碳热还原法磷酸铁锂的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在已知的锂插层化合物中,橄榄石型LiFePO_4因其低成本、对环境友好、长循环寿命、良好的热稳定性和高的安全性能等优点而被认为是锂离子动力电池的最佳阴极材料之一。然而,有三个方面的缺陷阻碍了LiFePO_4的商业化进程。其一是它的电子导电率和离子传导率较低,导致其初始放电比容量较低、倍率性能较差;其二是其Fe~(2+)易被氧化,造成其合成困难,且在合成过程中常采用价格较昂贵的Fe~(2+)化合物为铁源,增加了材料的制备成本;其三是它的振实密度较低,导致其体积比能量较低。目前,在改善LiFePO_4的电子导电率和离子传导率方面已经取得了较大的进展,但是其制备成本较高和振实密度较低的问题仍然有待解决。本文采用价廉的Fe~(3+)化合物为铁源,通过操作步骤简单、易于进行工业化生产的固相-碳热还原法来制备LiFePO_4/C复合材料。并利用X-射线衍射(XRD)、拉曼光谱、X-光电子能谱(XPS)、扫描电镜(SEM)、激光粒度分析、恒流充放电、循环伏安(CV)和交流阻抗谱(EIS)等分析测试技术对LiFePO_4/C复合材料的结构和电化学性能进行了系统的研究,还测试了所制复合材料的振实密度。主要研究工作的结果结论如下:
     1)为了降低LiFePO_4材料的制备成本,本文选择了价格低廉的Fe~(3+)化合物为铁源、通过固相-碳热还原法来合成LiFePO_4。研究了三种碳热还原反应体系(即Fe_2O_3+蔗糖、Fe_3O_4+蔗糖以及柠檬酸铁+Fe_2O_3三种碳热还原反应体系)的热反应行为,并考察了三价铁源的种类对所制复合材料结构与性能的影响。热重-差热测试结果表明,柠檬酸铁(FeC_6H_5O_7·5H_2O)、Fe_2O_3和Fe_3O_4被还原并形成LiFePO_4晶体的温度依次升高,分别为470℃、505℃和525℃。SEM和恒流充放电测试结果发现,由Fe_2O_3和柠檬酸铁的混合物为铁源所制复合材料的晶粒尺寸最小,电化学性能最好。
     2)研究了烧结温度(600~800℃)、烧结时间(8~36h)及柠檬酸铁的添加量(10wt.%~ 30wt.%)等制备条件对以Fe_2O_3和柠檬酸铁的混合物为铁源、通过固相-碳热还原法所制LiFePO_4/C复合材料结构与电化学性能的影响。实验结果表明,所制材料在较宽的颗粒尺寸范围内呈多峰分布,通过改变合成条件即可提高材料的振实密度和改善其电化学性能。升高烧结高温和延长烧结时间可使LiFePO_4的晶体生长完好,结晶度提高,振实密度增大,但温度过高却会导致LiFePO_4颗粒长大,电性能变差。随着柠檬酸铁添加量的增加LiFePO_4/C材料的振实密度和放电比容量呈先增加、达到最大值后又降低的趋势。在本文的实验条件下,以700℃、24h和20wt.%柠檬酸铁添加量的制备条件可使所制LiFePO_4/C材料具有最高的放电比容量和较高的振实密度。在此最佳制备条件下得到的LiFePO_4/C材料的振实密度为1.40g·cm~(-3),以0.1C、0.2C、0.5C和1.0C倍率充放电时,其首次放电比容量分别为135 mAh·g~(-1)、129 mAh·g~(-1)、126 mAh·g~(-1)和110 mAh·g~(-1)。
     3)为了改善上述高密度LiFePO_4/C复合材料的电导率,本文还采用金属离子对其进行锂位掺杂改性。研究结果表明,采用金属离子掺杂的方法不会改变复合材料的橄榄石型晶体结构,但可以降低其颗粒尺寸、改善其电导率、提高其振实密度,从而改善其电化学性能。在锂位掺杂磷钨酸[H_3PO_4·12(WO_3)·H_2O]所制Li_(0.99)W_(0.01)FePO_4/C复合材料具有最小的晶粒尺寸、最佳的电性能和较高的振实密度。其平均颗粒尺寸(d_(0.5))从掺杂前的0.31nm降低至0.17nm;振实密度从掺杂前的1.40g·cm~(-3)提高至1.50g·cm~(-3);当放电倍率分别为0.2C、0.5 C、1.0 C和1.5 C时,其首次放电比容量分别为146 mAh·g~(-1)、133 mAh·g~(-1)、130 mAh·g~(-1)和125 mAh·g~(-1)。
     4)考察了新型无机三价铁化合物——FePO_4·xH_2O的结构形态对固相-碳热还原法所制LiFePO_4/C复合材料结构和性能的影响,发现以三斜结构无水FePO_4为无机铁源所制LiFePO_4/C复合材料的电化学性能优于以不完善结晶体结构水合FePO_4·2H_2O为无机铁源所制的复合材料。并对以三斜结构的无水FePO_4为无机铁源制备LiFePO_4/C复合材料的合成工艺条件进行了探索。研究结果表明,在650℃、24h和35wt.%柠檬酸铁添加量的条件下所制的LiFePO_4/C材料具有最佳的电化学性能,以0.2C、0.5 C、1.0C倍率进行充放电时,其首次放电比容量分别为138 mAh·g~(-1)、128 mAh·g~(-1)和116 mAh·g~(-1);以1.0 C充放电倍率充放电循环25次后其容量保持率达99.1 %。
Among the well-known Li-insertion compounds, the olivine-type LiFePO_4 is considered as one of the most promising cathode materials for rechargeable Li-ion batteries because of its low cost, low toxicity, better thermal stability and excellent safety. However, there are three drawbacks preventing LiFePO_4 to be put into commercially used. One is its low electronic and ionic conductivity, which leads to the poor rate capability. The second problem is that the synthesis of LiFePO_4 is not easy because of the +2 oxidation state of iron in the compound, and the production cost is high as expensive divalent iron precursor compounds have to be used as the starting material to synthesize LiFePO_4. Another disadvantage is the low tap-density, which results in a low volumetric specific capacity. Tremendous efforts have so far been devoted to improve the electronic conductivity of LiFePO_4 and several effective ways have been proposed. Nevertheless, the problem concerning the high production cost and low tap-density of this material remains to be solved. In this paper, LiFePO_4/C composite cathode materials have been synthesized by solid state– carbothermal reduction method using cheap Fe~(3+) compounds as iron precursors. The micro-structures, morphologies and electrochemical performances of these composites were investigated by XRD, SEM, X-ray photoelectron spectrometry (XPS), laser diffraction and scattering measurements, Raman spectra, galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). The tap-density of LiFePO_4/C composite materials was also tested. The main results and conclusions were listed as following:
     1) In order to reduce the cost of LiFePO_4, carbothermal reduction approach was employed to synthesize the LiFePO_4 by using cheap Fe~(3+) compounds as iron precursors. The thermal reaction behavior of the starting materials composed by various Fe~(3+) compounds was studied, and the effect of different Fe~(3+) sources on the structure and properties of LiFePO_4/C has been discussed in detail. TG-DSC results showed that the temperature related to the formation of LiFePO_4 crystal by citrate ferric, Fe_2O_3 and Fe3O_4 was 470℃, 505℃and 525℃, respectively. SEM and galvanostatic charge-discharge results indicated that the material synthesized with Fe_2O_3 and citrate ferric as iron precursors had small particle size and superior electrochemical properties.
     2) LiFePO_4/C composite was synthesized by solid state– carbothermal reduction method using Fe_2O_3 and citrate ferric as iron precursors. The effects of synthetic conditions such as sintering temperature, sintering time, and citrate ferric additive amount on the physico-electrochemical properties of LiFePO_4/C have been studied. It was found that the LiFePO_4/C composites showed multi-peaks distribution in broad particle size range, and the tap-density and electrochemical performance of LiFePO_4 could be improved by varying the synthetic processes. Increasing the sintering temperature and extending sintering time resulted in higher crystallinity and tap-density, but in a larger particle size. In the range of 600~800℃, 700℃is the optimum synthetic temperature for the LiFePO_4/C with small particle sizes, high tap-density and perfect crystal. Increasing citrate ferric amount from 10wt.% to 30wt.%, the tap-density and electrochemical properties of LiFePO_4/C firstly enhance then decrease. In the present case, LiFePO_4/C synthesized at 700℃for 24h with 20wt.% citrate ferric shows best electrochemical performances and high tap-density. Under this condition, the obtained LiFePO_4/C has a tap-density of 1.40g·cm~(-3) and shows an initial discharge capacity of 135 mAh·g~(-1), 129 mAh·g~(-1), 126 mAh·g~(-1) and 110 mAh·g~(-1) at 0.1C, 0.2C, 0.5C and 1.0C, respectively.
     3) The influences of metal ion doping modification on the structure and electrochemical properties of Li-site doped Li1-xMxFePO_4/C composite were investigated. It was found that the metal ion doping method could greatly improve the tap-density and electronic conductivity, but decrease the particle size. Among the Li-site doped composites, the Li0.99W0.01FePO_4/C synthesized by phosphotungstic acid [H_3PO_4·12(WO_3)·H_2O] shows the best electrochemical performances. The average particle size and tap-density of Li_(0.99)W_(0.01)FePO_4/C and undoped LiFePO_4/C are 0.17nm and 1.50g·cm~(-3), and 0.31nm and 1.40g·cm~(-3), respectively. At current densities of 0.2C, 0.5C, 1.0C and 1.5C, the Li0.99W0.01FePO_4/C composite materials have initial discharge specific capacity of 146 mAh·g~(-1), 133 mAh·g~(-1), 130 mAh·g~(-1) and 125 mAh·g~(-1), respectively.
     4) The effects of FePO_4·xH_2O phase structure on the structures and properties of LiFePO_4/C synthesized by solid state– carbothermal reduction method have been analyzed. It was found that the material synthesized with trigonal anhydrous FePO_4 as inorganic Fe~(3+) precursor had superior electrochemical properties to that prepared with incomplete crystal hydrous FePO_4·2H_2O as inorganic Fe~(3+) precursor. The synthetic processes of LiFePO_4/C using trigonal anhydrous FePO_4 as inorganic Fe~(3+) precursor was explored. The results show that LiFePO_4/C composite prepared at 650℃for 24h with 35wt.% citrate ferric exhibits good electrochemical performances. At current densities of 0.2C, 0.5C and 1.0C, the composite materials have initial discharge specific capacity of 138 mAh·g~(-1), 128 mAh·g~(-1) and 116 mAh·g~(-1), respectively. After 25 cycles, the composite cathode retains 99.1 % of the first cycle discharge capacity at 1.0C.
引文
[1]查全性.化学电源选论[M].湖北:武汉大学出版社, 2005: 4-8
    [2] Liang Y.Y., Bao S.J., Li H.L. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries [J]. Journal of Solid State Chemistry, 2006, 179(7): 2133-2140
    [3] Ting-kuo Fey G., Lin Y.Y., Prem Kumar T. Enhanced cyclability and thermal stability ofLiCoO2 coated with cobalt oxides [J]. Surface & Coating Technology, 2005, 191(1): 68-75
    [4]郭炳坤,李新海,杨松青.化学电源——电池原理及制造技术[M].湖南:中南工业大学出版社, 2000: 32
    [5]王新喜,宫志刚,尹燕华,等.锂离子电池的研究进展[J].舰船防化, 2005, (1): 15-19
    [6]杨捷.锂离子电池的特点与使用[J].现代电视技术, 2003, (5): 93-94
    [7]施思齐,欧阳楚英,王兆翔.锂离子电池中的物理问题及其研究进展[J].物理, 2004, 33(3): 182-185
    [8]张晓雨.锂离子电池简介[J].北京大学学报(自然科学版), 2006, 42(S1): 96
    [9] Hu S.K., Cheng G.H., Cheng M.Y., et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries [J]. Journal of Power Sources, 2009, 188(2): 564-569
    [10]温兆银.锂二次电池的现状与展望[J].新材料产业, 2003, (10): 45-49
    [11]戴永年,杨斌,姚耀春,等.锂离子电池的发展状况[J].电池, 2005, 35(3): 193-195
    [12]何祚庥.我国锂离子蓄电池的研究和开发已获得重要进展[J].中国自行车, 2006, 8: 25-29
    [13]张世超.锂离子电池产业现状与研究开发热点[J].新材料产业, 2004, (1): 46-52
    [14]蔡年生.锂离子电池用于海军装备的研究[J].舰电技术, 2006, (3): 50-53
    [15]赵新兵,谢健.新型锂离子电池正极材料LiFePO4的研究进展[J].机械工程学报, 2007, 43(1): 69-76
    [16]吴宇平,方世璧,刘昌炎等.锂离子电池氧化钴锂的进展[J].电源技术, 1997, 21(5): 208-209
    [17] MacNeil D.D., Lu Z.H., Chen Z.H., et al. A comparison of the electrode/ electrolyte reaction at elevated temperatures for various Li-ion battery cathodes[J]. Journal of Power Sources, 2002, 108(1-2): 8-14
    [18] Jiang J., Dahn J.R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes [J]. Electrochemistry Communications, 2004, 6(1): 39-43
    [19]唐琛明,沈晓峰,张校东.锂离子电池的进展及其在电动工具上应用前景[J].电动工具, 2007, 3: 1-4
    [20] Li G., Yang Z., Yang W. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries [J]. Journal of PowerSources, 2008, 183(2): 741-748
    [21] Huang D. Solid solutions: New cathodes for next-generation lithium-ion batteries [J]. Advanced Battery Technology, 1998, (11): 23-24
    [22] Zhecheva E., Stoyanora R., Gorova M., et al. Lithium-cobalt citrate precursor in the preparation electrode materials [J]. Chemistry of Materials, 1996, 8(7): 1429-1435
    [23] Oh S.H., Lee S.M., Cho W.I., et al. Electrochemical characterization of zirconium-doped LiNi 0.8C o 0.2 O2 cathode materials and investigations on deterioration mechanism [J]. Electrochimica Acta, 2006, 51(18): 3637-3644
    [24] Julien C., Camacho-Lopez M.A., Mohan T., et al. Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries [J]. Solid State Ionics, 2000, 135(1-4): 241-248
    [25] Gopukumar S., Jeong Y., Kim K.B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells [J]. Solid State Ionics, 2003, 159(3-4): 223-232
    [26] Ganesan M., Sundararajan S., Dhananjeyan M.V.T., et al. Synthesis and characterization of tetravalent titanium (Ti4+) substituted LiCoO2 for lithium-ion batteries [J]. Materials Science and Engineering B, 2006, 131(1-3): 203-209
    [27] Madhavi S., Subba Rao G.V., Chowdari B.V.R., et al. Effect of Cr dopant on the cathodic behavior of LiCoO2 [J]. Electrochimica Acta, 2002, 48(3): 219-226
    [28] Mladenov M., Stoyanova R., Zhecheva E., et al. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes [J]. Electrochemistry Communication, 2001, 3(8): 410-416
    [29] Zaheena, C.N., Nithya C., Thirunakaran R., et al. Microwave assisted synthesis and electrochemical behavior of LiMg0.1Co0.9O2 for lithium rechargeable batteries [J]. Electrochimica Acta, 2009, 54(10): 2877-2882
    [30] Shi S., Ouyang C., Lei M., et al. Effect of Mg-doping on the structural and electronic properties of LiCoO2: A first-principles investigation [J]. Journal of Power Sources, 2007, 171(2): 908-912
    [31] Kim H.S., Ko T.K., Na B.K., et al. Electrochemical properties of LiM Co O [M = Mg, Zr] prepared by sol–gel processx 1?x 2[J]. Journal of Power Sources, 2004, 138(1-2): 232-239
    [32] Li C., Zhang H.P., Fu L.J., et al. Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, 51(19):3872-3883
    [33] Liu L., Wang Z., Li H., et al. Al2O3-coated LiCoO2 as cathode material for lithium ion batteries [J]. Solid State Ionics, 2002, 152-153: 341-346
    [34]张绍丽,姚素薇,许刚,等.有机溶剂醇热法对LiCoO2正极表面修饰[J].有色金属学报, 2004, 14(5): 860-864
    [35] Endo E., Yasuda T., Yamaura K., et al. LiNiO2 electrode modified plasma by chemical vapor deposition for higher voltage performance [J]. Journal of Power Sources, 2001, 93(1-2): 87-92
    [36] Molenda J., Wilk P., Marzec J. Structural, electrical and electrochemical properties of LiNiO2 [J]. Solid State Ionics, 2002, 146(1-2): 73-79
    [37] Guilmard M., Rougier A., Gr?ne M., et al. Effects of aluminum on the structural and electrochemical properties of LiNiO2 [J]. Journal of Power Sources, 2003, 115(2): 305-314
    [38] Kim B.H., Kim J.H., Kwon I.H., et al. Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method [J]. Ceramics International, 2007, 33(5): 837-841
    [39] Lin S.P., Fung K.Z., Hon Y.M., et al. Effect of Al addition on formation of layer-structured LiNiO2 [J]. Journal of Solid State Chemistry, 2002, 167(1): 97-106
    [40] Wang G.X., Zhong S., Bradhurst D.H., et al. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries [J]. Journal of Power Sources, 1998, 76(2): 141-146
    [41] Yamada S., Fujiwara M., Kanda M. Synthesis and properties of LiNiO2 as cathode material for secondary batteries [J]. Journal of Power Sources, 1995, 54(2): 209-213
    [42] Broussely M., Biensan P., Simon B. Lithium insertion into host materials: the key to success for Li ion batteries [J]. Electrochimica Acta, 1999, 45(1-2): 3-22
    [43] Li W., Currie J.C., Wolstenholme J. Influence of morphology on the stability of LiNiO2 [J]. Journal of Power Sources, 1997, 68(2): 565-569
    [44] Li X., Xu Y., Wang C. Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode [J]. Journal of Alloys and Compounds, 2009, 479(1-2): 310-313
    [45] Zhou W.J., He B.L., Li H.L. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries [J]. Materials Research Bulletin, 2008, 43(8-9): 2285-2294
    [46] Zhang W.K., Wang C., Huang H., et al. Synthesis and electrochemical properties of spinel LiCo1/6Mn11/6O4 powders by a spray-drying method [J]. Journal of Alloys and Compounds, 2008, 465(1-2): 250-254
    [47] Chen M., Li S., Yang C. Structure and electrochemical properties of La, F dual-dopedLiLa0.01Mn1.99O3.99F0.01 cathode materials [J]. Journal of University of Science and Technology Beijing, 2008, 15(4): 468-473
    [48] Yang Z., Yang W., G.Evans D., et al. The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material [J]. Journal of Power Sources, 2009, 189(2): 1147-1153
    [49] Singhal R., S.Tomar M., G.Burgos J., et al. Electrochemical performance of ZnO-coated LiMn1.5Ni0.5O4 cathode material [J]. Journal of Power Sources, 2008, 183(1): 334-338
    [50]冯淑波.动力型锂离子二次电池市场发展的情景[J].河北能源职业技术学院学报, 2006, (2): 56-58
    [51]李春霞,陈白珍,闵德,等.掺杂Zr对LiNi1/3Co1/3Mn1/3O2性能的影响[J].电池, 2007, 37(3): 223-225
    [52] Kim G.H., Kim J.H., Myung S.T., et al. Improvement of high-voltage cycling behavior of surface-modified Li[Ni1/3Co1/3Mn1/3]O2 cathodes by fluorine substitution for Li-ion batteries [J]. J. Electrochem. Soc., 2005, 152(9): A1707-A1713
    [53] Jang S.B, Kang S.H. Synthesis and improved electrochemical performance of Al (OH) 3 -coated Li[Ni 1/3 Mn 1/3C o 1/3 ]O2 cathode materials at elevated temperature [J]. Electrochim Acta, 2005, 50(20): 4168-4173
    [54] Andersson A.S., Kalska B., H?ggstr?m L., et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and M?ssbauer spectroscopy study [J]. Solid State Ionics, 2000, 130(1-2): 41-52
    [55] Kanno R., Sbirame T., Inaba Y., et al. Sythesis and electrochemical properties of lithium iron oxides with layer-related structures[J]. J. Power Sources, 1997, 68(1): 145-152
    [56] Padhi A.K., Nanjundaswamy K.S., Masquelier C., et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochemical Soc, 1997, 144(5): 1609-1613
    [57] Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive- electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1997, 144(4): 1188-1194
    [58] Yang M.R., Ke W.H., Wu S.H., et al. Improving electrochemical properties of lithium iron phosphate by addition of vanadium [J]. J. Power Sources, 2007, 165(2): 646-650
    [59] Andersson A.S., Thomas J.O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources, 2001, 97-98: 498-502
    [60] Song M.S., Kang Y.M., Kim J.H., et al. Simple and fast synthesis of LiFePO4-Ccomposite for lithium rechargeable batteries by ball-milling and microwave heating [J]. Journal of Power Sources, 2007, 166(1): 260-265
    [61] Lemos V., Guerini S., Mendes Filho J., et al. A new insight into the LiFePO4 delithiation process [J]. Solid State Ionics, 2006, 177(11-12): 1021-1025.
    [62] Takahashi M., Tobishima S., Takei K., et al Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J]. Journal of Power Sources, 2001, 97-98: 508-511
    [63] Zhang S.S., Allen J.L., Xu K., et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes [J]. Journal of Power Sources, 2005, 147(1-2): 234-240
    [64] Zaghib K., Ravet N., Gauthier M., et al. Optimized electrochemical performance of LiFePO4 at 60℃with purity controlled by SQUID magnetometry [J]. Journal of Power Sources, 2006, 163(1): 560-566
    [65] Jiang J., Dahn J.R. ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes [J]. Electrochemistry Communications, 2004, 6(7): 724-728
    [66] Arnold G., Garche J., Hemmer R., et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources, 2003, 119-121: 247-251
    [67] Xie H., Zhou Z. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion batteries [J]. Electrochimica Acta, 2006, 51(10): 2063-2067
    [68] Huang H., Yin S.C., Nazar L.F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochemical Solid-State Letters, 2001, 4(10): A170-A172
    [69] Kim J.K., Choi J.W., Cheruvally G., et al. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries [J]. Material Letters, 2007, 61(18): 3822-3825
    [70] Higuchi M., Katayama K., Azuma Y., et al. Synthesis of LiFePO4 cathode material by microwave processing [J]. Journal of Power Sources, 2003, 119-121: 258-261
    [71] Xu Z., Xu L., Lai Q., et al. A PEG assisted sol-gel synthesis of LiFePO4 as cathodic material for lithium ion cells [J]. Materials Research Bulletin, 2007, 42(5): 883-891
    [72] Chen J., Stanley M., Whittingham S. Hydrothermal synthesis of lithium iron phosphate [J]. Electrochemistry Communications, 2006, 8(5): 855-858
    [73] Shiraishi K., Dokko K., Kanamura K. Formation of impurities on phospho- olivineLiFePO4 during hydrothermal synthesis [J]. Journal of Power Sources, 2005, 146(1-2): 555-558
    [74] Park K.S., Kang K.T., Lee S.B., et al. Synthesis of LiFePO4 with fine particle by co-precipitation method [J]. Materials Research Bulletin, 2004, 39(12): 1803-1810
    [75] Barker J., Saidi M.Y., Swoyer J.L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J]. Electrochemical and Solid-State Letters, 2003, 6(3): A53-A55
    [76] Mi C.H., Cao G.S., Zhao X.B. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode [J]. Materials Letters, 2005, 59(1): 127-130
    [77] Song Y., Y. Zavalij P., Suzuki M., et al. New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties [J]. Inorganic Chemistry, 2002, 41(22): 5778-5786
    [78]张宝.锂离子电池正极材料LiMPO4(M=Fe, Mn)的合成与改性研究[D].湖南:中南大学, 2005
    [79]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社, 2001: 39
    [80] Ying J.R., Lei M., Jiang C.Y., et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries [J]. J. Power Sources, 2006, 158(1): 543-549
    [81] Bewlay S.L., Konstantinov K., Wang G.X., et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J]. Materials Letters, 2004, 58(11): 1788-1791
    [82] Wang G.X., Yang L., Bewlay S.L., et al. Electrochemical properties of carbon coated LiFePO4 cathode materials [J]. Journal of Power Sources, 2005, 146(1-2): 521-524
    [83] Konstantinov K., Bewlay S., Wang G.X., et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials [J]. Electrochemica Acta, 2004, 50(2-3): 421-426
    [84] Mi C.H., Cao Y.X., Zhang X.G., et al. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology, 2008, 181(3): 301-306
    [85] Chung H.T., Jang S.K., Ryu H.W., et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite [J]. Solid State Communication, 2004, 131(8): 549-554
    [86] Shin H.C., Cho W.I., Jang H. Electrochemical properties of the carbon-caoted LiFePO4as a cathode material for lithium-ion secondary batteries [J]. Journal of Power Sources, 2006, 159(2): 1383-1388
    [87] Li X., Kang F., Bai X., et al. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries [J]. Electrochemistry Communications, 2007, 9(4): 663-666
    [88] Liu H.P., Wang Z.X., Li X.H., et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. Journal of Power Sources, 2008, 184(2): 469-472
    [89] Bhuvaneswari M.S., Bramnik N.N., Ensling D., et al. Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries [J]. Journal of Power Sources, 2008, 180(1): 553-560
    [90] Elvira M.B., Carlo B., Guido R., et al. A versatile method of preparation of carbon-rich LiFePO4: A promising cathode material for Li-ion batteries [J]. Journal of Power Sources, 2005, 146(1-2): 544-549
    [91] Park K.S., Son J.T., Chung H.T., et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communication, 2004, 129(5): 311-314
    [92] Xu Y., Lu Y., Yan L., et al. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C material [J]. Journal of Power Sources, 2006, 160(1): 570-576
    [93] Liu H., Xie J.Y., Wang K. Synthesis and characterization of LiFePO4/(C+Fe2P) composite cathodes [J]. Solid State Ionics, 2008, 179(27-32): 1768-1771
    [94] Wang G.X., Yang L., Chen Y., et al. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries [J]. Electrochimica Acta, 2005, 50(24): 4649-4654
    [95] Chung S.Y., Bloking J.T., Chiang Y.M., et al. Electronically conductive phosphor-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123-128
    [96] Liu H., Cao Q., Fu L.J., et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8(10): 1553-1557
    [97] Zhang M., Jiao L.F., Yuan H.T., et al. The preparation and characterization of olivine LiFePO4/C doped with MoO3 by a solution method [J]. Solid State Ionics, 2006, 177(37-38): 3309-3314
    [98]陈永坤.氧化铝模板法合成氧化锡纳米结构材料[D].云南:昆明理工大学, 2006
    [99] Vald′es-sol′is T., Fuertes A.B. High-surface area inorganic compounds prepared by nanocasting techniques [J]. Materials Research Bulletin, 2006, 41(12): 2187–2197
    [100] Charles R.S., Fausto C., Vaneica Y.Y., et al. A High-Rate, Nanocomposite LiFePO4/Carbon Cathode [J]. Electrochemical and Solid-State Letters, 2005, 8(9): A484-A487
    [101] Lu J., Tang Z., Zhang Z., et al. Preparation of LiFePO4 with inverse opal structure and its satisfactory electrochemical properties. Material Research Bulletin, 2005, 40(12): 2039-2046
    [102] Yang S.T., Zhao N.H., Dong H.Y., et al. Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon[J]. Electrochimica Acta, 2005, 51(1): 166–171
    [103] Li G.H., Azuma H., Tohda M. Optimized LiMnyFe1-yPO4 as the cathode for lithium batteries [J]. J. Electrochem. Soc., 2002, 149(6): A743-747
    [104] Ni J.F, Zhou H.H., Chen J.T., et al. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles [J]. Mater. Lett., 2007, 61(4-5): 1260-1264
    [105] Takeuchi T., Tabuchi M., Nakashima A., et al. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process [J]. J. Power Sources, 2005, 146(1-2): 575-579
    [1] Chung H.T., Jang S.K., Ryu H.W., et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite [J]. Solid State Communication, 2004, 131(8): 549-554
    [2] Kim J.K, Choi J.W, Cheruvally G., et al. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries [J]. Material Letters, 2007, 61(18): 3822-3825
    [3] Wang D., Li H., Shi S., et al. Improving the rate performance of LiFePO by Fe-site doping[J].4Electrochimica Acta, 2005, 50(14): 2955-2958
    [4] Bewlay S.L., Konstantinov K., Wang G.X., et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J]. Materials Letters, 2004, 58(11): 1788-1791
    [5] Wang G.X., Yang L., Bewlay S.L., et al. Electrochemical properties of carbon coated LiFePO4 cathode materials [J]. Journal of Power Sources, 2005, 146(1-2): 521-524
    [6] Konstantinov K., Bewlay S., Wang G.X., et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials [J]. Electrochemica Acta, 2004, 50(2-3): 421-426
    [7] Doeff M.M, Wilcox J.D, Kostecki R., et al. Optimization of carbon coatings on LiFePO4 [J]. Journal of Power Sources, 2006, 163(1): 180-184
    [8] Takahashi M., Tobishima S., Takei K., et al Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J]. Journal of Power Sources, 2001, 97-98: 508-511
    [9] Kim D.K., Park H.M., Jung S.J., et al. Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries [J]. Journal of Power Sources, 2006, 159(1): 237-240
    [10] Kwon S.J., Kim C.W., Jeong W.T., et al. Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying [J]. Journal of Power Sources, 2004, 137(1): 93-99
    [11] Barker J., Saidi M.Y., Swoyer J.L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J]. Electrochemical and Solid-State Letters, 2003, 6(3):A53-A55
    [12] Mi C.H., Cao Y.X., Zhang X.G., et al. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology, 2008, 181(3): 301-306
    [13] Liu H.P., Wang Z.X., Li X.H., et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. Journal of Power Sources, 2008, 184(2): 469-472
    [14]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,2002,89-93
    [15] Kim C.W., Park J.S., Lee K.S. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material [J]. Journal of Power Sources, 2006, 163(1): 144-150
    [16] Xu Y, Lu Y, Yan L, Yang Z, Yang R. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C material [J]. Journal of Power Sources, 2006, 160(1): 570-576
    [17] Liu H., Xie J.Y., Wang K. Synthesis and characterization of LiFePO4/(C+Fe2P) composite cathodes [J]. Solid State Ionics, 2008, 179(27-32): 1768-1771
    [18] Lin Y., Gao M.X., Zhu D., et al. Effects of carbon and iron phosphides on the electrochemical properties of LiFePO4/C [J]. Journal of Power Sources, 2008, 184(2): 444-448
    [19] Zhang S.S., Allen J.L., Xu K., et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes [J]. Journal of Power Sources, 2005, 147(1-2): 234-240
    [20] Dominko R., Bele M., Gaberscek M., et al. Porous olivine composites synthesized by sol–gel technique [J]. J. Power Sources, 2006, 153(2): 274-280
    [21]黄小倩,张培新,许启明,等.不同碳源对LiFePO4 /C复合材料性能的影响[J].功能材料, 2008, 39(7): 1154-1157
    [1] Jiang J., Dahn J.R. ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes [J]. Electrochemistry Communications, 2004, 6(7): 724-728
    [2] Jiang J., Dahn J.R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes [J]. Electrochemistry Communications, 2004, 6(1): 39-43
    [3] Zaghib K., Ravet N., Gauthier M., et al. Optimized electrochemical performance of LiFePO4 at 60℃with purity controlled by SQUID magnetometry [J]. Journal of Power Sources, 2006, 163(1): 560-566
    [4] Xie H., Zhou Z. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion batteries [J]. Electrochimica Acta, 2006, 51(10): 2063-2067
    [5] Prosini P.P., Lisi M., Zane D., et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1-2): 45-51
    [6] Myung S. T., Komaba S., Hirosaki N., et al. Emulsion drying synthesis of olivine LiFePO4 /C composite and its electrochemical properties as lithium intercalation material [J]. Electrochimica Acta, 2004, 49(24): 4213-4222
    [7] Zane D., Carewska M., Scaccia S., et al. Factor affecting rate performance of undopedLiFePO4 [J]. Electrochimica Acta, 2004, 49(25): 4259-4271
    [8] Huang H., Yin S.C., Nazar L.F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochemical Solid-State Letters, 2001, 4(10): A170-A172
    [9] Park K.S., Son J.T., Chung H.T., et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communication, 2004, 129(5): 311-314
    [10] Wang L. N., Zhan X. C., Zhang Z. G., et al. A soft chemistry synthesis routine for LiFePO4–C using a novel carbon source [J]. J. Alloys Compd., 2008, 456(1-2): 461-465
    [11] Chung S.Y., Bloking J.T., Chiang Y.M., et al. Electronically conductive phosphor-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123-128
    [12] Prosini P. P., Carewska M., Scaccia S., et al. Long-term cyclability of nanostructured LiFePO4 [J]. Electrochimica Acta, 2003, 48(28): 4205-4211
    [13] Arnold G., Garche J., Hemmer R., et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources, 2003, 119-121: 247-251.
    [14] Ying J.R., Lei M., Jiang C.Y., et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries [J]. J. Power Sources, 2006, 158(1): 543-549
    [15] Ni J.F., Zhou H.H., Chen J.T., et al. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles [J]. Mater. Lett., 2007, 61(4-5): 1260-1264
    [16] Takeuchi T., Tabuchi M., Nakashima A., et al. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process [J]. Journal of Power Sources, 2005, 146(1-2): 575-579
    [17]刘海涛,杨郦,张树军,林蔚.无机材料合成[M].北京:化学工业出版社, 2003: 15
    [18]董树岐,黄良钊.材料物理化学基础[M].北京:兵器工业出版社, 1991: 295
    [19]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社, 2000: 478
    [20]张启昆,卢峰.现代无机合成化学[M].汕头:汕头大学出版社, 1995: 100
    [21] Xu Y., Lu Y., Yan L., et al. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C material [J]. Journal of Power Sources, 2006, 160(1): 570-576
    [22] Liu H., Xie J.Y., Wang K. Synthesis and characterization of LiFePO4/(C+Fe2P)composite cathodes [J]. Solid State Ionics, 2008, 179(27-32): 1768-1771
    [23] Gaberscek M., Jamnik J. Impact of electrochemical wiring topology on the kinetics of insertion electrodes [J]. Solid State Ionics, 2006, 177(26-32): 2647-2651
    [23] Kim C.W., Park J.S., Lee K.S. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material [J]. Journal of Power Sources, 2006, 163(1): 144-150
    [24] Lin Y., Gao M.X., Zhu D., et al. Effects of carbon and iron phosphides on the electrochemical properties of LiFePO4/C [J]. Journal of Power Sources, 2008, 184(2): 444-448
    [25] Song M. S., Kim D. Y., Kang Y. M., et al. Amphoteric effects of Fe P on electrochemical performance of lithium iron phosphate–carbon composite synthesized by ball-milling and microwave heating2[J]. J. Power Sources, 2008, 180(1): 546-552
    [26] Doeff M.M., Hu Y., Mclarnon F., et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J]. Electrochemical and Solid-State Letters, 2003, 6(10): A207-A209
    [27] Mi C.H., Zhang X.G., Zhao X.B., et al Effect of sintering time on the physical and electrochemical properties of LiFePO4/C composite cathodes [J]. Journal of Alloys and Compounds, 2006, 424(1-2): 327-333
    [28] Baek D.H., Kim J.K., Shin Y.J., et al. Effect of firing temperature on the electrochemical performance of LiMn0.4Fe0.6PO4/C materials prepared by mechanical activation [J]. Journal of Power Sources, 2009, 189(1): 59-65
    [29] Kim J.K., Choi J.W., Chauhan G.S., et al. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis [J]. Electrochimica Acta, 2008, 53(28): 8258-8264
    [30] Wang D.Y., Li H., Wang Z.X., et al. New solid-state synthesis routine and mechanism for LiFePO4 using LiF as lithium precursor [J]. Journal of Solid State Chemistry, 2004, 177(12): 4582-4587
    [31] Yang M. R.; Ke W. H.; Wu S. H. Preparation of LiFePO4 powders by co-precipitation [J]. J. Power Sources, 2005, 146(1-2): 539-543
    [32] Liu H., Feng Y., Wang Z. H., et al. A PVB-based rheological phase approach to nano-LiFePO4 /C composite cathodes [J]. Powder Technol., 2008, 184(3): 313-317
    [1] Prosini P.P., Lisi M., Zane D., et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1-2): 45-51
    [2] Myung S.T., Komaba S., Hirosaki N., et al. Emulsion drying synthesis of olivine LiFePO4 /C composite and its electrochemical properties as lithium intercalation material [J]. Electrochimica Acta, 2004, 49(24): 4213-4222
    [3] Bewlay S.L., Konstantinov K., Wang G.X., et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J]. Materials Letters, 2004, 58(11): 1788-1791
    [4] Shin H.C., Cho W.I., Jang H. Electrochemical properties of the carbon-caoted LiFePO4 as a cathode material for lithium-ion secondary batteries [J]. Journal of Power Sources, 2006, 159(2): 1383-1388
    [5] Bhuvaneswari M.S., Bramnik N.N., Ensling D., et al. Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries [J]. Journal of Power Sources, 2008, 180(1): 553-560
    [6] Chung S.Y., Bloking J.T., Chiang Y.M., et al. Electronically conductive phosphor-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123-128
    [7] Zhang M., Jiao L.F., Yuan H.T., et al. The preparation and characterization of olivine LiFePO4/C doped with MoO3 by a solution method [J]. Solid State Ionics, 2006, 177(37-38): 3309-3314
    [8] Liu H., Xie J.Y., Wang K. Synthesis and characterization of LiFePO4/(C+Fe2P) composite cathodes [J]. Solid State Ionics, 2008, 179(27-32): 1768-1771
    [9] Liu H., Cao Q., Fu L.J., et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8(10): 1553-1557
    [10] Xu Y., Lu Y., Yan L., et al. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C material [J]. Journal of Power Sources, 2006, 160(1): 570-576
    [11]任金栋.锂离子电池正极材料LiMn2O4的制备及其机理研究[D].华南理工大学工学硕士学位论文. 1999
    [12] Chung H.T., Jang S.K., Ryu H.W., et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite [J]. Solid State Communication, 2004, 131(8): 549-554
    [1] Song Y., Y. Zavalij P., Suzuki M., et al. New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties [J]. Inorganic Chemistry, 2002, 41(22): 5778-5786
    [2]张宝.锂离子电池正极材料LiMPO4(M=Fe, Mn)的合成与改性研究[D].湖南:中南大学, 2005
    [3]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社, 2001: 39
    [4]刘素琴,龚本利,黄可龙,等.焙烧温度对合成LiFePO4的产物组成和电化学性能的影响[J].物理化学学报, 2007, 23(7): 1117-1122
    [5] Song Y., Yang S., Y. Zavalij P., et al. Temperature-dependent properties of FePO4 cathode materials [J]. Materials Research Bulletin, 2002, 37(7): 1249-1257
    [6] Ying J.R., Lei M., Jiang C.Y., et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries [J]. J. Power Sources, 2006, 158(1): 543-549
    [7] Yang S., Song Y., Y. Zavalij P., et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochemistry Communications, 2002, 4(3): 239-244.
    [8] Liu H.W., Tang D.G. The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries [J]. Solid State Ionics, 2008, 179(33-34): 1897-1901
    [9] Bhuvaneswari M.S., Bramnik N.N., Ensling D., et al. Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries [J]. Journal of Power Sources, 2008, 180(1): 553-560
    [10] Myung S. T., Komaba S., Hirosaki N., et al. Emulsion drying synthesis of olivine LiFePO4 /C composite and its electrochemical properties as lithium intercalation material [J]. Electrochimica Acta, 2004, 49(24): 4213-4222
    [11] Wang H., Zhang W.D., Zhu L.Y., et al. Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature [J]. Solid State Ionics, 2007, 178(1-2): 131-136
    [12] Prosini P.P., Lisi M., Zane D., et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1-2): 45-51
    [13] Hjelm A.K, Lindbergh G. Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS). Electrochimica Acta, 2002, 47(11): 1747-1759

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700