LiFePO_4的碳包覆优化和中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型磷酸亚铁锂作为锂离子电池正极材料具有较高的比容量,良好的循环稳定性,可靠的安全性以及低廉的价格等特征成为目前学术界和产业界共同关注的焦点。本文从实用性的角度出发,以改善材料的碳包覆性能和电化学性能为目的,从固相合成和液相制备两个方向讨论了优化碳包覆及其对材料电化学性能的影响。同时,进行了磷酸亚铁锂的10公斤级中试项目研究和100公斤级的小批量生产试验,摸索了各工艺条件对产物物理特性和电化学性能的影响。
     首先研究了二茂铁在一步固相法制备磷酸亚铁锂的过程中对碳包覆的优化效果。实验发现,二茂铁可以在碳包覆的过程中起催化剂的作用,使包覆碳的石墨化程度提高,从而改善材料的电化学性能。二茂铁对热解温度更高的碳源聚丙烯有着更好的催化效果,产物的电导率和电化学性能都得到了很大的提高。
     基于二茂铁高温分解出纳米Fe对碳的催化效果,考虑直接使用前驱体中本身的Fe2O3作为催化剂,分析其在高温下对碳包覆的催化作用。以乙炔气体作为碳源和还原性气氛,采用化学气相沉积的方式来对LiFePO4进行包碳。实验发现,不同的原料体系在特定的条件下,都能得到LiFePO4与碳纤维的复合材料。碳纤维的生长与磷酸铁锂的生长是竞争关系。如果前驱体各组分的活性较高,则倾向于生成LiFePO4,Fe2O3没有机会催化碳纤维的生成。因此需要针对不同的前驱体设置不同的气氛通入机制和加热机制。而碳纤维的生长会消耗部分Fe2O3,因此需控制碳纤维的含量。同时,我们发现,高温下沉积的碳除了碳纤维外,还有大量无定形态的碳,这些无定形态碳容易在颗粒表面形成连续致密的碳膜,影响锂离子在颗粒表面的迁移,造成充放电过程中的极化。因此有必要合理控制CVD的条件,使碳纤维和无定形碳的比例达到最佳,在提高材料电导率的同时,尽量降低碳含量,提高材料的比容量和能量密度。
     通过共沉淀法制备磷酸铁锂与石墨烯的复合材料。实验发现,复合材料的电化学性能受制于磷酸亚铁锂本身的结晶完整性和包覆碳的电导率。前者可以通过延长共沉淀的时间来改善,而后者可以通过升高热处理的温度来改善。提高材料本身的结晶完整性可以提高小倍率充放电时的比容量,而改善包覆碳的电导率则可以改善材料在大倍率下的比容量。
     通过对中试过程由小到大整个过程的摸索,掌握了一步法制备磷酸亚铁锂的工艺中各参数对产物的物相、形貌和电化学性能的影响。湿法球磨可以获得分散均匀的前驱体;合适的喷雾干燥温度可以避免二次颗粒的过分团聚,控制粉末的粒径分布;焙烧过程中合理的升温制度需要考虑前驱体的热分解特性,及时除水可以有效的降低炉膛的氧化性气氛,保证产物的纯度。还可以在原料中添加适量的聚合物碳源,双重碳源既能增加炉膛的还原性气氛,又能改善材料碳包覆的均匀性。对产物的适当球磨或者糅合处理可以有效地改善产品的加工性能。最终,我们在10公斤级中试中和100公斤级小规模试生产中都获得了性能良好的实用的磷酸亚铁锂正极材料,圆满完成了中试试验。
Olive type LiFePO4 as cathode material of Li-ion batteries has attracted the eyes from both academy and industry world because of its high specific capacity, long cycle life and calendar life, high safety and low cost. For the purpose of application, we try to optimize carbon coating during the synthesis of LiFePO4 using either solid-state or aqueous precipitation method, and discuss the influence on the electrochemical performance of LiFePO4 Besides, we conducted the pilot plant test of the LiFePO4/C composites on a 10 kg scale and mass production on a 100 kg scale, during which we discuss the mechanism of process conditions that influence the physical and electrochemical performance of LiFePO4 cathode material.
     Ferrocene has been chosen as the catalyst of graphitizing material during one step solid state synthesis of LiFePO4. Carbon coating was improved by lowering D/G(disordered/graphene) ratio and increasing sp2/sp3 ratio. As a result, the conductivity and the electrochemical performance was improved. Moreover, the catalization ability of ferrocene seems to be different for different kinds of carbon sources. As for polypropylene, the pyrolyze temperature was high and the pyrolyzed carbon was more easily catalyzed into sp2-coordinated structure, thus the conductivity was improved more significantly.
     It is common to relate ferrocene with Fe2O3 because they can both be reduced into nano Fe particles under reduction atmosphere. And hence we chose the precusor with Fe2O3 to catalyze carbon during carbon coating. Acetylene gas was used as carbon source and a CVD method was proposed to coating LiFePO4 with carbon. After some experiments, we discoverd that each system with Fe2O3 can catalyze acetylene into carbon nano fibers under certain conditions. And the process that carbon fiber grows is competing with that of LiFePO4. As for those precusor system composed of more active components, the growth temperature of carbon nano fibers should be lower. Thus for different kind of precusor, different CVD conditions shoule be adopted. Besides, the growth of carbon fibers comsumed some Fe2O3, which may reduce the content of active material thus the process should be well controled. In addition, we find that amorphous carbon is depositing along with carbon fibers, and forms a continous carbon film outside LiFePO4 particles, while its thickness increases with carbon content. This kind of film has a negative impact on the electrochemical performance by preventing Li ions transfering between electrolyte and cathode particles. Thus proper conditions should be controled to get balance between amouphous carbon and carbon nano-fibers, and increase the electronic conductivity without increasing carbon content, improve the specific capacity and energy density.
     In order to get a thin carbon film coating and good electronic conductivity, we prepared LiFePO4/graphene composites with co-precipitation method. The electrochemical performance of the composites was proved to be influenced by the intrinsic crystallinity and electronic conductivity of coating carbon. The intrinsic crystallinity can be improved by extending the reaction time of co-precipitation, and the electronic conductivity of coating carbon actually depends on the removing of oxygen containing groups, which can be improved by high temperature heat treatment. The specific capacity and rate performance of the composites can be improved by increasing the crystallinity of LiFePO4 and purity of graphene respectively.
     Also, we conducted the pilot plant test of LiFePO4 massive producing, during which we found the parameters that had influences on the morphology and electrochemical performance of LiFePO4. For example, wet ball milling can improve the homogeneity of the precusor, suitable temperature of spray dry can prevent the size of the secondary particles of the precusor from growing up. The pyrolyzing properties of the precusors should also be taken into accout when setting the temperature of the furnace. Expeling of moisture from the furnace in time made a significant improve of the atmosphere in the furnace and promise the purity of LiFePO4. Adding polymer as a second carbon source to improve the reduction atmosphere and a homogeneous carbon coating is also important. Ball mill of the product can improve the processing property of the cathode material. At last, we obtained products with good electrochemical performance on both 10 kg scale and 100 scale mass prodution.
引文
[1]G. cheruvally, Lithium Iron Phosphate:A Promising Cathode-Active Material for Lithium Secondary Batteries, Switzerland; Trans Tech Publications Ltd,2008,1-5.
    [2]B. Scrosati and J. Garche, Lithium batteries:Status, prospects and future. Journal of Power Sources,2010.195(9):p.2419-2430.
    [3]J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials,2010.22(3):p.587-603.
    [4]K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0    [5]T. Ohzuku and A. Ueda, Solid-State Redox Reactions of LiCoO2 (R(3)over-Bar-M) for 4 Volt Secondary Lithium Cells. Journal of the Electrochemical Society,1994.141(11):p. 2972-2977.
    [6]X. Q. Yang, X. Sun, and J. McBreen, New phases and phase transitions observed in Li1-xCoO2 during charge:in situ synchrotron X-ray diffraction studies. Electrochemistry Communications,2000.2(2):p.100-103.
    [7]J. N. Reimers and J. R. Dahn, Electrochemical and Insitu X-Ray-Diffraction Studies of Lithium Intercalation in LixCoO2. Journal of the Electrochemical Society,1992.139(8): p.2091-2097.
    [8]G. G. Amatucci, J. M. Tarascon, and L.C. Klein, CoO2, the end member of the LixCoO2 solid solution. Journal of the Electrochemical Society,1996.143(3):p.1114-1123.
    [9]H. F. Wang, Y. I. Jang, B. Y. Huang, D. R. Sadoway, and Y. T. Chiang, TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. Journal of the Electrochemical Society,1999.146(2):p. 473-480.
    [10]E. Endo, T. Yasuda, A. Kita, K. Yamaura, and K. Sekai, A LiCoO2 cathode modified by plasma chemical vapor deposition for higher voltage performance. Journal of the Electrochemical Society,2000.147(4):p.1291-1294.
    [11]K. Y. Chung, W. S. Yoon, J. McBreen, X.Q. Yang, S. H. Oh, H. C. Shin, W. Ⅱ Cho, and B. W. Cho, Structural studies on the effects of ZrO2 coating on LiCoO2 during cycling using in situ X-ray diffraction technique. Journal of the Electrochemical Society,2006. 153(11):p. A2152-A2157.
    [12]G. G. Amatucci, J. M. Tarascon, and L. C. Klein, Cobalt dissolution in LiCo02-based non-aqueous rechargeable batteries. Solid State Ionics,1996.83(1-2):p.167-173.
    [13]W. B. Luo and J. R. Dahn, Comparative study of Li[Co1-zAlz]O2 prepared by solid-state and co-precipitation methods. Electrochimica Acta,2009.54(20):p.4655-4661.
    [14]Y. I. Jang, B. Y. Huang, H. F. Wang, D. R. Sadoway, G. Ceder, Y. M. Chiang, H. Liu, and H. Tamura, LiAlyCo1-yO2 (R(3)over-bar-m) intercalation cathode for rechargeable lithium batteries. Journal of the Electrochemical Society,1999.146(3):p.862-868.
    [15]C. D. W. Jones, E. Rossen, and J. R. Dahn, Structure and Electrochemistry of LixCryCo1-yO2. Solid State Ionics,1994.68(1-2):p.65-69.
    [16]J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell. Angewandte Chemie International Edition,2001.40(18):p. 3367-3369.
    [17]J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, and B. Park, A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles. Angewandte Chemie International Edition,2003.42(14):p.1618-1621.
    [18]Z. Chen and J. R. Dahn, Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochimica Acta,2004.49(7):p.1079-1090.
    [19]Z. H. Chen and J. R. Dahn, Improving the Capacity Retention of LiCoO2 Cycled to 4.5 V by Heat-Treatment. Electrochemical and Solid-State Letters,2004.7(1):p. Al 1-A14.
    [20]G. Amatucci and J. M. Tarascon, Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries. Journal of the Electrochemical Society,2002.149(12):p. K31-K46.
    [21]J. M. Tarascon, D. Guyomard, and G. L. Baker, An Update of the Li Metal-Free Rechargeable Battery Based on Li1+xMn2O4 Cathodes and Carbon Anodes. Journal of Power Sources,1993.44(1-3):p.689-700.
    [22]J. M. Tarascon and D. Guyomard, The Li1+xMn2O4/C Rocking-Chair System-a Review. Electrochimica Acta,1993.38(9):p.1221-1231.
    [23]Michael M. Thackeray, Yang Shao-Horn, Arthur J. Kahaian, Keith D. Kepler, Eric Skinner, John T. Vaughey, and S.A. Hackney, Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/LixMn2O4 Cells. Electrochemical and Solid-State Letters,1998. 1(1):p.7-9.
    [24]D. H. Jang, Y. J. Shin, and S. M. Oh, Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils. Journal of the Electrochemical Society,1996.143(7):p. 2204-2211.
    [25]Haitao Huang, Colin A. Vincent, and P. G. Bruce, Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity. Journal of the Electrochemical Society,1999.146(10):p. 3649-3654
    [26]Y. J. Shin and A. Manthiram, Factors influencing the capacity fade of spinel lithium manganese oxides. Journal of the Electrochemical Society,2004.151(2):p. A204-A208.
    [27]B. H. Deng, H. Nakamura, and M. Yoshio, Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures. Journal of Power Sources, 2008.180(2):p.864-868.
    [28]D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, and H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries:a review. ElectrochimicaActa,2004.50(2-3):p.247-254.
    [29]J. C. Hunter, Preparation of a New Crystal Form of Manganese-Dioxide-Lambda-MnO2. Journal of Solid State Chemistry,1981.39(2):p.142-147.
    [30]Y. G Xia, Q. Zhang, H. Y. Wang, H. Nakamura, H. Noguchi, and M. Yoshio, Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-yO4+delta at elevated temperature. ElectrochimicaActa,2007.52(14):p.4708-4714.
    [31]F. Jiao, J. Bao, A. H. Hill, and P. G Bruce, Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries. Angewandte Chemie International Edition,2008.47(50):p.9711-9716.
    [32]D. K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R. A. Huggins, and Y. Cui, Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes. Nano Letters,2008.8(11):p.3948-3952.
    [33]Y. L. Ding, J. A. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, and X. B. Zhao, Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries. Advanced Functional Materials,2011.21(2):p. 348-355.
    [34]M. Wakihara, Lithium manganese oxides with spinel structure and their cathode properties for lithium ion battery. Electrochemistry,2005.73(5):p.328-335.
    [35]M. Kunduraci and G. G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+[de=ta]Ni0.5-[delta]04 spinel lithium-ion battery cathodes. Electrochimica Acta,2008.53(12):p.4193-4199.
    [36]Y. Talyosef, B. Markovsky, G. Salitra, D. Aurbach, H. J. Kim, and S. Choi, The study of LiNi(0.5)Mn(1.5)O(4) 5-V cathodes for Li-ion batteries. Journal of Power Sources,2005. 146(1-2):p.664-669.
    [37]S. H. Park, S. W. Oh, S. H. Kang, I. Belharouak, K. Amine, and Y. K. Sun, Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4-[delta] cathodes with wide operation voltage (2.0-5.0 V). Electrochimica Acta,2007.52(25):p.7226-7230.
    [38]K. M. Shaju and P. G. Bruce, Nano-LiNi0.5Mn1.5O4 spinel:a high power electrode for Li-ion batteries. Dalton Transactions,2008(40):p.5471-5475.
    [39]J. R. Dahn, U. von Sacken, and C. A. Michal, Structure and electrochemistry of Li1±yNiO2 and a new Li2Ni02 phase with the Ni(OH)2 structure. Solid State Ionics,1990. 44(1-2):p.87-97.
    [40]A. Rougier, P. Gravereau, and C. Delmas, Optimization of the composition of the Li1-zNi1+zO2 electrode materials:Structural, magnetic, and electrochemical studies. Journal of the Electrochemical Society,1996.143(4):p.1168-1175.
    [41]C. Pouillerie, E. Suard, and C. Delmas, Structural characterization of Li1-z-xNi1+zO2 by neutron diffraction. Journal of Solid State Chemistry,2001.158(2):p.187-197.
    [42]C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, and C. Delmas, Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries. Journal of the Electrochemical Society,2000.147(6):p.2061-2069.
    [43]I. Saadoune and C. Delmas, LiNi1-yCoyO2 positive electrode materials:Relationships between the structure, physical properties and electrochemical behaviour. Journal of Materials Chemistry,1996.6(2):p.193-199.
    [44]A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmasa, Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials. Solid State Ionics,1996.90(1-4):p.83-90.
    [45]E. Zhecheva and R. Stoyanova, Stabilization of the Layered Crystal-Structure of LiNiO2 by Co-Substitution. Solid State Ionics,1993.66(1-2):p.143-149.
    [46]R. V. Chebiam, F. Prado, and A. Manthiram, Structural instability of delithiated Li1-xNi1-yCoyO2 cathodes. Journal of the Electrochemical Society,2001.148(1):p. A49-A53.
    [47]A. R. Naghash and J.Y. Lee, Lithium nickel oxyfluoride (Li1-zNi1+zFyO2-y) and lithium magnesium nickel oxide (Li1-z(MgxNi1-x)(1+z)O2) cathodes for lithium rechargeable batteries Ⅱ. Electrochemical investigations. Electrochimica Acta,2001.46(15):p. 2293-2304.
    [48]S. H. Park, Y.-K. Sun, K. S. Park, K. S. Nahm, Y. S. Lee, and M. Yoshio, Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2.y) material for lithium secondary batteries. Electrochimica Acta,2002.47(11):p.1721-1726.
    [49]S. K. Mishra and G. Ceder, Structural stability of lithium manganese oxides. Physical Review B,1999.59(9):p.6120-6130.
    [50]A. R. Armstrong and P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature,1996.381(6582):p.499-500.
    [51]F. Capitaine, P. Gravereau, and C. Delmas, A new variety of LiMnO2 with a layered structure. Solid State Ionics,1996.89(3-4):p.197-202.
    [52]G. Vitins and K. West, Lithium intercalation into layered LiMnO2. Journal of the Electrochemical Society,1997.144(8):p.2587-2592.
    [53]G. Ceder and A. Van der Ven, Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochimica Acta,1999.45(1-2):p.131-150.
    [54]A. D. Robertson, A. R. Armstrong, and P.G. Bruce, Layered LixMn1-yCoyO2 intercalation electrodes-influence of ion exchange on capacity and structure upon cycling. Chemistry of Materials,2001.13(7):p.2380-2386.
    [55]T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters,2001(7):p.642-643.
    [56]Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0< x< 1). Journal of Power Sources,2003.119:p.644-648.
    [57]B. J. Hwang, Y. W. Tsai, D. Carlier, and G. Ceder, A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 Chemistry of Materials,2003. 15(19):p.3676-3682.
    [58]N. Yabuuchi and T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources,2003.119:p.171-174.
    [59]R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, and S. B. Brummer, Lithium-Dissolved Sulfur Battery with an Organic Electrolyte. Journal of the Electrochemical Society,1979.126(4):p.523-527.
    [60]H. Yamin and E. Peled, Electrochemistry of a Non-Aqueous Lithium Sulfur Cell. Journal of Power Sources,1983.9(3-4):p.281-287.
    [61]X. L. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials,2009.8(6):p.500-506.
    [62]Alexander Kraytsberg and Y. Ein-Eli, Review on Li-air batteries—Opportunities, limitations and perspective. Journal of Power Sources,2011.196:p.886-893.
    [63]A. D e bart, A. J. Paterson, J. Bao, and P. G. Bruce, a-MnO2 Nanowires:A Catalyst for the 02 Electrode in Rechargeable Lithium Batteries. Angewandte Chemie International Edition,2008.47(24):p.4521-4524.
    [64]K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, and J. Yamaki, Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics,1996.92(1-2):p. 1-10.
    [65]A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. Journal of the Electrochemical Society,1997.144(5):p.1609-1613.
    [66]A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society,1997.144(4):p.1188-1194.
    [67]S. Y. CHUNG, J. T. BLOKING, and Y. M. CHIANG, Electronically conductive phospho-olivines as lithium storage electrodes, nature materialsl,2002.1:p.123-128.
    [68]D. Morgan, A. Van der Ven, and G. Ceder, Li Conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) Olivine Materials. Electrochemical and Solid-State Letters,2004.7(2):p. A30-A32.
    [69]M. S. Islam, D. J. Driscoll, C. A. J. Fisher, and P. R. Slater, Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material. Chemistry of Materials,2005.17(20):p.5085-5092.
    [70]S.-i. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada, Experimental visualization of lithium diffusion in LixFePO4. Nature Materials,2008. 7(9):p.707-711.
    [71]J. Li, W. Yao, S. Martin, and D. Vaknin, Lithium ion conductivity in single crystal LiFePO4. Solid State Ionics,2008.179(35-36):p.2016-2019.
    [72]R. Amin, J. Maier, P. Balaya, D. P. Chen, and C. T. Lin, Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics, 2008.179:p.1683-1687.
    [73]T. Maxisch, F. Zhou, and G. Ceder, Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Physical Review B,2006.73.
    [74]C. DELACOURT, P. POIZOT, J. M. TARASCON, and C. MASQUELIER, The existence of a temperature-driven solid solution in LixFePO4 for 0< x< 1. Nature Materials,2005.4:p.254-260.
    [75]B. Ellis, L. K. Perry, D. H. Ryan, and L. F. Nazar, Small Polaron Hopping in LixFePO4 Solid Solutions:Coupled Lithium-Ion and Electron Mobility. Journal of the American Chemical Society,2006.128(35):p.11416-11422.
    [76]V. Srinivasan and J. Newman, Discharge Model for the Lithium Iron-Phosphate Electrode. Journal of the Electrochemical Society,2004.151(10):p. A1517-A1529.
    [77]L. Wang, F. Zhou, Y. S. Meng, and G. Ceder, First-principles study of surface properties of LiFePO4 Surface energy, structure, Wulff shape, and surface redox potential. Physical Review B,2007.76(16):p.165435.
    [78]C. A. J. Fisher and M.S. Islam, Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. Journal of Materials Chemistry,2008.18(11):p. 1209-1215.
    [79]G. y. Chen, X. y. Song, and a.T. J. Richardson, Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition. Electrochemical and Solid-State Letters.,2006. 9(6):p. A295-A298.
    [80]A. S. Andersson and J. O. Thomas, The source of first-cycle capacity loss in LiFePO4 Journal of Power Sources,2001.97-8:p.498-502.
    [81]C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Materials, 2008.7(8):p.665-671.
    [82]C. V. Ramana, A. Mauger, F. Gendron, C. M. Julien, and K. Zaghib, Study of the Li-insertion/extraction process in LiFePO4/FePO4. Journal of Power Sources,2009. 187(2):p.555-564.
    [83]S. Franger, F. Le Cras, C. Bourbon, and H. Rouault, Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. Journal of Power Sources,2003.119:p.252-257.
    [84]A. Yamada, S. C. Chung, and K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society,2001.148(3):p. A224-A229.
    [85]D. Wang, X. Wu, Z. Wang, and L. Chen, Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources,2005.140(1):p.125-128.
    [86]M. Koltypin, D. Aurbach, L. Nazar, and B. Ellis, More on the performance of LiFePO4 electrodes--The effect of synthesis route, solution composition, aging, and temperature. Journal of Power Sources,2007.174(2):p.1241-1250.
    [87]N. J. Yun, H. W. Ha, K. H. Jeong, H. Y. Park, and K. Kim, Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. Journal of Power Sources, 2006.160(2):p.1361-1368.
    [88]M. Takahashi, S. Tobishima, K. Takei, and Y. Sakurai, Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. Journal of Power Sources,2001. 97-98:p.508-511.
    [89]C. M. Julien, A. Mauger, A. Ait-Salah, M. Massot, and F. G. A. K. Zaghib, Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application Ionics,2007.13(6):p.395-411.
    [90]S. J. Kwon, C. W. Kim, W. T. Jeong, and K. S. Lee, Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying. Journal of Power Sources,2004.137(1):p.93-99.
    [91]N. Kosova and E. Devyatkina, On mechanochemical preparation of materials with enhanced characteristics for lithium batteries. Solid State Ionics,2004.172(1-4):p. 181-184.
    [92]S. Franger, C. Benoit, C. Bourbon, and F. Le Cras, Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries. Journal of Physics and Chemistry of Solids,2006.67(5-6):p.1338-1342.
    [93]C. W. Kim, M. H. Lee, W. T. Jeong, and K. S. Lee, Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(Ⅲ) raw material. Journal of Power Sources,2005.146(1-2):p.534-538.
    [94]A. Yamada, M. Hosoya, S. C. Chung, Y. Kudo, K. Hinokuma, K.Y. Liu, and Y. Nishi, Olivine-type cathodes achievements and problems. Journal of Power Sources,2003.119: p.232-238.
    [95]H. C. Shin, W. I. Cho, and H. Jang, Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochimica Acta, 2006.52(4):p.1472-1476.
    [96]J. K. Kim, G. Cheruvally, J. H. Ahn, G. C. Hwang, and J. B. Choi, Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process. Journal of Physics and Chemistry of Solids,2008.69(10):p.2371-2377.
    [97]W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj, and J. Molenda, Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries. Journal of Power Sources,2007. 173(2):p.700-706.
    [98]C. H. Mi, X. G. Zhang, and H. L. Li, Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FeP04 in Li2SO4 aqueous electrolyte. Journal of Electroanalytical Chemistry, 2007.602(2):p.245-254.
    [99]C. Lai, Q. Xu, H. Ge, G. Zhou, and J. Xie, Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics, 2008.179(27-32):p.1736-1739.
    [100]J. Barker, M. Y. Saidi, and J. L. Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochemical and Solid State Letters,2003. 6(3):p.A53-A55.
    [101]N. Ravet, M. Gauthier, K. Zaghib, J. B. Goodenough, A. Mauger, F. Gendron, and C. M. Julien, Mechanism of the Fe31 reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials,2007.19(10):p.2595-2602.
    [102]B. Q. Zhu, X. H. Li, Z.X. Wang, and H. J. Guo, Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Materials Chemistry and Physics,2006. 98(2-3):p.373-376.
    [103]C. H. Mi, G. S. Cao, and X. B. Zhao, Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials Letters,2005.59(1):p.127-130.
    [104]L. N. Wang, X. C. Zhan, Z. G. Zhang, and K. L. Zhang, A soft chemistry synthesis routine for LiFePO4-C using a novel carbon source. Journal of Alloys and Compounds, 2008.456(1-2):p.461-465.
    [105]M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, and M. Suhara, Synthesis of LiFePO4 cathode material by microwave processing. Journal of Power Sources,2003.119:p. 258-261.
    [106]M. S. Song, Y. M. Kang, J. H. Kim, H. S. Kim, D. Y. Kim, H. S. Kwon, and J. Y. Lee, Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating. Journal of Power Sources,2007.166(1):p. 260-265.
    [107]K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, and H. G. Kim, Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry Communications, 2003.5(10):p.839-842.
    [108]L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. ElectrochimicaActa,2007.52(24):p.6778-6783.
    [109]S. Beninati, L. Damen, and M. Mastragostino, MW-assisted synthesis of LiFePO4 for high power applications. Journal of Power Sources,2008.180(2):p.875-879.
    [110]A. V. Murugan, T. Muraliganth, and A. Manthiram, Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochemistry Communications,2008.10(6):p. 903-906.
    [111]S. Yang, P. Y. Zavvalij, and M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications,2001.3:p.505-508.
    [112]S. Yang, Y. Song, P. Y. Zavvalij, and M. S. Whittingham, Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochemistry Communications, 2002.4:p.239-244.
    [113]J. Chen and M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate. Electrochemistry Communications,2006.8(5):p.855-858.
    [114]J. Chen, S. Wang, and M. S. Whittingham, Hydrothermal synthesis of cathode materials. Journal of Power Sources,2007.174(2):p.442-448.
    [115]B. Jin and H.-B. Gu, Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics,2008.178(37-38):p.1907-1914.
    [116]J. Chen, M. J. Vacchio, S. Wang, N. Chernova, P. Y. Zavalij, and M. S. Whittingham, The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics,2008.178(31-32):p.1676-1693.
    [117]J. Lee and A. S. Teja, Characteristics of lithium iron phosphate (LiFePO4)particles synthesized in subcritical and supercritical water. Journal of Supercritical Fluids,2005. 35(1):p.83-90.
    [118]J. Lee and A. S. Teja, Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Materials Letters,2006.60(17-18):p.2105-2109.
    [119]C. B. Xu, J. Lee, and A. S. Teja, Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water. Journal of Supercritical Fluids, 2008.44(1):p.92-97.
    [120]L. L. Hench and J. K. West, The Sol-Gel Process. Chemical Reviews,1990.90(1):p. 33-72.
    [121]N. Iltchev, Y. K. Chen, S. Okada, and J. Yamaki, LiFePO4 storage at room and elevated temperatures. Journal of Power Sources,2003.119:p.749-754.
    [122]A. A. Salah, A. Mauger, C. M. Julien, and F. Gendron, Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006.129(1-3):p.232-244.
    [123]K. F. Hsu, S.Y. Tsay, and B. J. Hwang, Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods. Journal of Power Sources,2005.146(1-2):p.529-533.
    [124]R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik, and J. Jamnik, Porous olivine composites synthesized by sol-gel technique. Journal of Power Sources,2006.153(2):p.274-280.
    [125]J. K. Kim, J. W. Choi, G. S. Chauhan, J. H. Ahn, G. C. Hwang, J. B. Choi, and H. J. Ahn, Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. ElectrochimicaActa,2008.53(28):p.8258-8264.
    [126]J. Yang and J. J. Xu, Nonaqueous Sol-Gel Synthesis of High-Performance LiFePO4. Electrochemical and Solid-State Letters,2004.7(12):p. A515-A518.
    [127]Y. Sundarayya, K. C. Kumara Swamy, and C. S. Sunandana, Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4. Materials Research Bulletin,2007. 42(11):p.1942-1948.
    [128]D. Choi and P. N. Kumta, Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. Journal of Power Sources,2007.163(2):p.1064-1069.
    [129]R. Dominko, M. Bele, J. M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon, and J. Jamnik, Wired porous cathode materials:A novel concept for synthesis of LiFePO4. Chemistry of Materials,2007.19(12):p.2960-2969.
    [130]G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, and A. Wohlfahrt-Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources,2003.119:p.247-251.
    [131]Ch. Delacourt, Ph. Poizot, and C. Masquelier, Crystalline nanometric LiFePO4. WO/2007/000251.
    [132]J. C. Zheng, X. H. Li, Z. X. Wang, H. J. Guo, and S. Y. Zhou, LiFePO4 with enhanced performance synthesized by a novel synthetic route. Journal of Power Sources,2008. 184(2):p.574-577.
    [133]T. H. Cho and H. T. Chung, Synthesis of olivine-type LiFePO4 by emulsion-drying method. Journal of Power Sources,2004.133(2):p.272-276.
    [134]S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, and N. Kumagai, Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta,2004.49(24):p.4213-4222.
    [135]M. R. Yang, T. H. Teng, and S. H. Wu, LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Journal of Power Sources,2006.159(1):p.307-311.
    [136]M. Konarova and 1. Taniguchi, Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Materials Research Bulletin,2008.43(12):p.3305-3317.
    [137]S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, and H. K. Liu, Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Letters,2004.58(11):p.1788-1791.
    [138]T. H. Teng, M. R. Yang, S. H. Wu, and Y. P. Chiang, Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Solid State Communications,2007.142(7):p.389-392.
    [139]I. Taniguchi, N. Fukuda, and M. Konarova, Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method. Powder Technology,2008.181(3):p.228-236.
    [140]R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, and J. Jamnik, The role of carbon black distribution in cathodes for Li ion batteries. Journal of Power Sources, 2003.119:p.770-773.
    [141]F. Yu, J. J. Zhang, Y. F. Yang, and G. Z. Song, Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method. Journal of Power Sources,2009.189(1):p.794-797.
    [142]C. Delacourt, P. Poizot, S. Levasseur, and C. Masquelier, Size effects on carbon-free LiFePO4 powders. Electrochemical and Solid State Letters,2006.9(7):p. A352-A355.
    [143]D. Zane, M. Carewska, S. Scaccia, F. Cardellini, and P. P. Prosini, Factor affecting rate performance of undoped LiFePO4. Electrochimica Acta,2004.49(25):p.4259-4271.
    [144]Z. Chen and J. R. Dahn, Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density. Journal of the Electrochemical Society,2002.149(9):p.A1184-A1189.
    [145]W.-J. Zhang, Comparison of the Rate Capacities of LiFePO4 Cathode Materials. Journal of the Electrochemical Society,2010.157(10):p. A1040-A1046.
    [146]K. Zaghib, J. B. Goodenough, A. Mauger, and C. Julien, Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries. Journal of Power Sources,2009.194(2):p. 1021-1023.
    [147]B. Kang and G. Ceder, Battery materials for ultrafast charging and discharging. Nature, 2009.458(7235):p.190-193.
    [148]A. Awarke, S. Lauer, M. Wittier, and S. Pischinger, Quantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach. Computational Materials Science,2011.50(3):p.871-879.
    [149]S. W. Oh, S. T. Myung, S. M. Oh, C. S. Yoon, K. Amine, and Y. K. Sun, Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta,2010.55(3):p. 1193-1199.
    [150]S. T. Yang, N. H. Zhao, H. Y. Dong, J. X. Yang, and H. Y. Hue, Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon. Electrochimica Acta,2005.51(1):p.166-171.
    [151]L. Gaines and R. Cuenca, Cost of lithium-ion batteries for vehicles Report #ANL/ESD-42,Argonne National Laboratory, May 2000.
    [152]W. F. Howard and R. M. Spotnitz, Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of Power Sources,2007.165(2): p.887-891.
    [153]Z. R. Chang, H. J. Lv, H. W. Tang, H. J. Li, X.Z. Yuan, and H. J. Wang, Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries. Electrochimica Acta,2009.54(20):p.4595-4599.
    [154]J. M. Chen, C. H. Hsu, Y. R. Lin, M. H. Hsiao, and G. T. K. Fey, High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. Journal of Power Sources,2008.184(2):p.498-502.
    [155]J. F. Ni, H. H. Zhou, J. T. Chen, and X. X. Zhang, Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles. Materials Letters,2007. 61(4-5):p.1260-1264.
    [156]L.Q. Sun, R. H. Cui, A. F. Jalbout, M. J. Li, X. M. Pan, R. S. Wang, and H. M. Xie, LiFePO4 as an optimum power cell material. Journal of Power Sources,2009.189(1):p. 522-526.
    [157]M. E. Zhong and Z. T. Zhou, Preparation of high tap-density LiFePO4/C composite cathode materials by carbothermal reduction method using two kinds of Fe3+precursors. Materials Chemistry and Physics,2010.119(3):p.428-431.
    [158]S. B. Peterson, J. Apt, and J. F. Whitacre, Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. Journal of Power Sources,2010. 195(8):p.2385-2392.
    [159]J. Shim and K. A. Striebel, Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. Journal of Power Sources,2003.119:p.955-958.
    [160]K. Amine, J. Liu, and I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochemistry Communications,2005.7(7):p. 669-673.
    [161]K. Striebel, J. Shim, A. Sierra, H. Yang, X.Y. Song, R. Kostecki, and K. McCarthy, The development of low cost LiFePO4-based high power lithium-ion batteries. Journal of Power Sources,2005.146(1-2):p.33-38.
    [162]M. Dubarry and B. Y. Liaw, Identify capacity fading mechanism in a commercial LiFePO4 cell. Journal of Power Sources,2009.194(1):p.541-549.
    [163]S. Busquet, J. Torres, M. Dubarry, M. Ewan, B. Y. Liaw, L. Cutshaw, and R. Rocheleau, Comparison of Photovoltaic Module Performance at Pu'u Wa'a Wa'a.35th leee Photovoltaic Specialists Conference,2010:p.-3760.
    [164]H. F. Jin, Z. Liu, Y. M. Teng, J. K. Gao, and Y. Zhao, A comparison study of capacity degradation mechanism of LiFePO4-based lithium ion cells. Journal of Power Sources, 2009.189(1):p.445-448.
    [165]K. Zaghib, A. A. Salah, N. Ravet, A. Mauger, F. Gendron, and C. M. Julien, Structural, magnetic and electrochemical properties of lithium iron orthosilicate. Journal of Power Sources,2006.160(2):p.1381-1386.
    [166]Y. Yang, X. Z. Liao, Z. F. Ma, B. F. Wang, L. He, and Y. S. He, Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55 degrees C. Electrochemistry Communications,2009.11(6):p.1277-1280.
    [167]D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva, Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources,2007.165(2): p.491-499.
    [168]D. Howell, DOE Energy Storage Research and Development, Annual Progress Report, 2008.
    [169]X. Z. Liao, Z. F. Ma, Q. Gong, Y. S. He, L. Pei, and L. J. Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochemistry Communications,2008.10(5):p.691-694.
    [170]S. S. Zhang, K. Xu, and T.R. Jow, An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. Journal of Power Sources,2006.159(1):p. 702-707.
    [171]H. S. Kim, B. W. Cho, and W.I. Cho, Cycling performance of LiFePO4 cathode material for lithium secondary batteries. Journal of Power Sources,2004.132(1-2):p.235-239.
    [172]M. Takahashi, S. Tobishima, K. Takei, and Y. Sakurai, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics,2002.148(3-4): p.283-289.
    [173]S. H. Wu, K. M. Hsiao, and W. R. Liu, The preparation and characterization of olivine LiFePO4 by a solution method. Journal of Power Sources,2005.146(1-2):p.550-554.
    [174]C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati, A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochemical and Solid State Letters,2005. 8(9):p. A484-A487.
    [175]D. H. Kim and J. Kim, Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochemical and Solid State Letters,2006.9(9):p. A439-A442.
    [176]G. X. Wang, S. Needham, J. Yao, J. Z. Wang, R. S. Liu, and H. K. Liu, A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. Journal of Power Sources,2006.159(1):p.282-286.
    [177]M. R. Roberts, G. Vitins, and J.R. Owen, High-throughput studies of Li1-xMgx/2FePO4 and LiFe1-yMgyPO4 and the effect of carbon coating. Journal of Power Sources,2008. 179(2):p.754-762.
    [178]D. Wang, H. Li, H. Yuan, M. Zheng, C. Bai, L. Chen, and X. Pei, Humanin delays apoptosis in K562 cells by downregulation of P38 MAP kinase. Apoptosis,2005.10(5): p.963-971.
    [179]N. Ravet, A. Abouimrane, and M. Armand, From our readers-On the electronic conductivity of phosphoolivines as lithium storage electrodes. Nature Materials,2003. 2(11):p.702-702.
    [180]C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche, and C. Masquelier, Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites. Solid State Ionics,2006.177(3-4):p.333-341.
    [181]P. S. Herle, B. Ellis, N. Coombs, and L. F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials,2004.3(3):p.147-152.
    [182]H. Huang, S. C. Yin, and L. F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters,2001.4(10):p. A170-A172.
    [183]L. Edman and M. M. Doeff, Thermal analysis of a solid polymer electrolyte and a subsequent electrochemical investigation of a lithium polymer battery. Solid State Ionics, 2003.158(1-2):p.177-186.
    [184]Y. Kadoma, J. M. Kim, K. Abiko, K. Ohtsuki, K. Ui, and N. Kumagai, Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochimica Acta,2010.55(3):p.1034-1041.
    [185]W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society,1958.80(6):p.1339-1339.
    [186]M. M. Doeff, Y. Q. Hu, F. McLarnon, and R. Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochemical and Solid-State Letters,2003.6(10):p. A207-A209.
    [187]S. R. Dhakate, R. B. Mathur, and O. P. Bahl, Catalytic effect of iron oxide on carbon/carbon composites during graphitization. Carbon,1997.35(12):p.1753-1756.
    [188]Y. A. Kim, T. Matusita, T. Hayashi, M. Endo, and M. S. Dresselhaus, Topological changes of vapor grown carbon fibers during heat treatment. Carbon,2001.39(11):p. 1747-1752.
    [189]Y.-G. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, and N. Fukuda, Modification of synthetic mesophase pitch with iron oxide, Fe2O3. Carbon,2001.39(11): p.1627-1634.
    [190]C. Emmenegger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel, and L. Schlapbach, Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon,2003.41(3):p.539-547.
    [191]N.I. Maksimova, O. P. Krivoruchko, G. Mestl, V.I. Zaikovskii, A. L. Chuvilin, A. N. Salanov, and E. B. Burgina, Catalytic synthesis of carbon nanostructures from polymer precursors. Journal of Molecular Catalysis a-Chemical,2000.158(1):p.301-307.
    [192]S. R. Mukai, T. Masuda, Y. Matsuzawa, and K. Hashimoto, The influence of catalyst particle size distribution on the yield of vapor-grown carbon fibers produced using the liquid pulse injection technique. Chemical Engineering Science, 1998.33(3):p.439-448.
    [193]K. Kuwana and K. Saito, Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes Proceedings of the Combustion Institute,2007.31:p.1857-1864.
    [194]R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, and J. Chen, Continuous production of aligned carbon nanotubes:a step closer to commercial realization. Chemical Physics Letters,1999.303(5-6):p.467-474.
    [195]M. Bystrzejewski, H. W. Hubers, A. Huczko, T. Gemming, B. Buchner, and M. H. Rummeli, Bulk synthesis of carbon nanocapsules and nanotubes containing magnetic nanoparticles via low energy laser pyrolysis of ferrocene. Materials Letters,2009. 63(21):p.1767-1770.
    [196]M. M. Doeff, J. D. Wilcox, R. Kostecki, and G. Lau, Optimization of carbon coatings on LiFePO4. Journal of Power Sources,2006.163:p.180-184.
    [197]F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite. Journal of Chemical Physics, 1970.53(3):p.1126-&.
    [198]A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B,2000.61(20):p.14095-14107.
    [199]R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kotz, Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films,2001.396(1-2):p. 36-43.
    [200]K. E. Lewis and G. P. Smith, Bond-Dissociation Energies in Ferrocene. Journal of the American Chemical Society,1984.106(16):p.4650-4651.
    [201]L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, Nano-LiFePO4/MWCNT cathode materials prepared by room-temperature solid-state reaction and microwave heating. Journal of the Electrochemical Society,2007.154(11):p. A1015-A1019.
    [202]X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications,2007.9(4):p.663-666.
    [203]T. Muraliganth, A. V. Murugan, and A. Manthiram, Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. Journal of Materials Chemistry,2008.18(46):p.5661-5668.
    [204]Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery. Journal of Power Sources,2008.184(2):p.522-526.
    [205]B. Jin, H. B. Gu, W. X. Zhang, K. H. Park, and G. P. Sun, Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries. Journal of Solid State Electrochemistry,2008.12(12):p.1549-1554.
    [206]B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochemistry Communications,2008.10(10):p.1537-1540.
    [207]J. Xu, G. Chen, and X. Li, Electrochemical performance of LiFePO4 cathode material coated with multi-wall carbon nanotubes. Materials Chemistry and Physics,2009. 118(1):p.9-11.
    [208]M. S. Bhuvaneswari, N. N. Bramnik, D. Ensling, H. Ehrenberg, and W. Jaegermann, Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries. Journal of Power Sources,2008.180(1):p.553-560.
    [209]M. Gaberscek, R. Dominko, and J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochemistry Communications,2007.9(12):p.2778-2783.
    [210]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films. Science,2004.306(5296):p.666-669.
    [211]A. Lerf, H. Y. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited. Journal of Physical Chemistry B,1998.102(23):p.4477-4482.
    [212]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials. Nature,2006.442(7100):p.282-286.
    [213]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud' homme, R. Car, D. A. Saville, and I. A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 2006.110(17):p.8535-8539.
    [214]米常焕,橄榄石型LiFePO4/C复合正极材料研究,[博士学位论文],杭州,浙江大学材料系2005.
    [215]庄大高,锂离子电池正极材料LiFePO4的合成及电化学性能研究,[博士学位论文],杭州,浙江大学材料系2006
    [216]陈学军,磷酸铁锂正极材料的掺杂、合金化和碳包覆优化,[硕士学位论文],杭州,浙江大学材料系2007
    [217]周鑫,锂离子电池正极材料LiFePO4的制备及掺杂改性研究,[硕士学位论文],杭州,浙江大学材料系2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700