原子转移自由基聚合对聚砜类膜的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对膜进行改性,使其能满足各种分离要求,近年来已经是膜分离研究的重要内容之一。与传统的改性方法相比,原子转移自由基聚合(ATRP)具有活性/“可控”、反应条件温和、适用单体范围广等优点。本文采用原子转移自由基聚合(ATRP)法和表面引发原子转移自由基聚合(SI-ATRP)法,通过在膜内引进不同的功能单体,对常用的聚砜和聚醚砜膜进行改性研究,使膜具有不同的分离功能。具体研究内容如下:
     为了使疏水聚砜膜具有更强的疏水性能,从而适用于有机溶剂等分离场合,实验采用ATRP化学接枝法,首次将疏水性含氟单体2,2,2-三氟乙基甲基丙烯酸酯(TFEMA)接枝到氯甲基化聚砜(CMPSF)材料上,FT-IR红外和19F-NMR核磁共振检测分析结果表明,反应得到了结构确定的接枝聚合物PSF-g-PTFEMA,并且产物接枝量随反应时间的增加而线性增加。将PSF-g-PTFEMA与PSF共混,采用相转化法制备平板共混膜,研究发现,共混膜表面的静态水接触角从纯膜的60.17°提高到了81.07°,即改性使膜表面的疏水性能得到了提高。
     亲水改性是传统膜改性的主要目的,实验以氯甲基聚醚砜(CMPES)中空纤维膜为基膜,通过SI-ATRP法在膜表面接枝亲水单体聚乙醇单甲醚甲基丙烯酸酯(PEGMA),从而提高膜表面的亲水性。扫描电镜和膜的物理结构测试结果说明,反应主要发生在膜表面;ATR-FTIR分析结果表明,膜表面得到了结构确定的聚合物PES-g-P(PEGMA);GPC分析结果显示聚合物分子量随反应时间的增加而线性增加,分子量分布较窄,膜表面的接枝密度也随反应时间的增加而线性增加,说明接枝反应具有可控聚合的特征;研究还发现,在不改变膜截留性能的前提下,改性使膜的亲水性和抗污染能力都得到了明显改善。
     在膜的使用过程中,微生物也可以造成膜污染。为了提高膜的抑菌性能,实验再次使用SI-ATRP法,在CMPSF膜表面接枝功能单体4-乙烯基吡啶(4VP),使膜表面具有很强的络合能力,然后再在膜表面络合吸附Cu离子,通过改变溶剂用量考察单体浓度对接枝反应的影响。为了作对比研究,实验又采用共混法直接在PSF铸膜液中同时添加P4VP和Cu离子纺制中空纤维共混膜,考察了P4VP用量对共混改性的影响。通过扫描电镜观察了两种方法改性前后膜的断面和表面形貌,同时测定了膜表面Cu元素的百分含量;通过分析膜内N元素的含量变化验证膜表面聚合物的接枝量,并且考察了改性前后膜的水通量和截留率变化。实验结果说明,溶剂用量为20mL时接枝改性效果最佳,膜表面聚合物的接枝密度可以达到4.7 mg/cm2,通过络合吸附可以使膜内Cu元素的百分含量达到3.07%,膜对大肠杆菌的抑菌率达到了100%;铸膜液中P4VP的添加量为0.75%时,共混效果最佳,制得的膜内Cu元素的百分含量尽管只能达到1.68%,但是膜的抑菌率也基本达到了100%。
Modifying membranes to meet the requirements of various separation has already been an important part of the study about membrane separation in recent years. Compared with the traditional modification methods, atom transfer radical polymerization(ATRP) has the advantages of activity/"controllable", mild reaction conditions, good for a wide range of monomers and so on. This article used the method of general atom transfer radical polymerization (ATRP) and the method of surface initiated atom transfer radical polymerization (SI-ATRP) to modify the commonly used polysulfone and polyethersulfone membrane by the introduction of different function monomer so that the membrane can have different separation functions. The mainly study and results of the experiments are summarized as follow:
     In order to make the hydrophobic membrane have a better hydrophobic property, which can be applied to organic solvent separation and other occasions, the hydrophobic fluorine-containing monomer of 2,2,2-trifluoroethyl methacrylate (TFEMA) were grafted from the chloromethylated polysulfone (CMPSF) materials via ATRP. FT-IR infrared and 19F-NMR NMR results showed that we got the grafting polymer PSF-g-PTFEMA with determined structure, Grafting yield linearly increased with reaction time. The flat blend membranes of PSF-g-PTFEMA/PSF were prepared by the wet phase inversion process. The static water contact angle of the modified membrane surface reached 81.07°from 60.17°of the pure membrane. It showed that the hydrophobicity of the membrane surface was improved by the modification.
     Hydrophilic modification is the mainly purpose of membrane modification. The hydrophilic monomer PEGMA was grafted from the surface of chloromethyl polyethersulfone (CMPES) hollow fiber membrane to improve the hydrophilicity of the membrane surface. FESEM and the physical structure of the membrane test results indicated the reaction mainly occured in the membrane surface. ATR-FTIR analysis showed that the PES-g-P (PEGMA) with determined structure were got on the membrane surface. GPC analysis showed the molecular weight linearly increased with the reaction and the molecular weight distribution was narrow. The grafting density on the membranes also linearly increased with the reaction time. These showed the reaction was a controlled or living process. The study also showed the hydrophilicity and anti-pollution of the membranes were significantly improved while the rejection performance was not changed.
     The microbes can also cause the membrane fouling. In order to improve the antibacterial properties of membranes, the functional monomers 4-vinyl pyridine (4VP) were grafted from the CMPSF membrane surface using the method of SI-ATRP to make the membrane surface have a strong complexing ability. Then the membrane surface were loaded with Cu. The effects of the monomer concentration were studied. For comparative study, the P4VP and Cu ions were directly added to the casting solution of PSF membrane using the blend method and the effects of the P4VP were studied. The section and surface morphology of the two modification membranes were scanned and the contents of Cu was measured at the same time. The contents of N were were measured to verify the content of the grafting polymer by elemental analysis. The changes of water flux and rejection of the modification membranes were investigated. The results showed that the effect of grafting was the best when the solvent amount was 20mL. The grafting density of the membrane surface reached 4.7 mg/cm2. The content of Cu can reach 3.07% through the adsorption. The E. coli inhibition rate of the membrane was 100%. The best blending membrane was got when the dosage of P4VP was 0.75% in the casting solution. Though the content of Cu can only reach 1.68%, the inhibition was almost 100%.
引文
[1]黄恒梅,王孝军等.聚砜类分离膜的研究进展[J].功能材料,2004,增刊(35):2088-2093.
    [2]赵书英.两亲梳性嵌段共聚物的合成及其在膜改性中的应用研究[D].[硕士学位论文].天津大学,2007.
    [3]Mathias Ulbricht. Advanced functional polymer membranes[J]. Polymer,2006(47): 2217-2262.
    [4]宋来洲,孟春江.聚醚砜-聚丙烯腈共混膜的研究[J].膜科学与技术,2005,25(2):34-37.
    [5]陈超,张裕卿,张宏伟,陈艳英.Al2O3-聚砜复合超滤膜用于中水处理的研究[J].天津大学学报,2006,39(2):219-222.
    [6]杨亚楠,张明耀,金晶等.聚砜/纳米TiO2有机-无机复合超滤膜及其性能[J].化工进展,2009,28(增刊):145-148.
    [7]唐焕威,张力平,林星.微纳纤维素与聚砜共混体系相容性的研究[J].生物质化学工程,2009,43(2):15-18.
    [8]谭翎燕,谭群燕,张浩勤等.氯甲基化聚砜/聚砜共混超滤膜的制备[J].中南大学学报(自然科学版),2008,39(5):928-933.
    [9]梁博,黄小华,孙树东等.聚砜类膜和膜材的改性[J].现代塑料加工应用,2005,17(3):62-64.
    [10]董晓静,胡小玲等.磺化聚砜改性超滤膜的制备及性能[J].化学研究与应用,2003,15(6):808-810.
    [11]姜锡朋.胺甲基聚砜亲和膜的制备及其在组合化学中的应用[D].[硕士学位论文].天津工业大学,2006.
    [12]Jane Y. Park, Metin H. Acar, Ariya Akthakul,et al. Polysulfone-graft-poly(ethylene glycol). graft copolymers for surface modification of polysulfone membranes[J].Biomaterials,2006, 27:856-865.
    [13]Koichi Kato, Emiko Uchida, En-Tang Kang, et al. Polymer surface with graft chains[J]. Progress in Polymer Science,2003,28:209-259.
    [14]A.V.R.Reddy, D.J.Mohan, A.Bhattacharya, et al. Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer:I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties[J]. Journal of membrane science,2003,214:211-221.
    [15]A.Maartens, P.Swart, E.P.Jacobsy. Membrane Pretreatment:A method for reducing fouling by natural organic matter[J].Journal of colloid and interface science,2000,221:137-142.
    [16]陆晓峰,刘光全,刘忠英,王彬芳.紫外辐照改性聚砜超滤膜[J].膜科学与技术,1998,18(5):50-54.
    [17]申颖洁,吴光夏,石雪莉等.气态法进行聚砜中空纤维超滤膜表面紫外光引发接枝聚合改性的实验研究[J].膜科学与技术,2007,27(3):15-20.
    [18]华河林,吴光夏,钟慧.聚砜与丙烯酸的紫外光辐射接枝共聚及其表征[J].功能高分子学报,2007,19-20(4):634-934.
    [19]李晶,侯铮迟,谢雷东等.γ辐射接枝甲基丙烯酸改善聚醚砜膜亲水性的研究[J].辐射研究与辐射工艺学报,2005,23(1):25-28.
    [20]詹劲,郭志刚,王保国等.利用低温等离子体进行聚砜膜的表面改性[J].化工学报,2004,55(5):747-751.
    [21]Wang J. S, Matyjaszewski K. Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complexes [J].Journal of the American Chemical Society,1995,117(20):5614-5615.
    [22]Wang J. S, Matyjaszewski K. Controlled/"living" radical polymerization, halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process[J]. Macromolecules,1995,28(23):7901-7910.
    [23]Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization[J].Macromolecules,1995,28(5):1721-1723.
    [24]彭锦雯.原子转移自由基聚合(ATRP)在多功能硅(100)表面改性材料制备中的应用[D].[博士学位论文].上海:复旦大学高分子,2005.
    [25]张洪文.ATRP方法合成几种新型功能化聚合物的研究[D].[博士学位论文].吉林大学,2005.
    [26]王建宇,徐又一,易砖等.PSF-g-P(PEGMA)的合成及其共混超滤膜的制备与性能研究[J].高分子学报,2009,7:700-706.
    [27]Jianyu Wang, Youyi Xu, Liping Zhu, et al.Amphiphilic ABA copolymers used for surface modification of polysulfone membranes,Part 1:Molecular design, synthesis, and characterization[J].Polymer,2008,49:3256-3264.
    [28]金桥,徐建平,计剑等.由平面合成聚合物刷-表面引发原子转移自由基聚合研究进展[J].高分子通报,2006,5:1-6.
    [29]金丽丽.表面引发原子转移自由基聚合反应制备有机/无机复合材料[D].[硕士学位论文].兰州:西北师范大学,2009.
    [30]Han-Bang Dong, You-Yi Xu, Zhuan Yi, et al.Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization[J].Applied Surface Science,2009,255: 8860-8866.
    [31]Jianhua Qiu, Yanwu Zhang, Yongbo Shen, et al.Hydrophilic modification of microporous polysulfone membrane via surface-initiated atom transfer radical polymerization of acrylamide. Applied surface science,2010,256:3274-3280.
    [32]梁博,黄小华,孙树东等.聚砜类膜和膜材的改性[J].现代塑料加工应用,2005,17(3):61~64.
    [33]王保国,陈翠仙等.有机溶剂分离膜结构和膜材料设计理论研究[J].膜科学与技术,2004,24(5):51-57.
    [34]李焦丽,奚西峰,李旭祥等.聚砜/聚丙烯酰胺合金膜及其在有机溶剂回收中的应用[J].膜科学与技术,2002,22(5):32~35.
    [35]王海涛,杜启云,赵宸煜等.血液透析器膜材料研究进展[J].膜科学与技术,2009,29(1):96~100.
    [36]柴华,卢志勇,张文庆,王军.甲基丙烯酸2,2,2-三氟乙酯的制备及聚合[J].有机氟工业,2005,1:9~10.
    [37]夏攀登,路翠苹,王兴东等.ATRP法制备聚甲基丙烯酸2,2,2-三氟乙酯-b-聚苯乙烯嵌段共聚物的研究[J].化工新型材料,2008,36(4):70~73.
    [38]Dong H.B.,Xu Y.Y., Yi Z., et al. Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization [J].Applied Surface Science,2009,255:8860-8866.
    [39]刘春涛,金政,侯海鸽等.PVDF超滤膜相转化制备方法及其改性的研究进展[J].化学与黏合,2009,31(6):54-57.
    [40]李磊,孙伟娜,陈翠仙等.甲酰胺对PES及PPESK相转化非对称膜结构与性能的影响[J].高分子材料科学与工程,2010,26(3):146-149.
    [41]中华人民共和国国家标准,水质氯化物的测定:硝酸银滴定法,GB:11896-89.
    [42]朱利平.聚醚砜、聚醚砜酮多孔膜的结构可控制备及其表面改性[D].浙江大学,高分子化学与物理专业,2007.
    [43]王建宇.两亲性共聚物的分子设计、合成及其共混改性疏水聚合物多孔膜的研究[D].浙江大学,高分子化学与物理,2008.
    [44]N.A. Hashim, Fu Liu, K. Li. A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer[J].Journal of Membrane Science,2009.
    [45]Han-Bang Dong, You-Yi Xu, Zhuan Yi, JunLi Shi.Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization[J].Applied surface science,2009, 255:8860-8866.
    [46]魏平.聚砜膜上固定纤维素酶及其酶膜反应器的研究[D].郑州大学,环境科学专业,2009.
    [47]Ma N, Fan X, Quan X, Zhang Y. Ag-TiO2/HAP/Al2O3 bioceramic composite membrane: fabrication characterization and bactericidal activity [J].Journal of Membrane Science,2009, 336(1):109-117.
    [48]Yao C, Li X, Neoh K. G, Shi Z, Kang E.T. Surface-modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties[J].Journal of Membrane Science,2008,320(2):259-267.
    [49]S.A. Wilks, H. Michels, C.W. Keevil.The survival of Escherichia coli 0157 on a range of metal surfaces[J].International Journal of Food Microbiology,2005,105:445-454.
    [50]孔德轮,高保娇,李刚.聚4-乙烯基吡啶与Cu(n)离子配合过程及配合物的结构[J].物理化学学报,2006,22(11):1399-1403.
    [51]彭奇均,贺蓉,刘晓亚,杨丽丽,张军霞.聚乙烯吡啶树脂的功能及改性[J].精细化工,1998,15(3):5-9.
    [52]Fang Yao, Guo-Dong Fu, Junpeng Zhao, En-Tang Kang, Koon Gee Neoh. Antibacterial effect of surface-functionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization[J].Journal of Membrane Science,2008,319(1):149-157.
    [53]Wang C, Yang F, Liu L, Fu Z, Xue, Y.Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes [J].Journal of Membrane Science,2009,345(2):223-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700