffusion-coefficients. Macromolecules, 1994, 27(16): 4498-4508.
    [141] Tamai Y, Tanaka H, Nakanishi K. Molecular simulation of permeation of small penetrants through membranes .2. Solubilities. Macromolecules, 1995, 28(7): 2544-2554.
    [142] Fritz L., Hofmann D. Molecular dynamics simulations of the transport of water-ethanol mixtures through polydimethylsiloxane membranes. Polymer, 1997, 38(5): 1035-1045.
    [143] Kotelyanskii M., Wagner N.J., Paulaitis M. E. Molecular dynamics simulation study of the mechanisms of water. Journal of Membrane Science, 1998, 139(1): 1-16.
    [144] Müller-Plathe F., Van Gunsteren W. F. Computer-Simulation of a Polymer Electrolyte - Lithium Iodide in Amorphous Poly(Ethylene Oxide). J. Chem. Phys., 1995, 103(11): 4745-4756.
    [1] Sun H., Mumby S. J., Maple J. R., Hagler A. T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc., 1994, 116: 2978-2987.
    [2] Sun H. Ab initio calculations and force field develop ment for computer simulation of polysilanes. Macromolecules, 1995, 28: 701-712.
    [3] Hill J.-R., Sauer J. Mo1ecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica. J. Phys. Chem., 1994, 98: 1238-1244.
    [4] Sun H. COMPASS: An ab Initio Forcefield Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B, 1998, 102: 7338-7345.
    [5] Sun H, Ren R, Fried J. R. The COMPASS Forcefield: Parameterization and Validation for Polyphosphazenes. ComPut. Theor. Polym. Sci., 1998, 8: 229-246.
    [6] Rigby D., Sun H., Eichinger, B. E. Computer simulations of Poly(ethylene oxides): Forcefield, PVT diagram and cyclization behavior. Polym. Int., 1998, 44: 311-330.
    [7] Dauber-Osguthorpe P., Roberts, V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to J proteins: E. coli dihydrofolate reduetase-trimethoprim, a drug-receptor system. Proteins: Struct. Function Genetics, 1998, 4: 31-47.
    [8] Hagler A. T., Dauber P., Lifson S. Consistent forcefield studies of intermolecular forces in hydrogen bonded crystals.Ⅲ. The C=O…H-O hydrogen bond and the analysisof the energetics and packing of carboxylic acids. J. Am. Chem. Soc., 1979, 101: 5131-5141.
    [9] Mayo S. L., Olafson B. D., Goddard W. A.Ⅲ. DREIDING: A generic forcefield. Phys. Chem., 1990, 94: 8897-8909.
    [10] Hagler A. T., Stem P. S., Sharon R., Becker J. M., Naider E. Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results. J. Am. Chem. Soc., 1979, 101: 6842-6852.
    [11] RappéA. K., Casewit C. J., Colwell, K. S., Goddard, W. A., Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, 114: 10024-10035.
    [12] Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F, Dinola A., Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81: 3684-3690.
    [13] Andersen H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 1980, 72: 2384-2393.
    [14] Parrinello M., Rahman A. J. Phys. (Paris), 1981, C6: 511.
    [15] Ding H. Q., Karasawa N., Goddard W. A.Ⅲ, Atomic level simulations on a million method for Coulomb and London nonbond interactions. J. Chem. Phys., 1992, 97: 4309-4315.
    [16] Berendsen H. J. C., Postma, J. P. M., van Gunsteren W. F., Dinola A., Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81: 3684-3690.
    [17] NoséS. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 1984, 52: 255-268.
    [18] NoséS. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 1984, 81: 511-519.
    [19] Greengard L., Rokhlin V. I. A fast algorithm for particle simulations. J. ComPut. Phys., 1987, 73: 325-348.
    [20] Schmidt K. E., Lee M. A. Implementing the fast multipole method in threedimensions. J. Stat. Phys., 1991, 63: 1223-1235.
    [21] P. P. Ewald. Die Berechnung optiseher under elektrostatiseher Gitterpotentiale. Annalen der Physik, 1921, 369(3): 253-287.
    [22] Karasawa N., Goddard W. A.Ⅲ, Acceleration of convergence for lattice sums. J. Phys. Chem, 1989, 93: 7320-7327.
    [23] RappéA. K., Goddard W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem., 1991, 95: 3358-3363.
    [1]白新德,蔡俊,尤引娟,等.纳米复合材料-石墨层间化合物(GICs)的结构分析.复合材料学报, 1996, 13(3): 53-59.
    [2] Tomalia D A, Naylor A M, Goddard W A. Starburst dendrimers: molecular-level control of size, shape, surface, chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl, 1990, 29(1–2): 138–175.
    [3] Braga S F, Galv?o D S. Single wall carbon nanotubes polymerization under compression: An atomistic molecular dynamics study. Chemical Physics Letters, 2006, 419: 394-399.
    [4] Pérez-Mendoza M, Schumacher C, Suárez-García F, et al. Analysis of the microporous texture of a glassy carbon by adsorption measurements and Monte Carlo simulation: Evolution with chemical and physical activation. Carbon, 2006, 44: 638-645.
    [5]任鹏刚,梁国正,卢婷利,等. ZnO晶须改性石墨纤维/双酚A二氰酸酯复合材料.复合材料学报, 2005, 22 (2): 46-51.
    [6] Sun H. Compass, an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys Chem. B, 1998, 102(38): 7338–7364.
    [7]孙万虹.树状大分子的合成及其性质研究.兰州:西北师范大学, 2005.
    [8] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem Phys., 1980, 72:2374~2383
    [9] Parrinello M, Rahman A. Strain Fluctuations and Elastic Constants. J Chem Phys, 1982, 76: 2662~2666
    [10] Theodorou D N, Suter U W. Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules, 1986, 19(1): 139-154.
    [11]左胜武,沈经纬,侯静.聚乙烯/膨胀石墨复合材料的制备、结构和导电性.复合材料学报, 2005, 22(1): 15-21.
    [12]陈建,卿明强.新型石墨/丙烯酸导电涂料研究.新型炭材料, 2000, 15(2): 53-56.
    [13]杨永芳,刘敏江,田立斌.聚乙烯/石墨阻燃复合材料的研究.中国塑料, 2003, 17(2): 43-45.
    [14] Takamichi Terao, Tsuneyohsi Nakayama. Molecular Dynamics Study of Dendrimers: Structure and Effective Interaction. Macromolecules, 2004, 37: 4686-4694.
    [15]杨小震.分子模拟与高分子材料.北京:科学出版社, 2002. 47-48.
    [16] Frenkel, Smit,汪文川译.分子模拟-从算法到应用.北京:化学工业出版社, 2002. 120-125.
    [1] Berlin A. A., Volfson S. A., Enikopian N. S., Negmatov S. S. Principles of Polymer Composites[M]. Springer-Verlag, Berlin.1988.
    [2]张立德.材料新星-纳米材料学[M].长沙:湖南科学技术出版社, 1997.
    [3]张玉龙,李长德.纳米技术与纳米塑料[M].北京:中国轻工业出版社, 2002.
    [4] Du X. S., Xiao M., Meng Y. Z., Hay A. S. Direct synthesis of poly(arylenedisulfide)/ carbon nanosheet composites via the oxidation with graphite oxide. Carbon, 2005, 43(l): 195-197.
    [5] Xiao P., Xiao M., Gong K. C. Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique. Polymer, 2001, 42(11): 4813-4816.
    [6] Wang W. P., Pan C. Y. Synthesis and characterizations of poly(ethylene oxide) methyl ether grafted on the expanded graphite with isocyanate groups. European Polymer Journal, 2004, 40(3): 543-548.
    [7] Lopresto V., Melito V., Leone C., Caprino G. Effect of stitches on the impact behavior of graphite/epoxy composites. Composites Science and Technology, 2006,66(2): 206-214.
    [8]李侃社,邵水源,闰兰英,任华苗.聚苯胺/石墨导电复合材料的制备与表征.高分子材料科学与与工程, 2002, 18(5): 92-95.
    [9] S. Sinha, R. M. Okamoto. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539-1641.
    [10]漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社, 2002.
    [11]莫尊理,张平,陈红,孙银霞,左丹丹,刘艳芝.乳液插层法制备PMMA/ Nd(OH)3/MMT三相纳米复合材料及表征,功能材料, 2006, 37(9): 1473-1476.
    [12] Zunli Mo, Dandan Zuo, Hong Chen, Yinxia Sun, Ping Zhang. Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 2007, 43: 300-306.
    [13] Zheng W. G., Wong S. C., Sue H. J. Transport behavior of PMMA/expanded graphite nanocomposites. Polymer, 2002, 43(25): 6767-6773.
    [14] Zheng G. H., Wu J. S., Wang W. P, Pan C. Y. Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon, 2004, 42(14): 2839-2847.
    [15] Xiao M., Feng B., Gong K. C. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Conversion Manage, 2002, 43(1): 103-108.
    [16] Wang J. J., Zhu M. Y., outlaw-Ron A., Zhao X., Manos-Dennis M., Holloway- Brian C. Synthesis of carbon nanosheets by induetively coupled radio-frequeney plasma enhanced chemical vapor deposition. Carbon, 2004, 42(14): 2867-2872.
    [17] N. Jovi?, D. Dudi?, A. Montone, M. Vittori Antisari, M. Mitri?, V. Djokovi?. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Materialia, 2008, 58(10): 846-849.
    [18] Zunli Mo, Yinxia Sun, Hong Chen, et.al. Synthesis of PMMA/Ce(OH)3,Pr2O3/ graphite nanosheets composite in reverse micelle template and its properties. Polymer, 2005, 46: 12670-12676.
    [19] Chen G. H., Weng W. G., Wu D. J., Wu C. L., Lu J. R., Wang P. P., Chen X. F. Preparation and characterization of graphite nanosheets from ultrasonic powderingtechnique. Carbon, 2004, 42(4): 753-759.
    [20]徐飞,纳米粒子/PMMA复合材料的制备及其性能的研究.博士毕业论文,浙江大学, 2007.
    [21] B. Prathab, V. Subramanian, T.M. Aminabhavi. Molecular dynamics simulations to investigate polymerepolymer and polymeremetal oxide interactions. Polymer, 2007, 48: 409
    [1] Gordon G. Conductive polymers inch to market. Chemical Week, 1985, 136(l-2): 20-24.
    [2]曾幸荣,龚克成.导电性聚苯胺研究的进展.大自然探索, 1991, 10(2): 25-30.
    [3] MacDiarmid A G, Mu S L, Somasiri N L, et al. Electrochemical characteristics of“Polyaniline”cathodes and naodesin qaueous electrolytes. Mol. Crysl. Liq. Cryst, 1985, 121: 187-190.
    [4] Monknuln A. P. Electroactivity in polyaniline. Mol. Crysl. Liq. Cryst, 1992, 218: 253-260.
    [5] C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, G. Gigli. Organic light emitting diodes with highly conductive micropatterned polymer anodes. Organic Electronics, 2008, 9(3): 401-406.
    [6] N. F. Heinig, N. Kharbanda, M. R. Pynenburg, X. J. Zhou, G. A. Schultz, K. T.Leung. The growth of nickel nanoparticles on conductive polymer composite electrodes. Materials Letters, 2008, 62(15): 2285-2288.
    [7] G. Boiteux, Ye. P. Mamunya, E. V. Lebedev, A. Adamczewski, C. Boullanger, P. Cassagnau, G. Seytre. From conductive polymer composites with controlled morphology to smart materials. Synthetic Metals, 2007, 157(24): 1071-1073.
    [8] Hua Bai, Chun Li, Feng'en Chen, Gaoquan Shi. Aligned three-dimensional microstructures of conducting polymer composites. Polymer, 2007, 48(18): 5259-5267.
    [9] Alan G. Macdiarmid. Polyaniline and polypyrrole: where are we headed. Synth. Met., 1997, 84: 27-34.
    [10] X. R. Zeng, Tze Man Ko. Structure and properties of chemically reduced poly- aniliane. Polymer, 39(5): 1187-1195.
    [11]陆珉,吴益民.高电导率聚苯胺.功能材料, 1998, 29(5): 483-485.
    [12] Y. W. Sheng, Ruckenstein El. Water-soluble self-doped conducting polyaniline copolymer. Macromolecules, 2000, 33(4): 1129-1131.
    [13] Youyi Xia, Yun Lu. Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers. Composites Science and Technology, 2008, 68(6): 1471-1479.
    [14] Sheng Wang, Huimin Bao, Pengyuan Yang, Gang Chen. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Analytica Chimica Acta, 2008, 612(2): 182-189.
    [15] Feng Yi Chuang, Sze Ming Yang. Cerium dioxide/polyaniline core–shell nanocomposites. Journal of Colloid and Interface Science, 2008, 320(1): 194-201.
    [16] Kh. Ghanbari, M. F. Mousavi, M. Shamsipur, M. S. Rahmanifar, H. Heli. Change in morphology of polyaniline/graphite composite: A fractal dimension approach. Synthetic Metals, 2006, 156(14-15): 911-916.
    [17] Dresselhaus M S, Dresselhaus G. Interealation compounds of graphite. Advances in Physics, 1981, 30(2): 139-142.
    [18] M. Inagaki. Application of graphite intercalation compounds. J. Mater. Res. 1989,4(6): 1560-1568.
    [19] Khadijeh Ghanbari, Mir Fazlollah Mousavi, Mojtaba Shamsipur, Hassan Karami. Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery. Journal of Power Sources, 2007, 170(2): 513-519.
    [20] Zunli Mo, Dandan Zuo, Hong Chen, Yinxia Sun, Ping Zhang. Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 2007, 43: 300-306.
    [21]传秀云.石墨层间化合物GICs的形成机理探讨.新型炭材料, 2000, 15(1): 52-56.
    [22]徐国财,张立德.纳米复合材料.北京:化学工业出版社, 2002.
    [23] Leach A. R. Molecular Modelling-Principles and Applications. Longman, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700