中温SOFC阳极材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对Ni-YSZ阳极材料的制备和性能进行了研究,采用流延法制备了多层阳极支撑复合SOFC阳极基底,为实现SOFC的中温化奠定一定的基础。
    以NH4HCO3为沉淀剂制备NiO的产率比较高,由Ni氧化制备NiO的工艺比较简单,但是它们所制得Ni-YSZ的电导率却比NH3(H2O的低0.7和1.4个数量级。因此选择NH3(H2O为沉淀剂制备NiO粉末,严格控制溶液的pH值以提高产率。YSZ制备以NH3(H2O为共沉淀剂,pH=8.2。600℃下煅烧得到了立方ZrO2粉末,平均粒径为20nm左右。
    采用机械混合法、包裹沉淀法和燃烧合成法制备NiO-YSZ粉末。将NiO和YSZ粉末用无水乙醇球磨48h得到混合均匀的NiO-YSZ粉末。用包裹沉淀法制备NiO-YSZ粉末时,pH=8.5~9.0,以NH3(H2O为共沉淀剂。在不同温度下煅烧得到NiO-YSZ粉末。在600℃下NiO-YSZ粉末已经结晶完好,颗粒大小为20nm左右。硝酸盐和柠檬酸氧化还原反应生成的NiO-YSZ粉末粒径为纳米级。柠檬酸/硝酸盐的起始摩尔比c/n小于并接近化学计量比0.54时,试样C(c/n=0.5)燃烧反应最强烈,由XRD图谱,差热和热重分析得知粉末中有Ni相存在。试样A c/n较小,反应速度慢,又不存在还原气氛,因而没有Ni相生成。
    测定了不同温度下烧结的NiO-YSZ复合材料和还原后的Ni-YSZ金属陶瓷的密度。考虑烧结温度对性能的影响,确定了最佳烧结制度为1400℃、2h。NiO-YSZ在H2中800℃还原4h得到了Ni-YSZ。显微结构分析结果表明,YSZ相形成了连续的网络结构,Ni相和气孔比较均匀地分布于YSZ的网络结构中。
    分析Ni-YSZ金属陶瓷电导率的影响因素,结果表明:①随着烧结温度的升高,电导率几乎是线性增加的。1400℃烧结试样的电导率最高,在600℃~800℃,达到103.4S/cm。②不同的制备工艺,NiO粉末的性能不同,导致电导率的差异。③在燃烧合成法中,随着c/n的增大,电导率先增加后降低。在c/n=0.5时(试样C)最高,达到103.6S/cm。④采用燃烧合成法制备NiO-YSZ粉末所得Ni-YSZ的电导率比机械混合法的和包裹沉淀法的高0.2和0.6个数量级。
    为了优化阳极的显微结构和提高阳极的性能。采用流延法制备了多层复合阳极膜与电解质膜,共烧结得到了SOFC阳极支撑复合阳极基底。单层的采用Ni/YSZ=55:45的Ni-YSZ金属陶瓷;双层:Ni/YSZ=70:30的金属陶瓷作为界面层,Ni/YSZ=40:60的金属陶瓷作为主体层;三层:第一层为Ni/YSZ=40:60 ,第二层为Ni/YSZ=55:45,第三层为Ni/YSZ=70:30的金属陶瓷。
The preparation and properties of Ni-YSZ anode materials were studied in this paper. The multilayer anode-supported composite SOFC anode substrates were prepared by the tape-casting method. The aim of this study is to make the base for reducing the operating temperature.
    It was shown that the production efficiency of precipitation method using NH4HCO3 as a precipitant was high and the technology of NiO powders prepared by the oxidation of Ni metal was simple. The electrical conductivities of the Ni-YSZ cermet prepared by these two methods were 0.7 and 1.4 orders of magnitude less than that prepared by the precipitation method, using NH3(H2O as precipitant. Thus the precipitation method, using NH3(H2O as precipitant was chosen for preparing NiO powders. In order to raise the production efficiency, the pH value was controlled strictly. YSZ powders were obtained by the co-precipitation method, controlling the pH at 8.2. NH3(H2O was used as co-precipitant. The powder was calcined at 600(C in air for 1h to obtain the YSZ powder with the average particle size around 20nm.
    NiO-YSZ powders were prepared by the mechanical mixing method, coating precipitation method and the combustion synthesis method respectively. In the first route, NiO and YSZ were ball-milled in alcohol for 48h to obtain the homogeneous powders. The NiO-YSZ powders, which were prepared by the coating precipitation method, were calcined at 600(C and 800(C. NH3(H2O was used as co-precipitant, controlling the pH at 8.5~9.0. It is obvious that the two phases were well crystallized at 600℃. The particle size of the powder is about 20nm. Redox combustion reaction between metal nitrate and citric acid yielded ultrafine NiO-YSZ powders. When the c/n initial molar ratio was less than and close to the stoichiometric value 0.54, the combustion progressing of Sample C (c/n=0.5) was the most intensive. Through the XRD patterns and TG and DSC analysis of synthesized sample C powder, the Ni phase was discovered. Because the c/n initial molar ratio of Sample A is minor, the combustion progress was slow. Also there was no reducing atmosphere. Ni phase was not discovered in Sample A.
    The density of the NiO-YSZ composite sintered at different temperatures and Ni-YSZ cermet was measured via the Archimedes method. Considering the influence of the sintering temperature on the anode material performance, the rational sintering
    
    
    system was 1400(C for 2h. The sintered NiO-YSZ composite was reduced at 800(C in H2 atmosphere for 4h into Ni-YSZ cermet entirely. The microstructure of the samples was investigated. The YSZ phases formed a continuous network while the Ni particles and pores were uniformly dispersed in the network.
    The influencing factors on the electrical conductivity of the Ni-YSZ cermet were considered. It was found that: 1) the electrical conductivity increased nearly linear with the elevation of the sintering temperature. The electrical conductivity reached above 103.4 S/cm for the sample sintered at 1400(C for 2h when testing from 600(C to 800(C. 2) the different technologies resulted in the different properties of the NiO powders, and then resulted in the difference of the electrical conductivity. 3) The electrical conductivity increased firstly then decreased with the c/n increasing during the combustion synthesis. The electrical conductivity of Sample C, whose c/n was 0.5, reached above 103.6 S/cm. 4) The electrical conductivity of the Ni-YSZ cermet prepared by the combustion synthesis method was 0.2 and 0.6 order of magnitude higher than that prepared by the mechanical mixing method and the coating precipitation method respectively.
    In order to optimize the anode microstructure and improve the anode performances, the multilayer composite anode films and the electrolyte films were prepared by the tape-casting method. The anode-supported composite SOFC anode substrates were obtained by co-sintering. The single layer anodes used the Ni/YSZ=55: 45 cermet. The double layer anodes consist of the interfacial layer and bulk layer. As the interfacial layer,
引文
[1] 彭茂公,燃料电池研究与开发的现状及必要性,能源研究与信息,2000,16(3):47~57
    [2] 刘旭俐,马峻峰,刘文化等,固体氧化物燃料电池材料的研究进展,硅酸盐通报,2001(1):24~29
    [3] 张义煌,董永来,江义等,薄膜型中温固体氧化物燃料电池制备及性能考察,电化学,2000,6(1):78~83
    [4] 孟广耀,付清溪,彭定坤,中温固态氧化物燃料电池,太阳能学报,2002,23(3):378~382
    [5] 刘旭俐,马俊峰,刘文化等,固体氧化物燃料电池材料的研究进展,硅酸盐通报,2001,(1):24~29
    [6] 阎加强,张培新,单松高等,中低温固体氧化物燃料电池的研究,材料导报,1998,12(4):44~47
    [7] 江义,李文钊,王世忠,高温固体氧化物燃料电池(SOFC)进展,化学进展,1997,9(4):387~396
    [8] 张中太,黄传勇,固体氧化物燃料电池的研究进展,材料导报,1999,13(4):19~23
    [9] http://www.gz-today.com/news/article/36987.html
    [10] 陆天红,孙公权,我国燃料电池发展概况,电源技术,1999,22(4):182~184
    [11] 毕道治,中国燃料电池的发展,电源技术,2000,24(2):103~107
    [12] http://www.gz-today.com/news/article/31890.html
    [13] Zhu W Z, Deevi S C, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering A, 2003, 362(1~2): 228~239
    [14] Haynes C, Wepfer W J, ‘ Design for Power’ of a commercial grade tubular solid oxide fuel cell, Energy Conversion & Management, 2000, 41(11): 1123~1139
    [15] 储怡,固体氧化物燃料电池,佳木斯大学学报(自然科学版),1999,17(2):184~186
    [16] 魏秋明,朱时珍,夏定国等,高温固体氧化物燃料电池,中国稀土学报,1994,12(2):171~176
    [17] Singhal S C, Solid oxide fuel cells for stationary, mobile, and military
    
    
    applications, Solid State Ionics, 2002, 152~153(10): 405~410
    [18] 于兴文,黄学杰,陈立泉,固体氧化物燃料电池研究进展,电池,2002,32(2):110~112
    [19] Charpentier P, Fragnaud P, Schleich D M et al. Preparation of thin film SOFCs working at reduced temperature, Solid State Ionics, 2000, 135(1~4): 373~380
    [20] 谭小耀,于如军,杨乃涛等,中温固体氧化物燃料电池性能的初步研究,山东工程学院学报,2001,15(1):1~3
    [21] 阎景旺,董永来,于春英等,中温固体氧化物燃料电池阳极基底及负载型电解质薄膜的研制,无机材料学报,2001,16(5):804~814
    [22] Kek D, Panjan P, Wanzenberg E et al. Electrical and microstructural investigations of cermet anode/YSZ thin film systems, Journal of the European Ceramic Society, 2001, 21(10~11): 1861~1865
    [23] Cassidy M, Lindsay G, Kendall K, The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes, Journal of Power Sources, 1996, 61(1~2): 189~192
    [24] Xia Changrong, Liu Meilin, Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs, Solid State Ionics, 2002, 152~153 (10): 423~430
    [25] Lee J H, Heo J W, Lee D S, et al. The impact of anode microstructure on the power generating characteristics of SOFC, Solid State Ionics, 2003,158(3~4): 225~ 232
    [26] 孟广耀,刘皖育,彭定坤,新型固体燃料电池--21世纪的绿色能源,中国科学院院刊,1998,(5):344~347
    [27] 赵兵,户立柱,谢慧琴,中低温固体氧化物燃料电池(SOFC)电解质材料,稀土,1998,19(4):55~61
    [28] http://ste-bohai.ntem.tj.cn/hts/bf/jssp/18780.htm
    [29] 张义煌,江义,卢自桂等,阳极负载型SOFC阳极基底厚度对性能的影响,电化学,2000,6(3):284~290
    [30] Yakabe H, Hishinum M, Uratani M et al. Evaluation and modeling of performance of anode-supported solid oxide fuel cell, Journal of Power Sources, 2000, 86(1~2): 423~431
    [31] Lang H J, Kunstler K, Oxygen exchange behavior and electrical conductivity of polycrystalline oxide-ion conductors based on Ce1-nLanO2-0.5n, Solid State Ionics, 1999, 119(1~4): 127~130
    
    [32] Simwonis D, Thulen H, Dias F J et al. Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix process, Journal of Materiald Processing Technology, 1999, 92~93(9): 107~111
    [33] 任铁梅,固体氧化物燃料电池及其材料,电池,1993,23(4):191~194
    [34] Lee J H, Moon H, Lee H W et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet, Solid State Ionics, 2002, 148(1~2): 15~26
    [35] 杨遇春,燃料电池及其相关材料新进展(三),稀有金属,1999,23(6):443~449
    [36] Wang Shizhong , Jiang Yi ,Zhang Yahong et al. Electrochemical performance of mixed ionic-electronic conducting oxides as anodes for solid oxide fuel cell, Solid State Ionics, 1999, 120(1~4): 75~84
    [37] Boer B de, Gonzalez M, Bouwmeester H J M, The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes, Solid State Ionics, 2000, 127(3~4): 269~276
    [38] Li Ying, Xie Yusheng, Gong Jianghong et al. Preparation of Ni/YSZ materials for SOFC anodes by buffer-solution method, Material Science and Engineering B, 2001, 86(2): 119~122
    [39] Aruna S T, Muthuraman M, Patil K C et al. Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells, Solid State Ionics, 1998, 111 (1~2): 45~51
    [40] Marinsek M, Zupan K, Maeek J et al. Preparation of Ni-YSZ composite materials for solid oxide fuel cell anodes by the gel-precipitation method, Journal of Power Sources, 2000, 86 (1-2): 383~389
    [41] Larminie J, Fuel cells come down to earth, IEE Review, 1996, 42(3): 106~109
    [42] 唐子龙,缓冲溶液法制备PTCR-BaTiO3超细粉的研究,博士学位论文,北京玻璃研究所,1992
    [43] 李英,唐子龙,谢裕生等,缓冲溶液法制备SOFC用Ni/YSZ负极材料,材料科学与工艺,2001,9(1):91~94
    [44] Iwasawa C, Nagata M, Yamaoka S et al. 5th International Symposium on SOFC in Aachen, Germany, 1997, 626
    [45] Wilkenhoner R, Kloidt T, Mallener W, 5th International Symposium on SOFC in Aachen, Germany, 1997, 851
    [46] Moon J W, Lee H L, Kim J D et al. Preparation of ZrO2-coated NiO powder
    
    
    using surface-induced coating, Materials Letters, 1999, 38 (3): 214~220
    [47] Srinivasan T M, Subramanian C, Ramasamy P et al. Synthesis of lanthanum aluminate by a citrate-combustion route, Materials Letters, 1995,
    25(3~4):171~174
    [48] Ringuede A, Frade J R, Labrincha J A, Combustion synthesis of zirconia-based cermet powders, Solid State Ionics, 2000, 6(1): 273~278
    [49] Ringuede A, Bronine D, Frade J R, Assessment of Ni/YSZ anodes prepared by combustion synthesis, Solid State Ionics, 2002, 146(3~4): 219~224
    [50] Ji Yuan, Liu Jiang, He Tianming et al. Single intermedium-temperature SOFC prepared by glycine-citrate process, Journal of Alloys and Compounds, 2003, 353(1~2): 257~262
    [51] 纪媛,刘江,贺天民等,甘氨酸-硝酸盐法制备中温SOFC电解质及电极材料,高等学校化学学报,2002,23(7):1227~1230
    [52] Marinsek M, Zupan K, Maeek J et al. Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis, Journal of Powder Sources, 2002, 106(1~2): 178~188
    [53] Gunter S, Rudolf H, Michael L, Development of vaccum plasma sprayed thin SOFC for reduced operating temperature, Fuel Cells Bulletin, 2000, 3(21): 7~12
    [54] 梁广川,刘文西,陈玉如等,流延法制备YSZ电解质薄膜研究,陶瓷学报,2000,21(1):5~7
    [55] 夏正才,唐超群,潘小龙等,固体氧化物燃料电池材料研究进展,功能材料,1997,28(5):455~459
    [56] Muller A C, Dirk H, Ellen I T, Development of a multilayer anode for solid oxide fuel cells, Solid State Ionics, 2002, 152~153 (12): 537~542
    [57] 夏风,钱晓良,刘石明等,Ni-ZrO2金属陶瓷电极材料的研究,中国陶瓷,2001,37(4):27~28
    [58] 杭州大学化学系分析化学教研室,分析化学手册化学分析,北京:化学工业出版社,1982,107
    [59] Jain S R, Adiga K C, Pai Verneker V R, A New approach to thermochemical calculations of condensed fuel–oxidizer mixtures, Combustion Flame, 1981, 40(2): 71~79
    [60] Anselmi-Tamburini U, Chiodelli G, Arimondi M et al. Electrical properties of Ni/YSZ cermets obtained through combustion synthesis, Solid State Ionics, 1998,
    
    
    110 (1~2), 35~43
    [61] Dees D W, Conductivity of Porous Ni/ZrO2-Y2O3 Cermet, Journal of the Electrochemical Society, 1987, 134(9): 2141~2146
    [62] Jiang S P, Pamprakash Y, H2 oxidation on Ni/Y-TZP cermet electrodes polarization behaviour, Solid State Ionics, 1999, 116(1~2): 145~156
    [63] Bieberle A, Gaucker L J, Reaction mechanism of Ni pattern anodes for solid oxide fuel cells, Solid State Ionics, 2000, 132(1~4): 253~260
    [64] Primdahl S, Mogensen M, Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion, Solid State Ionics, 2002,152~153(10): 597~608
    [65] 梁丽萍,高荫本,陈诵英,固体氧化物燃料电池与陶瓷材料,材料科学与工程,1997,15(4):9~14
    [66] Koide H, Someya Y, Yoshida T et al. Properties of Ni/YSZ cermet as anode for SOFC, Solid State Ionics, 2000, 132(3~4): 253~260
    [67] Muller A C, Weber A, Beie H J et al. Process of 3rd European SOFC Forum, European Fuel Cell Forum, Oberrohrdorf, Switzerland, 1998, 353~362
    [68] Itoh H, Yamamoto T, Mori M et al. Process of 4th International Symposium on SOFC, The Electrochemical Society, Pennington, NJ, 1995, 639~ 648

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700