金属氧化物与碳共包覆LiFePO_4正极材料高倍率电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用三种方法来提高LiFePO_4电子电导率与锂离子扩散速率,减小LiFePO_4颗粒粒径,以达到改善LiFePO_4正极材料电化学性能(特别是高倍率性能)的目的。第一是金属离子掺杂与碳包覆;第二是金属氧化物与碳共同包覆;第三是采用冰冻干燥法制备LiFePO_4/C纳米前驱体。主要考察了不同金属离子、不同碳源、不同金属氧化物以及不同合成方法对LiFePO_4正极材料循环性能、电化学动力参数如电荷转移电阻Rct、交换电流密度i0、扩散系数D和电导率σ的影响。利用XRD、SEM、HRTEM对材料的相组成和微观形貌进行了分析,采用恒流充放电技术、交流阻抗技术与循环伏安法测试其电化学性能。
     利用微波法合成了LiFePO_4/(C+La~(3+))与LiFePO_4/(C+Ti~(4+))复合正极材料,结果表明C包覆与金属离子掺杂确实是提高材料电导率的一种效果显著的方法,尤其是掺杂与Li~+和Fe~(2+)半径相近的金属离子时,所得到的材料的晶格畸变小,结构稳定,电化学性能特别是在高倍率放电时材料的循环性能有明显改善。
     以草酸为碳源,采用溶胶凝胶法二次合成技术在管式气氛炉中600℃保温8 h所得的LiFePO_4/C正极材料的电化学性能最优,在0.2 C倍率下循环10次后材料的放电比容量仍能达到129.0 mAh·g~(-1)。采用悬浮混合法与共沉淀法分别制备了La_(0.7)Sr_(0.3)MnO_3包覆LiFePO_4/C材料与CuO包覆LiFePO_4/C材料。由高分辨透射电镜照片可以看出,进一步包覆CuO或La_(0.7)Sr_(0.3)MnO_3后,在磷酸亚铁锂颗粒表面形成了一层连续的、完整的导电纳米层。包覆La_(0.7)Sr_(0.3)MnO_3的LiFePO_4/C材料,在连续充放电35个循环后,0.5C放电倍率下放电比容量达到134.3 mAh·g~(-1)。CuO包覆的LiFePO_4/C材料,1C放电时,材料的放电比容量最高达到125.0 mAhg~(-1),20次循环后仍维持在123.0 mAhg~(-1),容量损失率仅为1.6%。
     以冰冻干燥法合成的LiFePO_4/C正极材料为基体,进一步包覆了La_(0.7)Sr_(0.3)MnO_3或ZnO。结果表明,对于含量为2% La_(0.7)Sr_(0.3)MnO_3包覆的材料,在0.5C和1C的放电倍率下的最高可逆放电比容量分别为143.4 mAh/g和133.6 mAh/g。对于含量为2%ZnO包覆的材料,所得材料的电化学性能最为优异,在1C与2C的放电制度下其放电比容量分别为130.7 mAh g~(-1)和122.6 mAh g~(-1)且循环性能良好,55个放电循环后再进行三次循环伏安测试,所得三次循环伏安曲线几乎是重合的,说明了此样品在循环过程中几乎没有极化现象的产生。
Three methods were adopted in this work to improve electrochemical properties and to reduce particle size of LiFePO_4 cathode materials based on its low electronic conductivity and lithium-ion diffusion rate. The first was metallic ion doping and carbon coating LiFePO_4; The second is metal oxide and carbon co-coating LiFePO_4; The last is freeze-drying to synthesize the nanometer-sized precursor of LiFePO_4/C. Different metallic ions, carbon sources, metal oxides and synthesis methods are studied, focusing on their influences on charge-discharge property, cycle ability, electrochemical kinetics parameters such as charge transfer resistance, exchange current density i0, diffusion coefficient D and conductivityσ. The microstructure and morphologies of these composites were investigated by XRD, SEM and HRTEM. The electrochemical performances were evaluated by galvanostatic charge-discharge, impedance spectroscopy and cyclic voltammogram.
     LiFePO_4/(C+La~(3+)) and LiFePO_4/(C+Ti~(4+)) cathode materials were synthesized by microwave heating. The results indicated that the metallic ion doping and carbon coating could greatly enhance the electronic conductivity of LiFePO_4, especially when the radius of doping ion is similar to the ones of Li~+ and Fe~(2+). The reason is that the distortion of crystalline lattice is relatively small and the structure is stable, accordingly, the electrochemical performances, particularly the high rate cycle performances, were obviously improved.
     The carbon-coated LiFePO_4 composite was synthesized via sol-gel method and two times firing procedure with keeping 8 h at 600℃, using oxalic acid as carbon source. It was demonstrated that the highest discharge specific capacity of 129.0 mAh·g-1 after 10 cycles at 0.2C rate was obtained for this composite cathode, with the capacity fading being only 1.07%. La_(0.7)Sr_(0.3)MnO_3+C co-coated LiFePO_4 and CuO+C co-coated LiFePO_4 were gained by suspension mixing process and precipitation method, respectively. Nanolayer structured La0.7Sr0.3MnO3 or CuO together with the amorphous carbon layer formed an integrate network arranged on the bare surface of LiFePO_4 as corroborated by high resolution transmission electron microscopy. La_(0.7)Sr_(0.3)MnO_3+C co-coated LiFePO_4 delivered a high discharge specific capacity of 134.3 mAh·g-1 after 35 cycles at 0.5C rate. CuO+C co-coated LiFePO_4 showed a discharge specific capacity of 125.0 mAhg-1 at 1C, and the capacity remained to be 123.0 mAhg-1 after 20 cycles. The capacity fading is only 1.6%.
     LiFePO_4/C composite synthesized by freeze-drying method was used as a matrix. Then it was further coated with La0.7Sr0.3MnO3 or ZnO by suspension mixing process or precipitation method, respectively. The results indicated that the particle sizes of co-coated composite were about 50 nm. When the content of La0.7Sr0.3MnO3 was 2%, it delivered the highest discharge capacity of 143.4 mAh/g and 133.6 mAh/g at 0.5C and 1C, respectively. When the content of ZnO was 2%, the materials showed the best electrochemical properties. The discharge capacity reached 130.7 mAh g-1 and 122.6 mAh g-1 at the rates of 1C and 2C, respectively. The cycle performances were also very good. The three cyclic voltammogram curves were almost overlapping after 55 discharge cycles, demonstrating that the continuous integrated conductive layer between LiFePO_4 particles resulted in negligible polarization during cycling.
引文
[1] Scrosati B, Garche J, Lithium batteries: Status, prospects and future [J], Journal of Power Sources, 2010, 195(9): 2419~2430
    [2] Ohzukua T, Brodd R J, An overview of positive-electrode materials for advanced lithium-ion batteries [J], Journal of Power Sources, 2007, 174: 449~456
    [3]雷永泉,万群,石永康.新能源材料[M],天津:天津大学出版社,2000,1~143
    [4]郭炳熴,徐徽,锂离子电池[M],湖南:中南大学出版社,2002,1~250
    [5]李景虹,先进电池材料[M],北京:化学工业出版社,2004,24~26
    [6]赵健,杨维芝,赵佳明,锂离子电池的应用开发[J],电池工业, 2000, 5(1): 31~36
    [7]吴宇平,万春荣,姜长印,锂离子二次电池[M],北京:化学工业出版社,2002: 1~10
    [8] Jack L, Philip N R, The electrochemistry of novel materials [M], New York: VCH Publisher Inc, 1994, 116~117
    [9]刘建睿,王猛,尹大川,等,锂离子蓄电池正极材料锂钒氧化物研究进展[J],电源技术,2001,25(3): 308~311
    [10] Miura K, Yamada A, Tanaka M, Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery [J], Electrochimica Acta, 1996, 41:249~256
    [11] Peon U J, Solution-based Chemical Synthesis Of Electrode Materials For Electrochemical Power Sources [D], Texas: The University of Texas at Austin, 2000
    [12] Bruno S, Lithium rocking chair batteries an old concept [J], Journal of The Electrochemical Society, 1992, 139(10): 2776~278
    [13] Huang D, Solid solution: new cathodes for next generation lithium ion batteries [J], Advanced Battery Technology, 1998, 11: 23~27
    [14] Huang H, Subba R G V, Chowdari B V R, LiAlxCo1?xO2 as 4 V cathodes for lithium ion batteries [J], Journal of Power Sources, 1999, 81: 690
    [15] Myung S T, Kumagai N, Komaba S, et al, Effects of Al doping on the microstructure of LiCoO2 cathode materials [J], Solid State Ionics, 2001, 139(1-2): 47~56
    [16] Alcántara R, Jumas J C, Lavela P, et al. X-ray diffraction, 57Fe M? ssbauer and step potential electrochemical spectroscopy study of LiFeyCo1-yO compounds [J], Journal of Power Sources, 1999, 81~82: 547
    [17] Holzapfel M, Schreiner R, Ott A, et al, Lithium-ion conductors of the system LiCo1-xFexO2: a first electrochemical investigation [J], Electrochimica Acta, 2001, 46: 1063~1070
    [18] Jones C D W, Rossen E, Dahn J R, Structure and electrochemistry of LixCryCo1?yO2 [J], Solid State Ionics, 1994, 68: 65
    [19] Madhavia S, Subba R G V, Chowdarib B V R, et al, Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2 [J], Journal of Power Sources, 2001, 93: 156
    [20] Wang Z X, Wu C A, Liu L J, et al, Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries [J], Journal of The Electrochemical Society, 2002, 149: A466
    [21] Imanishi N, Fujii M, Hirano A, et al, Synthesis and characterization of nonstoichiometric LiCoO2 [J], Journal of Power Sources, 2001, 97~98:287
    [22] Levasseur S, Ménétrier M, Suard E, et al, Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies [J], Solid State Ionics, 2000, 128:11
    [23] Sun Y K, Jeon Y S, Lee H J, Overcoming Jahn-Tell distortion for spinel Mn phase [J], Eletrochemical and Solid State Letters, 2000, 3: 7~9
    [24]李敏,李荣华,王文继,Li3PO4包覆LiMn2O4正极材料的结构表征和电化学性能[J],化学研究,2007, 18(4): 98~101
    [25] Kulova T L,Karseeva E I,et al, Structure and electrochemical behavior of lithium-manganese spinels doped with chromium and nickel [J], Russian Journal of Electrochemistry, 2004, 40(5): 558~564
    [26] Tachibana M, Tojo T,Kawaji H, et a1, Molecular dynamics study on lattice defects and heat capacity of LiCr1/6Mn11/6O4 [J], Journal of Thermal Analysis and Calorimetry, 2002, 69: 997~l004
    [27]黄松涛,曹松,掺Co3+和Li+的LiMn2O4晶体结构和电化学性能研究[J],稀有金属,2006, 30(2): 129~l33
    [28] Thirunakaran R,Babu B R, Electrochemical behaviour of LiMyMn2-yO4 (M =Cu, Cr; 0≤y≤4)[J], Bulletin of Materials Science, 2001, 24(1): 51~55
    [29] Murali K R,Saravanan T. Synthesis and characterization of copper substituted lithium manganate spinels[J], Journal of Materials Science, 2008, 19: 533~537
    [30] Xiao L F, Zhao Y Q, Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method [J], Journal of Solid State electrochemistry, 2008, 12: 687~691
    [31]王志兴,张宝,富锂尖晶石Li1+xMn2-xO4的合成与性能[J],中国有色金属学报,2004,14(9): 1525~l529
    [32] Molenda J, Wilk P, Marzec J, Structural, electrical and electrochemical properties of LiNiO2 [J], Solid State Ionics, 2002, 146 (1~2): 73~79
    [33] Ritchie A G, Recent development and future prospects for lithium rechargeable batteries [J], Journal of Power Sources, 2001, 96 (1): 1~4
    [34] Inaba M, Ogumi Z, Up-to-date development of lithium ion batteries in Japan [J], IEEE Electrical Insulation Magazine, 2001, 17(6): 6~20
    [35] Chang C C, Kim J Y, Kumta P N, Synthesis and electrochemical characterization of divalent cation in corporated lithium Nickel oxide [J], Journal of The Electrochemical Society, 2000, 147(5): 1722~1729
    [36] Kim J, A comparative study on the substitution of divallent, trivalent and tetravalent metal ion in LiNil-xMxO2 (M=Cu2+, Al3+, Ti4+) [J], Journal of Power Sources, 2002, 104: 33~39
    [37] Jaephil C, Jung H, Park Y C, et al, Electrochemical properties and thermal stability of LiNi1-xCoxO2 cathode materials [J], Journal of The Electrochemical Society, 2000, 147(1): 15~20
    [38] Wadsley A D, Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides: crystal structure of Li1+xV3O8 [J], Acta Crystallographica, 1957, 10: 261~267
    [39] Pistoia G, Pasquali M, Wang G, et al, Rechargeable Li/Li1+xV3O8 cells [J], Journal of The Electrochemical Society, 1983, 130: 1225~1226
    [40] Pistoia G, Pasquali M, Tocci M, et al, Li/Li1+xV3O8 secondary batteries further characterization of the mechanism of Li+ insertion and of the cycling behavior [J], Journal of The Electrochemical Society, 1985,132(2): 281~284
    [41] West K, Zachau-Christiansen B, Skaarup S, et al, Comparison of LiV3O8 cathode materials prepared by differient methodes [J], Journal of The Electrochemical Society, 1996, 143: 820~825
    [42] Dai J X, Samf Y L, Gao Z Q, et al, Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries [J], Journal of The Electrochemical Society, 1998, 145(9): 3057~3062
    [43] Padhi A K, Nanjundaswamy K S, Goodenough J B, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J], Journal of The Electrochemical Society, 1997, 144 (4): 1188
    [44] Zaghib K, Charest P, Guerfi A, et al, Safe Li-ion polymer batteries for HEV applications [J], Journal of Power Sources, 2004, 134: 124
    [45] Striebel K, Guerfi A, Shim J, et al, LiFePO_4/gel/natural graphite cells for the BATT program [J], Journal of Power Sources, 2003, 119~121: 951
    [46] Andersson A S, Thomas J O, The source of first-cycle capacity loss of LiFePO_4 [J], Journal of Power Sources, 2001, 97/98: 498~502
    [47] Zhang S S, Allen J L, Xu K, et al, Optimization of reaction condition for solid-state synthesis of LiFePO_4-C composite cathodes, Journal of Power Sources, 2005, 147 (1~2): 234~240
    [48] Okada S, Sawa S, Egashira M, et al, Cathode properties of Phospho-olivine LiMPO4 for secondary batteries [J], Journal of Power Sources, 2001, 97~98: 430
    [49] Yamada A, Chung S C, Hinokuma K, Optimized LiFePO_4 for lithium battery cathodes [J], Journal of The Electrochemical Society, 2001, 148(3): A224~A229
    [50] Takahashi M, Obishima S T, Takei K, et al, Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries [J], Journal of Power Sources, 2001, 97~98: 508~511
    [51] Okada S, Sawa S, Egashira M, et al, Cathode properties of Phospho-olivine LiMPO4 for lithium secondary batteries [J], Journal of Power Sources, 2001, 97~98: 430~432
    [52] Kim C W, Lee M H, Jeong W T, et al. Synthesis of Olivine LiFePO_4 Cathode Materials by Mechanical Alloying Using Iron (III) Raw Material [J], Journal of Power Sources, 2005, 146: 534~538
    [53] Chen D, Chen Z H, Chen G et al, Fabrication of TiAl, NiAl & FeAl intermetallic compounds powder by solid–liquid reaction milling [J], Journal of Hunan University, 2004, 2: 20~24
    [54] Liu X H, Zhao Z W, Synthesis of LiFePO_4/C by solid–liquid reaction milling method [J], Powder Technology, 2010, 197: 309~313
    [55] Bewlay S L, Konstantinov K, Wang G X et al, Conductivity improvements to spray-produced LiFePO_4 by addition of a carbon source [J], Materials Letters, 2004, 58: 1788~1791
    [56] Yang M R, Teng T H, Wu S H, LiFePO_4/carbon cathode materials prepared by ultrasonic spray pyrolysis [J], Journal of Power Sources, 2006, 159: 307~311
    [57] Teng T H, Yang M R, Wu S H, et al, Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis [J], Solid State Communications, 2007, 142: 389~392
    [58] Konarova M, Taniguchi I, Preparation of carbon coated LiFePO_4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties [J], Powder Technology, 2009, 191: 111~116
    [59] Myung S T, Kumagai N, Komaba S, Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method [J], Journal of Applied Electrochemistry, 2000, 30: 1081~1085
    [60] Myung S T, Komaba S, Hirosaki N, Emulsion drying synthesis of olivine LiFePO_4/C composite and its electrochemical properties as lithium intercalation material [J], Electrochimica Acta, 2004, 49: 4213~4222
    [61] Dokko K, Koizumi S, Sharaishi K, Electrochemical properties of LiFePO_4 prepared via hydrothermal route [J], Journal of Power Sources 2007, 165: 656~659
    [62] Wang Z L, Su S R, Yu C Y, Synthesises, characterizations and electrochemical properties of spherical-like LiFePO_4 by hydrothermal method [J], Journal of Power Sources, 2008, 184: 633~636
    [63] Jin E M, Jin B, Jun D K, A study on the electrochemical characteristics of LiFePO_4 cathode for lithium polymer batteries by hydrothermal method [J], Journal of Power Sources, 2008, 178: 801~806
    [64] Yang S F, Zavalij P Y, Whittingham M S, Hydrothermal synthesis of lithium iron phosphate cathodes [J], Electrochemistry Communications, 2001, 3: 505~508
    [65] Kuwahara A, Suzuki S, Miyayama M, High-rate properties of LiFePO_4/carbon composites as cathode materials for lithium-ion batteries [J], Ceramics International, 2008, 34: 863~866
    [66] Ni J F, Morishitab M, Kawabe Y, Hydrothermal preparation of LiFePO_4 nanocrystals mediated by organic acid [J], Journal of Power Sources, 2010, 195: 2877~2882
    [67] Meligrana G, Gerbaldi C, Tuelb A, Hydrothermal synthesis of high surface LiFePO_4 powders as cathode for Li-ion cells [J], Journal of Power Sources, 2006, 160: 516~522
    [68] Liang G C, Wang L, Ou X Q, et al, Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution [J], Journal of Power Sources, 2008, 184: 538~542
    [69] Arnold G, Garche J, Hemmer R, Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique [J], Journal of Power Sources, 2003, 119~121: 247~251
    [70] Delacourt C, Poizot P, Levasseur S, Size Effects on Carbon-Free LiFePO_4 Powders The Key to Superior Energy Density [J], Electrochemical and Solid-State Letters, 2006, 9: A352~A355
    [71] Yang M R, Ke W H, Wu S H, Preparation of LiFePO_4 powders by co-precipitation [J], Journal of Power Sources, 2005, 146 (1~2): 539~543
    [72] Ding Y, Jiang Y, Xu F, Preparation of nano-structured LiFePO_4/graphene composites by co-precipitation method [J], Electrochemistry Communications, 2010, 12 (1): 10~13
    [73] Higuchi M, Katayama K, Azuma Y, Synthesis of LiFePO_4 cathode material by microwave processing [J], Journal of Power Sources, 2003, 119~121: 258~261
    [74] Park K S, Son J T, Chung H T, Synthesis of LiFePO_4 by co-precipitation and microwave heating [J], Electrochemistry Communications, 2003, 5: 839~842
    [75] Song M S, Kang Y M, Kim J H, et al, Simple and fast synthesis of LiFePO_4-C composite for lithium rechargeable batteries by ball-milling and microwave heating [J], Journal of Power Sources, 2007, 166: 260~265
    [76] Wang L, Huang Y D, Jiang R R, Preparation and characterization of nano-sized LiFePO_4 by low heating solid-state coordination method and microwave heating [J], Electrochimica Acta, 2007, 52: 6778~6783
    [77] Arbizzani C, Beninati S, Damen L, Power and temperature controlled microwave synthesis of SVO [J], Solid State Ionics, 2007, 178: 393~398
    [78] Li W, Ying J R, Wan C R, Preparation and characterization of LiFePO_4 from NH4FePO4·H2O under different microwave heating conditions [J], Journal of Solid State Electrochemistry, 2007, 11: 799~803
    [79] Beninati S, Damen L, Mastragostino M, MW-assisted synthesis of LiFePO_4 for high power applications [J], Journal of Power Sources, 2008, 180: 875~879
    [80]胡环宇,仇卫华,李发喜,等,正极材料LiFePO_4的电化学性能的改进[J],北京科技大学学报,2003,25(6): 54
    [81] Yan H W, Huang X J, Chen L Q, Microwave synthesis of LiMn2O4 cathode material [J], Journal of Power Sources, 1999, 81~82: 647
    [82]李发喜,仇卫华,胡环宇,等,微波合成锂电池正极材料LiFePO_4电化学性能[J],研究与设计, 2005, 6, 29(6): 348
    [83] Beninati S, Damen L, Mastragostino M, Fast sol–gel synthesis of LiFePO_4/C for high power lithium-ion batteries for hybrid electric vehicle application [J], Journal of Power Sources, 2009, 194(2): 1094~1098
    [84] Sanchez M A E, Brito G E S, Fantini M C A, et al, Synthesis and characterization of LiFePO_4 prepared by sol–gel technique [J], Solid State Ionics, 2006, 177: 497~500
    [85] Choi D, Kumta P N, Surfactant based sol–gel approach to nanostructured LiFePO_4 for high rate Li-ion batteries [J], Journal of Power Sources, 2007, 163(2): 1064~1069
    [86] Lee S B, Jang I C, Lim H H, Preparation and electrochemical characterization of LiFePO_4 nanoparticles with high rate capability by a sol–gel method [J], Journal of Alloys and Compounds, 2010, 491(1-2): 668-672
    [87] Xu Z H, Xu L, Lai Q Y, A PEG assisted sol–gel synthesis of LiFePO_4 as cathodic material for lithium ion cells [J], Materials Research Bulletin, 2007, 42(5): 883~891
    [88] Gaberscek M, Dominko R, Bele M, Porous, carbon-decorated LiFePO_4 prepared by sol–gel method based on citric acid [J], Solid State Ionics, 2005, 176(19~22): 1801~1805
    [89] Sundarayya Y, Swamy K C K, Sunandana C S, Oxalate based non-aqueous sol–gel synthesis of phase pure sub-micron LiFePO_4 [J], Materials Research Bulletin, 2007, 42(1): 1942~1948
    [90] Lin Y, Gao M X, Zhu D, et al, Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO_4/C [J], Journal of Power Sources, 2008, 184(2): 444~448
    [91] Liu H, Xie J Y, Wang K, Synthesis and characterization of nano-LiFePO_4/carbon composite cathodes from 2-methoxyethanol–water system [J], Journal of Alloys and Compounds, 2008, 459(1~2): 521~525
    [92] Lee S B, Cho S H, Cho S J, Synthesis of LiFePO_4 material with improved cycling performance under harsh conditions [J], Electrochemistry Communications, 2008, 10(9): 1219~1221
    [93] Lai C Y, Xu Q j, Ge H H, Improved electrochemical performance of LiFePO_4/C for lithium-ion batteries with two kinds of carbon sources [J], Solid State Ionics, 2008, 179(27-32): 1736~1739
    [94] Zhang Y, Feng H, Wu X B, One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO_4 [J], Electrochimica Acta, 2009, 54(11): 3206~3210
    [95] Bhuvaneswari M S, Bramnik N N, Ensling D, Synthesis and characterization of Carbon Nano Fiber/LiFePO_4 composites for Li-ion batteries [J], Journal of Power Sources, 2008, 180(1): 553~560
    [96] Mi C H, Cao Y X, Zhang X G, Synthesis and characterization of LiFePO_4/(Ag+C) composite cathodes with nano-carbon webs [J], Powder Technology, 2008, 181(3): 301~306
    [97] Chang H H, Chang C C, Su C Y, Effects of TiO2 coating on high-temperature cycle performance of LiFePO_4-based lithium-ion batteries [J], Journal of Power Sources, 2008, 185(1): 466~472
    [98] Hsu K F, Sun-Yuan Tsay, Bing-Joe Hwang, et al, Physical and electrochemical properties of LiFePO_4/carbon composite synthesized at various pyrolysis periods [J], Journal of Power Sources, 2005, 146(1~2): 529~533
    [99] Chen Z Y, Zhu H L, Ji S, et al, Influence of carbon sources on electrochemical performances of LiFePO_4/C composites [J], Solid State Ionics, 2008, 179(27~32): 1810~1815
    [100] Hu G R, Gao X G, Peng Z D, et al, Influence of Ti4+ doping on electrochemical properties of LiFePO_4/C cathode material for lithium-ion batteries [J], Transactions of Nonferrous Metals Society of China, 2007, 17(2): 296~300
    [101] Kim J K, Choi J W, Chauhan G S, Enhancement of electrochemical performance of lithium iron phosphate by controlled sol~gel synthesis [J], Electrochimica Acta, 2008, 53(28): 8258~8264
    [102] Sides C R, Croce F, Young V Y, et al, A high-rate, nanocomposite LiFePO_4/carbon cathode, Electrochemical and Solid State Letters, 2005, 8(9): A484~A487
    [103] Piana M, Cushing B L, Goodenough J B, A new promising sol–gel synthesis of phospho-olivines as environmentally friendly cathode materials for Li-ion cells [J], Solid State Ionics, 2004, 175: 233~237
    [104] Dominko R, Bele M, Gaberscek M, Porous olivine composites synthesized by sol–gel technique [J], Journal of Power Sources, 2006, 153(2): 274~280
    [105] Chung S Y, Chiang Y M, Microscale Measurements of the Electrical Conductivity of Doped LiFePO_4 [J], Electrochemical and Solid State Letters, 2003, 6: A278
    [106] Prosini P P, Lisi M, Zane D et al, Determination of the chemical diffusion coefficient of lithium in LiFePO_4 [J], Solid State Ionics, 2002, 148: 45
    [107] Molenda J, Stoklosa A, Bak T, Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties [J], Solid State Ionics, 1989, 36(1-2): 53~58
    [108] Robert D, Miran G. The Role of Carbon Black Distribution in Cathodes for Li-ion Batteries [J], Journal of Power Sources, 2003, 119~121: 770~773
    [109] Ravet N, Goodenough J B, Besner S, et al, Abstract 127, the Electrochemical Society of Japan Meeting Abstracts, Vol.99/2. Honolulu: HI, 1999
    [110] Luo S H, Tang Z L, Lu J B, et al, A novel synthetic route for LiFePO_4/C cathode materials by addition of starch for lithium-ion batteries [J], Chinese Chemical Letters 2007, 18 (2): 237~240
    [111] Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO_4 based composite cathode [J], Electrochimica Acta, 2001, 46(23): 3517
    [112] Chen Z H, Dahn J R. Reducing carbon in LiFePO_4/C composite electrodes to maximize specific energy, volumetric energy and tap density [J], Journal of The Electrochemical Society, 2002, 149(9): 1184
    [113] Fey G T K, Lu T L, Morphological characterization of LiFePO_4/C composite cathode materials synthesized via a carboxylic acid route [J], Journal of Power Sources, 2008, 178 (2): 807~814
    [114] Hwang B J, Hsu K F, Hu S K, Template-free reverse micelle process for the synthesis of a rod-like LiFePO_4/C composite cathode material for lithium batteries [J], Journal of Power Sources, 2009, 194 (1): 515~519
    [115] Xu J, Chen G, Xie C D, Synthesis and electrochemical performance of LiFePO_4/C prepared by a new method [J], Solid State Communications, 2008, 147 (11~12): 443~446
    [116] Konarova M, Taniguchi I, Synthesis of carbon-coated LiFePO_4 nanoparticles with high rate performance in lithium secondary batteries [J], Journal of Power Sources, 2010, 195 (11): 3661–3667
    [117] Huang B, Zheng X D, Jia D M, et al, Design and synthesis of high-rate micron-sized, spherical LiFePO_4/C composites containing clusters of nano/microspheres [J], Electrochimica Acta, 2010, 55 (3): 1227~1231
    [118] Dong Y Z, Zhao Y M, Chen Y H, Optimized carbon-coated LiFePO_4 cathode material for lithium-ion batteries [J], Materials Chemistry and Physics, 2009, 115 (1): 245~250
    [119] Mi C H, Zhang X G, Zhao X B, Effect of sintering time on the physical and electrochemical properties of LiFePO_4/C composite cathodes [J], Journal of Alloys and Compounds, 2006, 424 (1~2): 327~333
    [120] Koleva V, Zhecheva E, Stoyanova R, A new phosphate-formate precursor method for the preparation of carbon coated nano-crystalline LiFePO_4 [J], Journal of Alloys and Compounds, 2009, 476 (1~2): 950~957
    [121] Gaberscek M, Dominko R, Bele M, Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores [J], Solid State Ionics, 2006, 177 (35~36): 3015~3022
    [122] Kalaiselvi N, Manthiram A, One-pot, glycine-assisted combustion synthesis and characterization of nanoporous LiFePO_4/C composite cathodes for lithium-ion batteries [J], Journal of Power Sources, 2010, 195 (9): 2894~2899
    [123] Zou H L, Zhang G H, Shen P K, Intermittent microwave heating synthesized high performance spherical LiFePO_4/C for Li-ion batteries [J], Materials Research Bulletin, 2010, 45 (2): 149~152
    [124] Gao F, Tang Z Y, Xue J J, Effects of different iron sources on the performance of LiFePO_4/C composite cathode materials [J], Journal of University of Science and Technology Beijing, 2008, 15(6): 802
    [125] Yun N J, Ha H W, Jeong K H, Synthesis and electrochemical properties of olivine-type LiFePO_4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor [J], Journal of Power Sources, 2006, 160 (2): 1361~1368
    [126]赖桂棠,李大光,李军,等,磷酸铁锂的结构及其改性研究进展[J],材料研究与应用,2007, 1(4): 256-259
    [127] Corce F, Epifanio A D, Hassoun J, et al, A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode [J], Electrochemical and Solid-State Letter, 2002, 5(3): 47.
    [128] Park K S, Son J T, Chung H T, et al, Surface modification by silver coating for improving electrochemical properties of LiFePO_4 [J], Solid State Communications, 2004, 129(5): 311
    [129] Eftekhari A, Electrochemica1 deposition and modification of LiFePO_4 for the preparation of cathode with enhanced battery performance [J], Journal of The Electrochemical Society, 2004, 151(11): A1816~A1819
    [130] Ying J R, Lei M, Jiang C Y, Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries [J], Journal of Power Sources, 2006, 158 (1): 543~549
    [131] Yang Y, Liao X Z, Ma Z F, Superior high-rate cycling performance of LiFePO_4/C-PPy composite at 55°C [J], Electrochemistry Communications, 2009, 11(6): 1277~1280
    [132] FedorkováA, Nacher-Alejos A, Pedro Gómez-Romero, Structural and electrochemical studies of PPy/PEG-LiFePO_4 cathode material for Li-ion batteries [J], Electrochimica Acta, 2010, 55 (3): 943~947
    [133] FedorkováA, R Oriňáková, A Oriňák, PPy doped PEG conducting polymer films synthesized on LiFePO_4 particles [J], Journal of Power Sources, 2010, 195(12): 3907-3912
    [134] Liu J, Liu F K, Yang G L, The preparation of conductive nano-LiFePO_4/PAS and its electrochemical performance [J], Electrochimica Acta, 2010, 55(3): 1067~1071
    [135] Liu H, Xie J Y, Wang K, Synthesis and characterization of LiFePO_4/(C+Fe2P) composite cathodes [J], Solid State Ionics, 2008, 179 (27~32) 1768~1771
    [136] Song G M, Wu Y, Xu Q, Enhanced electrochemical properties of LiFePO_4 cathode for Li-ion batteries with amorphous NiP coating [J],Journal of Power Sources,2010, 195(12): 3913-3917
    [137] Song G M, Wu Y, Liu G, Influence of AlF3 coating on the electrochemical properties of LiFePO_4/graphite Li-ion batteries [J], Journal of Alloys and Compounds, 2009, 487(1~2): 214~217
    [138] Hu Y S, Guo Y G, Dominko R, et al, Improved Electrode Performance of Porous LiFePO_4 Using RuO2 as an Oxidic Nanoscale Interconnect, Advanced Materials, 2007, 19(15), 1963–1966
    [139] Yang S F, Song Y N, Ngala K, et al, Performance of LiFePO_4 as lithium battery cathode and comparison with manganese and vanadium oxides [J], Journal of Power Sources, 2003, 119~121: 239~246
    [140]孙玉恒,刘东强,吁霁,钛掺杂的非化学计量LiFePO_4的合成与电化学性能研究[J],无机化学学报,2006,22(9): 1711~1714
    [141] Penazzia N, Arrabitoa M, Pianaa M, et al, Mixed lithium phosphates as cathode materials for Li-ion cell [J], Journal of the European Ceramic Society, 2004, 24: 1381
    [142]文衍宣,郑绵平,童张法,掺杂元素对锂离子电池正极材料LiFePO_4的影响[J],无机盐工业,2005,37(4): 12~14
    [143] Chung S Y, Bloking J T, Chiang Y M, et al, Electronically conductive phosphor-olivines as lithium storage electrodes [J], Nature Materials, 2002, 2: 123~128
    [144]倪江锋,周恒辉,陈继涛,金属氧化物掺杂改善LiFePO_4电化学性能[J],无机化学学报,2005,21(4): 476
    [145] Liu H, Cao Q, Fu L J, Doping effects of zinc on LiFePO_4 cathode material for lithium ion batteries [J], Electrochemistry Communications, 2006, 8(10): 1553~1557
    [146] Wang G X, Needham S, Yao J, A study on LiFePO_4 and its doped derivatives as cathode materials for lithium-ion batteries [J], Journal of Power Sources, 2006, 159(1): 282~286
    [147] Bini M, Cristina M, Galinetto M P, Structural, spectroscopic and magnetic investigation of the LiFe1-xMnxPO4 (x=0-0.18) solid solution [J], Journal of Solid State Chemistry, 2009, 182 (7): 1972~1981
    [148] Liu H, Xie J Y, Synthesis and characterization of LiFe0.9Mg0.1PO4/nano– carbon webs composite cathode [J], Journal of materials processing technology, 2009, 209(1): 477~481
    [149] Roberts M R, Vitins G, Owen J R, High-throughput studies of Li1?xMgx/2FePO4 and LiFe1?yMgyPO4 and the effect of carbon coating [J], Journal of Power Sources, 2008, 179 (2): 754~762
    [150] Shin H C, Park S B, Jang H, Rate performance and structural change of Cr-doped LiFePO_4/C during cycling [J], Electrochimica Acta, 2008, 53(27): 7946~7951
    [151] Wang Y F, Zhang D, Yu X, Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO_4 [J], Journal of Alloys and Compounds, 2010, 492(1-2): 675-680
    [152] Delacourt C, Wurm C, Laffont L, Electrochemical and electrical properties of Nb- and/or C-containing LiFePO_4 composites [J], Solid State Ionics, 2006, 177 (3~4): 333~341
    [153] Wang D Y, Li H, Shi S Q, Improving the rate performance of LiFePO_4 by Fe-site doping [J], Electrochimica Acta, 2005, 50 (14): 2955~2958
    [154] Atef Y. Shenouda, Hua K. Liu, Studies on electrochemical behaviour of zinc-doped LiFePO_4 for lithium battery positive electrode [J], Journal of Alloys and Compounds, 2009, 477 (1~2): 498~503
    [155] Sun C S, Zhang Y, Zhang X J, Structural and electrochemical properties of Cl-doped LiFePO_4/C [J], Journal of Power Sources, 2010, 195(11): 3680-3683
    [156] Xu J, Chen G, Effects of doping on the electronic properties of LiFePO_4: A first-principles investigation [J], Physica B: Condensed matter, 2010, 405(3): 803~807
    [157] Sun C S, Zhou Z, Xu Z G, Improved high-rate charge/discharge performances of LiFePO_4/C via V-doping [J], Journal of Power Sources, 2009, 193(2): 841~845
    [158]吴江,宋志方,罗新文,等,MH-Ni电池正极材料球形氢氧化镍的研究[J],江西化工, 2005(3): 75~78
    [159] Ni J F, Zhou H H, Chen J T, Molten salt synthesis and electrochemical properties of spherical LiFePO_4 particles [J], Materials Letters, 2007, 61(4~5): 1260~1264
    [160] Oh S W, Myung S T, Oh S M, Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO_4 with high tap density as positive electrode materials for lithium batteries [J], Electrochimica Acta, 2010, 55 (3): 1193~1199
    [161] Wang L, G C Liang, Ou X Q, Effect of synthesis temperature on the properties of LiFePO_4/C composites prepared by carbothermal reduction [J], Journal of Power Sources, 2009, 189 (1): 423~428
    [162] Liu J, Wang J W, Yan X D, Long-term cyclability of LiFePO_4/carbon composite cathode material for lithium-ion battery applications [J], Electrochimica Acta, 2009, 54(24): 5656~5659
    [163] Konstantinov K, Bewlay S, Wang G X, New approach for synthesis of carbon-mixed LiFePO_4 cathode materials [J], Electrochimica Acta, 2004, 50(2~3): 421~426
    [164] Drozd V, Liu G Q, Liu R S, Synthesis, electrochemical properties, and characterization of LiFePO_4/C composite by a two-source method [J], Journal of Alloys and Compounds, 2009, 487 (1~2): 58~63
    [165] Zhang P X, Li X Y, Luo Z K, Kinetics of synthesis olivine LiFePO_4 by using a precipitated-sintering method [J], Journal of Alloys and Compounds, 2009, 467 (1~2): 390~396
    [166] Chen J M, Hsu C H, Lin Y R, High-power LiFePO_4 cathode materials with a continuous nano carbon network for lithium-ion batteries [J], Journal of Power Sources, 2008, 184 (2): 498~502
    [167] Dong Y Z, Zhao Y M, Chen Y H, Optimized carbon-coated LiFePO_4 cathode material for lithium-ion batteries [J], Materials Chemistry and Physics, 2009, 115 (1): 245~250
    [168] Porcher W, Lestriez B, Jouanneau S, et al, Optimizing the surfactant for the aqueous processing of LiFePO_4 composite electrodes [J], Journal of Power Sources, 2010, 195(9): 2835~2843
    [169] Luo S H, Tang Z L, J B Lu, et al, Synthesis and performance of carbon-modified LiFePO_4 using an in situ PVA pyrolysis procedure [J], Journal of University of Science and Technology Beijing, 2007, 14(6): 562
    [170] Yamada A, Chung S C, Hinokuma K, et al, Optimized LiFePO_4 for Lithium Battery Cathodes [J], Journal of The Electrochemical Society, 2001, 148(3): 224~229
    [171] Singhal A, Skandan G, Amatucci G, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices [J], Journal of Power Sources, 2003, 129(1): 38
    [172] Prosini P P, Carewska M, Scaccia S, et al, Long-term cyclbility of nanostructured LiFePO_4 [J], Electrochimica Acta, 2003, 48(28): 4205~4211
    [173] Li C, Zhang H P, Fu L J, Cathode materials modified by surface coating for lithium ion batteries [J], Electrochimica Acta, 2006, 51(19): 3872~3883
    [174] Cho J, Kim T J, Kim Y J, et al, High-Performance ZrO2-Coated LiNiO2 Cathode Material [J], Electrochemical and Solid-State Letters, 2001, 4(10): A159~A161
    [175] Wang Z X, Huang X J, Chen L Q, Performance Improvement of Surface-Modified LiCoO2 Cathode Materials [J], Journal of The Electrochemical Society, 2003, 150(2): A199~A208
    [176] Cho J, Kim Y J, Kim T J, Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell [J], Angewandte Chemie International Edition, 2001, 40(18): 3367~3369
    [177] Thackeray M M, Johnson C S, Kim J S, ZrO2-and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries [J], Electrochemistry Communications, 2003, 5(9): 752~758
    [178] Kannan A M, Manthiram A, Surface/Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries [J], Electrochemical and Solid-State Letters, 2002, 5(7): A167~A169
    [179] Fang T, Duh J G, Sheen S R, LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries [J], Thin Solid Films, 2004, 469~470: 361~365
    [180] Kim Y J, Cho J, Kim T J, Suppression of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metal-Oxide Coatings [J], Journal of The Electrochemical Society, 2003, 150(12): A1723~A1725
    [181] Chung K Y, Yoon W S, McBreen J, Structural Studies on the Effects of ZrO2 Coating on LiCoO2 during Cycling Using In Situ X-Ray Diffraction Technique [J], Journal of The Electrochemical Society, 2006, 153(11): A2152~A2157
    [182] Zhao H L, Gao L, Qiu W H, et al, Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating [J], Journal of Power Sources, 2004, 132 (1~2): 195~200
    [183] Cho J, Kim T G, Kim C J, et al, Comparison of Al2O3-and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell [J], Journal of Power Sources, 2005, 146 (1~2): 58~64
    [184] Iriyama Y, Kurita H, Yamada I, et al, Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode [J], Journal of Power Sources, 2004, 137 (1): 111~116
    [185] Liu H S, Zhang Z R, Gong Z L, et al, A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating [J], Solid State Ionics, 2004, 166 (3~4): 317~325
    [186] Kannan A M, Rabenberg L, Manthiram A, High Capacity Surface-Modified LiCoO2 Cathodes for Lithium-Ion Batteries [J], Electrochemical and Solid-State Letters, 2003, 6(1): A16~A18
    [187] Zhang Z R, Gong Z L, Yang Y, Electrochemical Performance and Surface Properties of Bare and TiO2-Coated Cathode Materials in Lithium-Ion Batteries [J], The Journal of Physical Chemistry B, 2004, 108(45): 17546~17552
    [188] Yu Li H, Qiu X P, Xi J Y, et al, Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery [J], Electrochimica Acta, 2006, 51 (28): 6406~6411
    [189] Li D C, Kato Y, Kobayakawa K, et al, Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating [J], Journal of Power Sources, 2006, 160 (2): 1342~1348
    [190] Liu Y, Mi C H, Yuan C Z, Improvement of electrochemical and thermal stability of LiFePO_4 cathode modified by CeO2 [J], Journal of Electroanalytical Chemistry, 2009, 628 (1~2): 73~80
    [191] Liu H, Wang G X, Wexler D, Electrochemical performance of LiFePO_4 cathode material coated with ZrO2 nanolayer [J], Electrochemistry Communications, 2008, 10(1): 165~169
    [192] Liu Y, Mi C H, Yuan C Z, Effects of TiO2 coating on high-temperature cycle performance of LiFePO_4-based lithium-ion batteries [J], Journal of Power Sources, 2008, 185(1): 466~472
    [193] Chung S Y, Bloking J T, Chiang Y M, Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials, 2002, 1(2): 125
    [194] Wang Z X, Huang X J, Chen L Q, Microstructural evolution in the oxidized chromium nitride coatings prepared by unbalanced magnetron sputtering, J. Electrochem. Soc. 2003, 150: B199
    [195] Anderson A S, Kalska B, Ha|¨ggstro|¨m L, et al, Lithium extraction/insertion in LiFePO_4: An X-ray diffraction and Moessbauer spectroscopy study, Solid State Ionics, 2000, 130: 41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700