EB-PVD工艺制备YSZ及Ni-YSZ功能涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用电子束物理气相沉积(EB-PVD)技术制备了用于固体氧化物燃料电池(SOFC)的Ni-YSZ阳极涂层及YSZ电解质涂层材料。采用X射线荧光光谱(XRF)、X射线衍射(XRD)、扫描电镜(SEM)、电子探针(EPMA)、透射电镜(TEM)、原子力显微镜等分析测试技术对涂层的成分及微观组织结构进行了研究,对涂层的孔隙率、气密性及电导率等性能进行了测试和表征,并对组装的单电池的输出性能进行了研究。
     采用EB-PVD工艺在多孔的NiO-YSZ基体上制备了8YSZ电解质涂层,制备态及1000°C退火后的涂层均由单一的立方YSZ相组成。电解质涂层的SEM分析表明,涂层呈现出典型的柱状晶结构,在柱状晶间隙处存在微米级的孔隙。涂层元素沿断面分布的EPMA分析结果表明,涂层内的Zr、Y、O元素分布均匀。TEM分析结果表明,涂层的断面由条形或锥形的晶粒组成,在这些晶粒的内部呈现出许多宽度为几纳米并按照一定角度倾斜的白色迹线。
     气密性测试结果表明,EB-PVD工艺制备的YSZ电解质涂层的气体扩散系数为9.78×10-5 cm4·N-1·s-1,此值较大气等离子喷涂制得的电解质涂层的气体扩散系数降低了60%以上。YSZ电解质涂层的电导率表现出显著的各向异性,在500°C~800°C的温度范围内,电解质涂层垂直于涂层表面方向的电导率均显著高于平行于表面方向的电导率。根据Arrhenius方程计算出的垂直于涂层表面方向和平行于涂层表面方向的电导活化能分别为80.884kJ/mol和110.147kJ/mol。采用低压浸渗装置对EB-PVD制备的电解质涂层进行了溶胶浸渗处理,根据对溶胶前驱体粉末进行的DSC-TG分析和XRD分析结果确定了致密化的烧结工艺。经过溶胶浸渗处理之后,电解质涂层的气体扩散系数从制备态的9.78×10-5 cm4·N-1·s-1下降至4次和8次溶胶浸渗处理后的3.18×10-5 cm4·N-1·s-1和9.56×10-6 cm4·N-1·s-1。SEM分析表明,溶胶浸渗处理之后,制备态电解质涂层表面晶体颗粒之间的孔隙和缺陷被溶胶所填充,涂层表面变得光滑、致密;断面分析表明,溶胶渗入涂层的深度可达3.5μm。相对于制备态涂层材料的电导率,经过4次和8次溶胶浸渗处理之后,垂直于涂层表面方向电导率提高的幅度均在10%以内,且8次浸渗处理相对4次浸渗处理之后涂层电导率的提高不明显。溶胶浸渗处理后8YSZ电解质涂层垂直于涂层表面的电导率仍比块体材料电导率低30%左右。
     单电池800°C的输出性能表明,采用制备态YSZ涂层作为电解质材料的单电池其开路电压为0.820V,采用经过4次和8次溶胶浸渗处理后的涂层作为电解质材料的单电池,其开路电压分别升高至1.017V和1.036V。对于采用制备态电解质涂层的单电池,其最大输出功率密度为70mW/cm2;电解质涂层经过4次和8次浸渗处理后,单电池的最大输出功率密度分别提高到为140mW/cm2和153 mW/cm2。
     与此同时,采用双源蒸发工艺,通过同时蒸发金属Ni和YSZ锭料沉积制备了Ni-YSZ涂层。SEM分析表明,Ni-YSZ涂层表现为典型的柱状晶生长模式。TEM分析表明涂层内的晶粒细小且含有大量纳米级的孔隙。N2吸附曲线结果表明,涂层的比表面积为3.232m2/g,平均孔径为25nm,总的孔体积为0.0202cm3/g。由于第二相粒子的加入对阴影效应的强化作用,当Ni含量由18%增加至44%时,Ni-YSZ涂层的孔隙率亦由12%增长至19%;当Ni含量进一步增长至63%,涂层的孔隙率呈现出下降趋势,由19%下降至11%。随着Ni含量的变化,Ni-YSZ涂层的电导率表现出了典型的S形曲线。
     采用双源蒸发工艺,通过同时蒸发NiO和YSZ锭料沉积制备了NiO-YSZ涂层,并在800oC氢气气氛下还原2h得到最终的Ni-YSZ涂层。SEM分析表明涂层的孔隙直径大部分在几十纳米到几百纳米范围内。相对于直接利用EB-PVD工艺制备的Ni-YSZ涂层,NiO-YSZ涂层经过还原处理得到的Ni-YSZ涂层,其比表面积由3.232m2/g提高到4.330m2/g,总的孔隙体积由0.02024cm3/g提高到0.03460cm3/g。通过对电子束流的控制,成功制备出了一种成分及孔隙率均沿断面连续变化的梯度涂层,涂层在靠近基板一侧孔隙率及孔隙直径较大,而在靠近表面一侧涂层的孔隙直径以及孔隙率均明显变小。在采用上述方法制得NiO-YSZ阳极涂层的基础上,关闭用于蒸发NiO的电子束电流,通过连续沉积制备了YSZ电解质涂层,实现了SOFC阳极及电解质涂层的连续沉积。
Electron beam physical vapor deposition (EB-PVD) technique was employed to prepare the Ni-YSZ anode coatings as well as the YSZ electrolyte coatings for SOFCs in this study. The chemical composition and microstructure of the coatings were analyzed by x-ray fluorescence spectra (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), electron probe mciroanalysis (EPMA), transmitting electron microscope (TEM), and atom force microscope (AFM). Then the properties of these coatings, such as porosity, gas tightness, electrical conductivity and so on, were measured and characterized. At the same time, unit cells were assembled and output performances were investigated.
     8YSZ electrolyte coatings were prepared by EB-PVD process on porous NiO-YSZ substrates. Both the as-deposited coating and the coating annealed at 1000°C consisted of a single phase of cubic YSZ. SEM analysis demonstrated that electrolyte coating exhibited a characteristic columnar structure. In gaps between the columns, there were many pores with the magnitude of micrometers. A uniform distribution of zirconium, yttrium and oxygen was realized along the direction across coating thickness according to EPMA. TEM analysis indicated that there were many crystalline grains with shapes of strip and pyramid in coating cross-section. Many white lines, with the width of several nanometers, appeared within these grains and inclined with some angle.
     Gas-tightness measurement results demonstrated that a gas permeability of 9.78×10-5 cm4·N-1·s-1 was obtained for YSZ electrolyte prepared by EB-PVD, which was lower than that of electrolyte coating prepared by atmosphere plasma spraying by 60%. The electrical conductivity of YSZ electrolyte coating exhibited a typical anisotropy. In temperature range of 500°C~800°C, the electrical conductivity in direction perpendicular to coating surface was obviously higher that in direction parallel to coating surface. According to Arrhenius equation, activation energies for electrical conduction in the directions both perpendicular and parallel to coating surface were 80.884kJ/mol and 110.147kJ/mol respectively.
     A sol infiltration device at subatmospheric pressure was used to densify the YSZ electrolyte coatings. Then the post-sintering process was determined according to the analysis results of DSC-TG and XRD for sol precursor. After the sol infiltration treatment, the coefficient of gas permeability dropped from 9.78×10-5 cm4·N-1·s-1 for as-deposited coating to 3.18×10-5 cm4·N-1·s-1 and 9.56×10-6 cm4·N-1·s-1 for coating after 4 and 8 times of infiltration treatment respectively. SEM analysis showed that the intergranular pores and gaps on the surface of as-deposited coating had been stuffed by the decomposed products from the sol. The coating surface became smoother and denser after densification treatment. A further SEM analysis of fracture surface of the infiltrated coating demonstrated that the sol had penetrated into the coating with depth of up to 3.5μm. The electrical conductivity in direction perpendicular to coating surface after 4 and 8 times of infiltration treatment increased no more than 10% comparable to that of as-deposited coating. Furthermore, an obvious increment in the electrical conductivities of electrolyte coatings between 4 and 8 times of infiltration treatment did not occurred. The electrical conductivity in direction perpendicular to coating surface after infiltration treatment was still lower than that of bulk 8YSZ by 30%.
     According to the measurement results of output performances of unit cells at 800°C, an open circuit voltage (OCV) of 0.820V was obtained for the cell using as-deposited electrolyte coating. At the same time, the OCV increased to 1.017V and 1.036V for cells using electrolyte coatings after 4 and 8 times of infiltration treatments respectively. For the cell employing as-deposited coating as electrolyte, a maximum output powder density of 70mW/cm2 was obtained. On the contrary, the maximum output powder densities increased to 140mW/cm2 and 153mW/cm2 for cells using electrolyte coatings after 4 and 8 times of infiltration treatments respectively.
     At the same time, Ni-YSZ coatings were prepared by EB-PVD through simultaneously evaporating two ingots of metal Ni and YSZ. SEM analysis demonstrated that these coating exhibited a typical columnar growth pattern. Between the loose columns, there were many gaps and pores. TEM analysis showed that many fine grains and nano-sized pores existed in this coating. According to N2 adsorption results, the surface specific area of this coating was up to 3.232m2/g. At the same time, the average pore diameter of 25nm and total pore volume of 0.0202cm3/g were obtained. Due to the strengthening effects of the addition of the second phase particles on coating porosity, the porosity of this coating increased from 12% to 19% when the Ni content in the coating increased from 18% to 44%. On the contrary, when the Ni content further increased to 63%, the coating porosity decreased from 19% to 11%. The electrical conductivity behavior of Ni-YSZ coating showed an S-shaped curve accompanying the increase of Ni content.
     NiO-YSZ coatings were prepared by EB-PVD through simultaneously evaporating two ingots of NiO and YSZ and then the final Ni-YSZ coatings were obtained after a reduction treatment at 800oC in hydrogen for 2h. SEM analysis showed that the pore diameters were mainly in the range from tens of nanometers to hundreds of nanometers and the characteristics of columnar grains vanished. Comparable to the Ni-YSZ coatings prepared through directly evaporating two ingots of Ni and YSZ, the specific surface area increased from 3.232m2/g to 4.330m2/g for final Ni-YSZ coatings obtained from NiO-YSZ coatings a reduction treatment. At the same time, the total pore volume also increased from 0.02024cm3/g to 0.03460cm3/g. A graded coating, with gradient not only in element distribution but also in porosity distribution along the direction across coating thickness, was realized through adjusting and controlling the electron beam currents. In this graded coating, a high porosity and big pore diameter were achieved in one side closed to substrate, while a low porosity and small pore diameter were obtained in the other side close to coating surface. On the basis of anode preparations mentioned above, a continuous deposition of YSZ electrolyte coating was realized through shutting off electron beam current for evaporating NiO ingot, consequently resulting in a continuous deposition of anode and electrolyte coatings for SOFCs.
引文
1衣宝廉.燃料电池-原理?技术?应用.化学工业出版社. 2005: 428~512
    2韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社. 2004: 3~5
    3 K. Foger, J. G. Love. Fifteen Years of SOFC Development in Australia. Solid State Ionics. 2004, 174: 119~126
    4 M. Dokiya. SOFC System and Technology. Solid State Ionics. 2002, 152-153: 383~392
    5 F. Tietz, H. P. Buchkremer, D. St?ver. Components Manufacturing for Solid Oxide Fuel Cells. Solid State Ionics. 2002, 152-153: 373~381
    6 M. A. Haldane, T. H. Etsell. Fabrication of Composite SOFC Anodes. Materials Science and Engineering B. 2005, 121: 120~125
    7 K. C. Wincewicz, J. S. Cooper. Taxonomies of SOFC Material and Manufacturing Alternatives. Journal of Power Sources. 2005, 140: 280~296
    8 K. Choy, W. Bai, S. Charojrochkul, B. C. H. Steele. The Development of Intermediate-Temperature Solid Oxide Fuel Cells for the Next Millennium. Journal of Power Sources. 1998, 71: 361~369
    9 P. Charpentier, P. Fragnaud, D. M. Schleich, E. Gehain. Preparation of Thin Film SOFCs Working at Reduced Temperature. Solid State Ionics. 2000, 135: 373~380
    10 Z. Zeng, K. Natesan. Corrosion of Metallic Interconnects for SOFC in Fuel Gases. Solid State Ionics. 2004, 167: 9~16
    11 B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun, J. C. Sun. Innovative Low Temperature SOFCs and Advanced Materials. Journal of Power Sources. 2003, 118: 47~53
    12 S. R. Le, K. N. Sun, N. Q. Zhang, M. Z. An, D. R. Zhou, J. D. Zhang, D. G. Li. Novel Compressive Seals for Solid Oxide Fuel Cells. Journal of Power Sources. 2006, 161: 901~906
    13 J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L. J. Gauckler. Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells. Solid State Ionics. 2000, 131: 79~96
    14 A. Nagata, H. Okayama. Characterization of Solid Oxide Fuel Cell Device Having A Three-Layer Film Structure Grown by RF Magnetron Sputtering. Vacuum. 2002, 66: 523~529
    15 T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang. Material Research for Planar SOFC Stack. Solid State Ionics. 2002, 148: 513~519
    16 D. Simwonis, H. Thulen, E. J. Dias, A. Naoumidis, D. St?ver. Properties of Ni/YSZ Porous Cermets for SOFC Anode Substrates Prepared by Tape Casting and Coat-Mix Process. Journal of Materials Processing Technology. 1999, 92-93: 107~111
    17范宝安,朱庆山,谢朝晖.固体氧化物燃料电池YSZ电解质薄膜的制备方法概述.过程工程学报. 2004, 4 (1): 75~83
    18 S. B. Savignat, M. Chiron, C. Barthet. Tape Casting of New Electrolyte and Anode Materials for SOFCs Operated at Intermediate Temperature. Journal of the European Ceramic Society. 2007, 27: 673~678
    19 B. A. Movchan, G. S. Marinski. Gradient Protective Coatings of Different Application Produced by EB-PVD. Surface and Coatings Technology. 1998, 100-101: 309~315
    20 C. Leyens, U. Schulz, B. A. Pint, I. G. Wright. Influence of Electron Beam Physical Vapor Deposited Thermal Barrier Coating Microstructure on Thermal Barrier Coating System Performance under Cyclic Oxidation Conditions. Surface and Coatings Technology. 1999, 120-121: 68~76
    21徐惠彬,宫声凯,刘福顺.乌克兰巴顿焊接研究所的电子束物理气相沉积技术.航空制造工程. 1997, 6: 6~8
    22 Y. Li, J. P. Zhao, G. Zeng, C. L. Guan, X. D. He. Ni/Ni3Al Microlaminate Composite Produced by EB-PVD and the Mechanical Properties. Materials Letters. 2004, 58:1629~1633
    23 L. Ma, X. D. He, Y. Li. Optimized Design and Preparation of Ti/TiAl Laminated Composite. Transaction of Nonferrous Metal Society of China. 2005, 15 (3): 48~51
    24 L. S. Palatnid, Y. F. Komnik. Thermal-Expansion Measurements of Vacancy Formation Parameters in Zinc Single Crystals. Physics Metal and Metallurgy. 1989, 56: 32~37
    25 B. A. Movchan, A. V. Demchishin. Study of Structured Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide. Fized Metallurgy Metalloved. 1969, 28: 83~90
    26马李,孙跃,赫晓东,李垚.电子束物理气相沉积工艺制备超薄高温结构材料的研究.材料导报. 2006, 20 (11): 100~103
    27 U. Schulz, K. Fritscher, C. Leyens. Two-Source Jumping Beam Evaporation for Advanced EB-PVD TBC Systems. Surface & Coatings Technology. 2000, 133-134: 40~48
    28 U. Schulz, M. Schmücker. Microstructure of ZrO2 Thermal Barrier Coatings Applied by EB-PVD. Materials Science and Engineering A. 2000, A276: 1~8
    29 U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. S. Brings, O. Lavigne, J. M. Dorvaux, M. Poulain, R. Mévrel, M. Caliez. Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings. Aerospace Science and Technology. 2003, 7: 73~80
    30 M. Movchan, Y. Rudoy. Composition, Structure and Properties of Gradient Thermal Barrier Coatings (TBCs) Produced by Electron Beam Physical Vapor Deposition (EB-PVD). Materials and Design. 1998, 19: 253~258
    31 B. A. Movchan, K. Y. Yakovchuk. Graded Thermal Barrier Coatings, Deposited by EB-PVD. Surface & Coatings Technology. 2004, 188-189: 85~92
    32 H. B. Guo, X. F. Bi, S. K. Gong, H. B. Xu. Microstructure Investigation on Gradient Porous Thermal Barrier Coating Prepared by EB-PVD. Scripta Materialia. 2001, 44: 683~687
    33 H. B. Xu, S. K. Gong, L. Deng. Preparation of Thermal Barrier Coatings for Gas Turbine Blades by EB-PVD. Thin Solid Films. 1998, 334: 98~102
    34 H. B. Guo, H. B. Xu, X. F. Bi, S. K. Gong. Preparation of Al2O3-YSZ Composite Coating by EB-PVD. Materials Science and Engineering A. 2002, A325: 389~393
    35 J. Singh, D. E. Wolfe. Nano and Macro-Structured Component Fabrication by Electron Beam-Physical Vapor Deposition. Journal of Materials Science. 2005, 40: 1~26
    36 B. A. Movchan, F. D. Lemkey. Some Approaches to Producing Microporous Materials and Coatings by EB-PVD. Surface & Coatings Technology. 2003,165: 90~100
    37 B. K. Jang, H. Matsubara. Influence of Rotation Speed on Microstructure and Thermal Conductivity of Nano-Porous Zirconia Layers Fabricated by EB-PVD. Scripta Materialia. 2005, 52: 553~558
    38 B. K. Jang, H. Matsubara. Microstructure of Nanoporous Yttria-Stabilized Zirconia Films Fabricated by EB-PVD. Journal of the European Ceramic Society. 2006, 26: 1585~1590
    39 J. Haug, A. Wiedenmann, A. Flores, B. S. Brings, P. Strunz. Evolution of Pore Microstructure in Thermal Barrier Coatings Studied by SANS. Physica B. 2006, 385-386: 617~619
    40 A. F. Renteria, B. Saruhan, U. Schulz, H. J. Raetzer-Scheibe. Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs. Surface & Coatings Technology. 2006, 201: 2611~2620
    41 Y. C. Jung, T. Sasaki, T. Tomimatsu, K. Matsunaga, T. Yammoto, Y. Kagawa, Y. Ikuhara. Distribution and Structure of Nanopores in YSZ-TBC Deposited by EB-PVD. Science and Technology of Advanced Materials. 2003, 4: 571~574
    42 B. A. Movchan. Inorganic Materials and Coatings Produced by EBPVD. Surface Engineering. 2006, 22: 35~46
    43 F. D. Lemkey, B. A. Movchan. Synthesis of Porous and Dense Elements of SOFC by Electron Beam Physical Vapor Deposition (EB-PVD). NATO Advanced Research Workshop on Fuel Cell Technologies Kyiv, UKRAINE. 2004, JUN 06-10: 165~168
    44史丽萍,赫晓东,李垚,杜善义. EB-PVD金属/陶瓷微层复合材料的研究和应用.宇航材料工艺. 2003, 5: 17~19
    45 L. P. Shi, X. D. He, Y. Li. Theory Deposition Model and Influencing Factors during Process of Preparing Micro-layer Laminate by EB-PVD. Acta Metallurgica Sinica. 2004, 17 (3): 283~287
    46 B. A. Movchan. EB-PVD Technology in the Gas Turbine Industry: Present and Future. Journal of the Minerals Metals and Materials Society. 1996, 11: 40~43
    47金雪松,毕晓昉,欧盛荃. K18/Mo纳米多层材料的力学性能及高温稳定性.金属学报. 2000, 3: 129~131
    48 Y. Li, J. P. Zhao, G. Zeng, C. L. Guan, X. D. He. Ni/Ni3Al Microlaminate Composite Produced by EB-PVD and the Mechanical Properties. Materials Letters. 2004, 58: 1629~1633
    49 L. Ma, X. D. He, Y. Li. Optimized Design and Preparation of Ti/TiAl Laminate Composite. Transaction of Nonferrous Metal Society of China. 2005, 15 (3): 48~51
    50 X. D. He, Y. Xin, M. W. Li, Y, Sun. Microstructure and Mechanical Properties of ODS-based Superalloy Foil Produced by EB-PVD. Journal of Alloys and Compounds. 2007, doi: 10.1016/j.jallcom.2007.11.122
    51 T. A. Damberger. Fuel Cell for Hospital. Journal of Power Sources. 1998, 71: 45~50
    52 K. Joon. Fuel Cells-A 21st Century Power System. Journal of Power Sources. 1998, 71: 12~18
    53黄贤良,赵海雷,吴卫江.固体氧化物燃料电池阳极材料的研究进展.硅酸盐学报. 2005, 11: 1~5
    54 A. Casanova. A Consortium Approach to Commercialized Westinghouse Solid Oxide Fuel Cell Technology. Journal of Power Sources. 1998, 71: 65~70
    55 K. Hassmann, R. Rippel. A New Approach to Fuel Cell Investment Strategy. Journal of Power Sources. 1998, 71: 75~79
    56周军.发达国家燃料电池发电技术开发现状.全球科技经济瞭望. 1999, 2: 42~43
    57 E. Ponthieu. European Fuel Cell Research, Development and Demonstrations: Future Programmers and Aims. Journal of Power Sources. 1998, 72: 244~246
    58 W. X Chen, T. L Wen, H. W Nie, R. Zheng. Study of Ln0.6Sr0.4Co0.8Mn0.2O3-δ(Ln=La, Gd, Sm or Nd) as the Cathode Materials for Intermediate Temperature SOFC. Materials Research Bulletin. 2003, 38: 1319~1328
    59 B. Huang, S. R. Wang, R. Z. Liu, X. F. Ye, H. W. Nie, X. F. Sun, T. L. Wen. Performance of La0.75Sr0.25Cr0.5Mn0.5O3?δPerovskite-structure Anode Material at Lanthanum Gallate Electrolyte for IT-SOFC Running on Eethanol Fuel. Journal of Power Sources. 2007, 167: 39~46
    60 T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang.Material Research for Planar SOFC Stack. Solid State Ionics. 2002, 148: 513~519
    61 R. Zheng, X. M. Zhou, S. R. Wang, T. -L. Wen, C. X. Ding. A Study of Ni+ 8YSZ/8YSZ/La0.6Sr0.4CoO3?δIT-SOFC Fabricated by Autmospheric Plasma Spraying. Journal of Power Sources. 2005, 140: 217~225
    62 H. B. Wang, J. F. Gao, D. K. Peng, G. Y. Meng. Plasma Deposition of La0.8Sr0.2MnO3 Thin Films on Yttria-stabilized Zirconia from Aerosol Precursor. Materials Chemistry and Physics. 2001, 72: 297~300
    63 H. B. Wang, H. Z. Song, C. R. Xia, D. K. Peng, G. Y. Meng. Aerosol-assisted MOCVD Deposition of YDC Thin Films on (NiO+YDC) Substrates. Materials Research Bulletin. 2000, 35: 2363~2370
    64 X. Y. Xu, C. R. Xia, S. G. Huang, D. K. Peng. YSZ Thin Films Deposited by Spin-Coating for IT-SOFCs. Ceramics International. 2005, 31: 1061~1064
    65 G. Y. Meng, C. R. Jiang, J. J. Ma, Q. L. Ma, X. Q. Liu. Comparative Study on the Performance of a SDC-based SOFC Fueled by Ammonia and Hydrogen. Journal of Power Sources. 2007, 173: 189~193
    66 G. Y. Meng, H. Z. Song, Q. Dong, D. K. Peng. Application of Novel Aerosol-Assisted Chemical Vapor Deposition Technique for SOFC Thin Films. Solid State Ionics. 2004, 175: 29~34
    67 G. Y. Meng, G. L. Ma, Q. L. Ma, R. R. Peng, X. Q. Liu. Ceramic Membrane Fuel Cells Based on Solid Proton Electrolytes. Solid State Ionics. 2007, 178: 697~703
    68 Y. H. Yin, S. Y. Li, C. R. Xia, G. Y. Meng. Electrochemical Performance of IT-SOFCs with A Double-Layer Anode. Journal of Power Sources. 2007, 167: 90~93
    69 X. L. Zhou, J. J. Ma, F. J. Deng, G. Y. Meng, X. Q. Liu. A High Performance Interconnecting Ceramics for Solid Oxide Fuel Cells (SOFCs). Solid State Ionics. 2007, 177: 3461~3466
    70 Y. J. Yang, T. L. Wen, H. Y. Tu, D. Q. Wang, J. H. Yang. Characteristics of Lanthanum Strontium Chromite Prepared by Glycine Nitrate Process. Solid State Ionics. 2000, 135: 475~479
    71 J. R. Kong, K. N. Sun, D. R. Zhou, N. Q. Zhang, J. Mu, J. S. Qiao. Ni-YSZ Gradient Anodes for Anode-Supported SOFCs. Journal of Power Sources.2007, 166: 337~342
    72 Q. S. Zhu, B. A. Fan. Low Temperature Sintering of 8YSZ Electrolyte Film for Intermediate Temperature Solid Oxide Fuel Cells. Solid State Ionics. 2005, 176: 889~894
    73 J. M. Wang, Z. Lü, X. Q. Huang, K. F. Chen, N. Ai, J. Y. Hu, W. H. Su. YSZ Films Fabricated by a Smoothing Technique and Its Application in Solid Oxide Fuel Cell. Journal of Power Sources. 2007, 163: 957~959
    74 A. Nagata, H. Okayama. Charaterization of Solid Oxide Fuel Cell Device Having a Three-layer Film Structure Grown by RF Magnetron Sputtering. Vacuum. 2002, 66: 523~529
    75 H. Y. Zhu, A. M. Colclasure, R. J. Kee, Y. B. Lin, S. A. Barnett. Anode Barrier Layers for Tubular Solid-Oxide Fuel Cells with Methane Fuel Streams. Journal of Power Sources. 2006, 161: 413~419
    76 P. Lenormand, D. Caravaca, C. Laberty-Robert, F. Ansart. Thick Films of YSZ Electrolytes by Dip-coating Process. Journal of the European Ceramic Society. 2005, 25: 2643~2646
    77贾莉,吕喆,黄喜强,李国卿,苏文辉.用于燃料电池的氧化锆薄膜制备方法进展.电源技术. 2004, 28 (7): 449~451
    78 J. H. Lee, J. W. Heo, D. S. Lee. The Impact of Anode Microstructure on the Power Generating Characteristics of SOFC. Solid State Ionics. 2003, 158: 225~232
    79 Y. H. Koh, J. J. Sun, H. E. Kim. Freeze Casting of Porous Ni-YSZ Cermets. Materials letters. 2007, 61: 1283~1287
    80 J. W. Yan, X. H. Hou, K. L. Choy. The Electrochemical Properties of LSM-based Cathodes Fabricated by Electrostatic Spray Assisted Vapor deposition. Journal of Power Sources. 2008, 180: 373~379
    81 D. Beckel, U. P. Muecke, T. Gyger, G. Florey, A. Infortuna, L. J. Gauckler. Electrochemical Performance of LSCF Based Thin Film Cathodes Prepared by Spray Pyrolysis. Solid State Ionics. 2007, 178: 407~415
    82 J. W. Fergus. Lanthanum Chromite-based Materials for Solid Oxide Fuel Cell Interconnects. Solid State Ionics. 2004, 171: 1~15
    83 M. Mori, T. Yamamoto, T. Ichikawa, Y. Takeda. Dense Sintered Conditions and Sintering Mechanisms for Alkaline Earth Metal (Mg, Ca and Sr)-dopedLaCrO3 Perovskites under Reducing Atmosphere. Solid State Ionics. 2002, 148: 93~101
    84 P. Duran, J. Tartaj, F. Capel, C. Moure. Formation, Sintering and Thermal Expansion Behaviour of Sr- and Mg-Doped LaCrO3 as SOFC Interconnector Prepared by the Ethylene Glycol Polymerized Complex Solution Synthesis Method. Journal of the European Ceramic Society. 2004, 24: 2619~1629
    85 M. Mori, N. Sammes. Sintering and Thermal Expansion Characterization of Al-doped and Co-doped Lanthanum Strontium Chromites Synthesized by the Pechini Method. Solid State Ionics. 2002, 146: 301~312
    86 S. Tanasescu, D. Berger, D. Neiner, N. D. Totir. Thermodynamic Characterisation of Some Doped Lanthanum Chromites Used as Interconnects in SOFC. Solid State Ionics. 2003, 157: 365~370
    87 J. W. Fergus. Metallic Interconnect for Solid Oxide Fuel Cells. Materials Science and Engineering A. 2005, 397: 271~283
    88 T. Horita, Y. P. Xiong, H. Kishimoto, K. Yamaji, N. Sakai, H. Yokokawa. Application of Fe-Cr Alloy to Solid Oxide Fuel Cell for Cost-reduction Oxidation Behavior of Alloys in Methane Fuel. Journal of Power Sources. 2004, 131: 293~298
    89 H. Kurokawa, K. Kawamura, T. Maruyama. Oxidation Behavior of Fe-16Cr Alloy Interconnect for SOFC under Hydrogen Potential Gradient. Solid State Ionics. 2004, 168: 13~21
    90 Z. Zeng, K. Natesan. Corrosion of Metallic Interconnects for SOFC in Fuel Gases. Solid State Ionics. 2004, 167: 9~16
    91 J. Li, J. Pu, J. Z. Xiao, X. L. Qian. Oxidation of Haynes 230 Alloy in Reduced Temperature Solid Oxide Fuel Cell Environments. Journal of Power Sources. 2005, 139: 182~187
    92 J. H. Kim, R. H. Song, S. H. Hyun. Effect of Slurry-coated LaSrMnO3 on the Electrical Property of Fe-Cr Alloy for Metallic Interconnect of SOFC. Solid State Ionics. 2004, 174: 185~191
    93 W. Qu, J. Li, D. G. Ivey. Sol-gel Coatings to Reduce Oxide Growth in Interconnects Used for Solid Oxide Fuel Cells. Journal of Power Sources. 2004, 138: 162~173
    94单耕,由宏新,丁信伟,阿布里提.阿布都拉.固体氧化物燃料电池阳极结构研究进展.电源技术, 2005, 29 (7): 488~490
    95 S. Hui, D. F. Yang, Z. W. Wang, S. Yick, C. Decès-Petit, W. Qu, A. Tuck, R. Maric, D. Ghosh. Metal-supported Solid Oxide Fuel Cell Operated at 400-600°C. Jouranl of Power Sources. 2007, 167: 336~339
    96 I. Villarreal, C. Jacobson, A. Leming, Y. Matus, S. Visco, L. D. Jonghe. Metal-Supported Solid Oxide Fuel Cells. Electrochemical and Solid-State Letter. 2003, 6 (9): 178~179
    97 Y. B. Matus, L. C. D. Jonghe, C. P. Jacobson, S. J. Visco. Metal-Supported Solid Oxide Fuel Cell Membranes for Rapid Thermal Cycling. Solid State Ionics. 2005, 176: 443~449
    98 K. A. Khor, L. G. Yu, S. H. Chan, X. J. Chen. Densificaiton of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering (SPS). Journal of the European Ceramic Society. 2003, 23: 1855~1863
    99 G. Schiller, R. H. Henne, M. Lang, R. Ruckd?schel, S. Schaper. Development of Vacuum Plasma Sprayed Thin-Film SOFC for Reduced Operating Temperature. Fuel Cells Bulletin. 2000, 21: 7~12
    100 B. A. Movchan. Inorganic Materials and Coatings Produced by EBPVD. Surface Engineering. 2006, 22: 35~46
    101 R. Hui, Z. W. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, D. Ghosh. Thermal Plasma Spraying for SOFCs Applications, Potential Advantages, and Challenges. Journal of Power Sources, 2007, 170: 308~323
    102 S. K. Woo, T. H. Shin, S. Lee, et al. Preparation of YSZ Thin Film for Electrolyte of SOFCs by Electron Beam PVD. 2004 Joint International Meeting-206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan. MA 2004-02, 2004: 2239
    103 S. K. Woo, T. H. Shin, S. Lee, et al. Preparation of Yttria Stabilized Zirconia Thin Film for SOFC Electrolyte by Electron Beam PVD. 2004 Joint International Meeting-206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan. MA 2004-02: 49~53
    104 G. Laukaitis, J. Dudonis. Development of SOFC Thin Film Electrolyte Using Electron Beam Evaporation Technique from the Cubic Phase YSZ Powder. NATO Advanced Research Workshop on Fuel Cell Technologies Kyiv, UKRAINE. 2004, JUN 06-10: 32~35
    105 G. Laukaitis, J. Dudonis, D. Mil?ius. YSZ Thin Films Deposited by E-Beam Technique. Thin Solid Films. 2006, 515: 678~682
    106 G. Laukaitis, J. Dudonis, A. F. Orliukas, D. Mil?ius. Properties of YSZ Thin Films Deposited by E-beam Technique. Solid State Ionics. 2008, 179: 182~187
    107 G. Laukaitis, J. Dudonis, D. Mil?ius. Deposition of YSZ Thin Films Using Electron Beam Evaporation Technique. Materials Science. 2005, 11: 268~271
    108 G. Laukaitis, J. Dudonis, D. Mil?ius. Microstructure and Surface Morphology of YSZ Thin Films Deposited by E-Beam Technique. Applied Surface Science. 2008, 254: 2980~2987
    109 G. Laukaitis, J. Dudonis, D. Mil?ius. Morphology and Growth of E-Beam Deposited YSZ Thin Films. Vacuum. 2007, 81: 1288~1291
    110 G. Laukaitis, J. Dudonis. Microstructure of Gadolinium Doped Ceria Oxide Thin Films Formed by Electron Beam Deposition. Journal of Alloys and Compounds. 2007, 459: 320~327
    111 G. Laukaitis, J. Dudonis, D. Mil?ius. Gadolinium Doped Ceria Thin Films Deposited by E-beam Technique. Solid State Ionics. 2008, 179: 66~71
    112 T. H. Shin, J. H. Yu, S. Lee, I. S. Han, D. W. Seo, K. S. Hong, S. K. Woo, S. H. Hyun. Fabrication of YSZ Thin-Film for SOFC Applied by Electron Beam PVD. Materials Science Forum. 2006, 510-511: 1114~1117
    113 T. H. Shin, J. H. Yu, S. Lee, I. S. Han, S. K. Woo, B. K. Jang, S. H. Hyun. Preparation of YSZ Electrolyte for SOFC by Electron Beam PVD. Key Engineering Materials. 2006, 317-318: 913~916
    114 S. K. Woo, T. H. Shin, J. H. Yu, S. Lee, D. W. Seo, K. S. Hong. Performance of SOFC with electrolyte film prepared by EB-PVD. 208th Meeting of the Electrochemical Society, Oct 16-21 2005, Los Angeles, CA, United States: 1992~1994
    115 H. Y. Jung, K. S. Hong, H. C. Kim, J. K. Park, J. W. Son, J.S. Kim, H. W. Lee, J. H. Lee. Characterization of Thin-Film YSZ Deposited via EB-PVD Technique in Anode-supported SOFCs. Journal of the Electrochemical Society. 2006, 153 (6): 961~966
    116 F. D. Lemkey, B. A. Movchan. Synthesis of Porous and Dense Elements ofSOFC by Electron Beam Physical Vapor Deposition (EB-PVD). Full Cell Technologies: State and Perspectives. 2005, 8: 73~80
    117 W. Z. Zhu, S. C. Deevi. Development of Interconnect Materials for Solid Oxide Fuel Cells. Materials Science and Engineering A. 2003, 348: 227~243
    118 A. Jeffrey, W. Fergus. Metallic Interconnects for Solid Oxide Fuel Cells. Materials Science and Engineering A. 2005, 397: 271~283
    119 X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, L. C. D. Jonghe. Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties. Solid State Ionics. 2005, 176: 425~433
    120 W. Qu, J. Li, D. G. Ivey. Sol-gel Coatings to Reduce Oxide Growth in Interconnects Used for Solid Oxide Fuel Cells. Journal of Power Sources. 2004, 138: 162~173
    121刘石明,邢长生,钱晓良.中温固体氧化物燃料电池SUS430/LaSrMnO3复合连接板材料制备研究.材料科学与工程学报. 2005, 93: 4~7
    122 T. Brylewski, K. Przybylski, J. Morgiel. Microstructure of Fe-25Cr/(La,Ca)CrO3 Composite Interconnector in Solid Oxide Fuel Cell Operating Conditions. Material Chemistry and Physics. 2003, 81: 434~437
    123 K. Fujita, K. Ogasawara, Y. Matsuzaki, T. Sakurai. Prevention of SOFC Cathode Degradation in Contact with Cr-containing Alloy. Journal of Power Sources. 2004, 131: 261~269
    124 N. Oishi, T. Namikawa, Y. Yamazaki. Oxidation Behavior of a La-coated Chromia-forming Alloy and the Electrical Property of Oxide Scales. Surface and Coatings Technology. 2000, 132: 58~64
    125 G. S.马林斯基.新型电子束物理气相沉积设备.航空工艺技术. 1998, 12 (2): 31~32
    126方克明,胡晓军,邹兴,陈锡花.纳米碳纤维微观结构的高分辨电镜研究.北京科技大学学报. 2001, 23 (6): 530~531
    127 C. J. Li, C. X. Li, Y. Z. Xing, M. Gao, G. J. Yang. Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-sprayed Cermet Supported Tubular SOFC. Solid State Ionics. 2006, 177: 2065~2069
    128 X. J. Ning, C. X. Li, C. J. Li, G. J. Yang. Modification of Microstructure and Electrical Conductivity of Plasma-sprayed YSZ Deposit Through Post-densification Process. Materials Science and Engineering A. 2006, 428:98~105
    129李成新,宁先进,李长久.等离子喷涂结合致密化工艺制备SOFC电解质层.电源技术. 2004, 28 (9): 565~568
    130 T. Hosomi, M. Matsuda, M. Miyake. Electrophoretic Deposition for Fabricaiton of YSZ Electrolyte Film on Non-conducting Porous NiO-YSZ Composite Substrate for Intermediate Temperature SOFC. Journal of the European Ceramic Society. 2007, 27: 173~178
    131 M. G. Chourashiya, S. H. Pawar, L. D. Jadhav. Synthesis and Characterization of Gd0.1Ce0.9O1.95 Thin Films by Spray Pyrolysis Technique. Applied Surface Science. 2008, 254: 3431~3435
    132 J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L. J. Gauckler. Fabrication of Thin Electrolytes for Second-generation Solid Oxide Fuel Cells. Solid State Ionics. 2000, 131: 17~96
    133 J. H. Joo, G. M. Choi. Electrical Conductivity of YSZ Film Grown by Pulsed Laser Deposition. Solid State Ionics. 2006, 177: 1053~1057
    134 K. Wada, N. Yamaguchi, H. Matsubara. Crystallographic Texture Evolution in ZrO2-Y2O3 Layers Produced by Electron Beam Physical Vapor Deposition. Surface and Coatings Technology. 2004, 184: 55-62
    135 T. Kato, K. Matsumoto, H. Matsubara, Y. Ishiwata, H. Saka, T. Hirayama, Y. Ikuhara. Transmission Electron Microscopy Characterization of A Yttria-stabilized Zirconia Coating Fabricated by Electron Beam-Physical Vapor Deposition. Surface & Coatings Technology. 2005, 194: 16~23
    136 M. F. Han, X. L. Tang, H. Y. Yin, S. P. Peng. Fabrication, Microstructure and Properties of a YSZ Electrolyte for SOFCs. Journal of Power Sources. 2007, 165: 757~763
    137 L. Jia, Z. Lü, X.Q. Huang, Z. G. Liu, K. F. Chen, X. Q. Sha, G. Q. Li, W. H. Su. Preparation of YSZ Film by EPD and Its Application in SOFCs. Journal of Alloys and Compounds. 2006, 424: 299~303
    138 C. J. Li, X. J. Ning, C. X. Li. Effect of Densification Processes on the Properties of Plasma-sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells. Surface & Coatings Technology. 2005, 190: 60~64
    139 M. F. Han, X. L. Tang, H. Y. Yin, S. P. Peng. Fabrication, Microstructure and Properties of A YSZ Eelctrolyte for SOFCs. Journal of Power Sources. 2007,165: 757~763
    140 E. Ivers-Tiffee, A. Weber, D. Herbstritt. Materials and Technologies for SOFC-Components. Journal of the European Ceramic Society. 2001, 21: 1805~1809
    141 E. Wanzenberg, F. Tietz, P. Panjan, D. St?ver. Influence of Pre- and Post-Heat Treatment of Anode Substrate on the Properties of DC-Sputtered YSZ Electrolyte Films. Solid State Ionics. 2003, 159: 1~8
    142 B. Saruhan, A. F. Renteria, M. Keshmiri, T. Troczynski. Liquid-phase-infiltration of EB-PVD-TBCs with Aging Inhibitior. Journal of the European Ceramic Society. 2006, 26: 49~58
    143 S. G. Lee. Effects of Sol Infiltration on the Screen-Printed Lead Zirconate Titanate Thick Films. Materials Letters. 2007, 61: 1982~1985
    144 S. Ahmaniemi, P. Vuoristo, T. M?ntyl?. Improved Sealing Treatment for Thick Thermal Barrier Coatings. Surface and Coatings Technology. 2002, 151-152: 412~417
    145 L. Rose, O. Kesler, Z. L. Tang, A. Burgess. Application of Sol Gel Spin Coated Yttria-stabilized Zirconia Layers for the Improvement of Solid Oxide Fuel Cell Electrolytes Produced by Atmospheric Plasma Spraying. Journal of Power Sources. 2007, 167: 340~348
    146张勤俭,张建华,李敏,张勤河,毕进子.溶胶-凝胶法制备Al2O3-ZrO2陶瓷薄膜早期干燥过程的研究.硅酸盐学报. 2002, 30: 128~130
    147 C. J. Li, X. J. Ning, C. X. Li. Effect of Densification Processes on the Properties of Plasma-sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells. Surface & Coatings Technology. 2005, 190: 60~64
    148 C. J. Li, C. X. Li, X. J. Ning. Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-supported Tubular SOFC. Vacuum. 2004, 73: 699~703
    149 A. C. Müller, D. Herbstritt, E. Ivers-Tiffée. Development of A Multilayer Anode for Solid Oxide Fuel Cells. Solid State Ionics. 2002, 152-153: 537~542
    150 T. Hatae, N. Kakuda, T. Taniyama, Y. Yamazake. Low Temperature Preparation and Performance of Ni/YSZ Anode with A Multilayered Structure for SOFC. Journal of Power Sources. 2004, 135: 25~28
    151谭小耀,孟波,杨乃涛.非对称结构的固体氧化物燃料电池多孔电极及其制备方法. 2004, CN: 1474469A
    152 G. D. Alton, J. R. Beene, Y. Liu. Criteria fro Selection of Target Materials and Design of High-efficiency-release Targets for Radioactive Ion Beam Generation. Nuclear Instruments and Methods in Physics Research A. 1999, 438: 190~209
    153 C. Metzner, B. Scheffel. Special Aspects Concerning the Electron Beam Deposition of Multi-component Alloy. Surface and Coatings Technology. 2001, 146-147: 491~497
    154 N. S. Jacobson. Thermodynamic Properties of Some Metal Oxide-Zirconia Systems. National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center: 613~615
    155 D. L. Youchison, M. A. Gallis, R. E. Nygren, J. M. McDonald, T. J. Lutz. Effects of Ion Beam Assisted Deposition, Beam Sharing and Pivoting in EB-PVD Processing of Graded Thermal Barrier Coatings. Surface and Coatings Technology. 2004, 177-178: 158~164
    156 T. Fukui, S. Ohara, M. Naito, K. Nogi. Performance and Stability of SOFC Anode Fabricated from NiO-YSZ Composite Particles. Journal of Power Sources. 2002, 110: 91~95
    157王凤华,郭瑞松,魏楸桐,李海龙. Ni/YSZ阳极材料的制备及性能研究.电源技术. 2004, 28 (11): 688~689
    158 M. Leon, G. Reinhard. Handbook of Thin Film Technology. New York, McGraw Hill. 1970: 12~15
    159梁英教,车荫昌,刘晓霞.无机物热力学数据手册.东北大学出版社. 1994: 476~479
    160 K. A. Khor, L. G. Yu, S. H. Chan, X. J. Chen. Densification of Plasma Sprayed YSZ Electrolyte by Spark Plasma Sintering. Journal of the European Ceramic Society. 2003, 23: 1855~1856
    161 X. J. Chen, K. A. Khor, S. H. Chan, L. G. Yu. Preparation Yttria-stabilized Zirconia Electrolyte by Spark-plasma Sintering. Materials Science and Engineering. 2003, A341:43~44
    162 L. Rose, O. Kesler, Z. L. Tang, A. Burgess. Application of Sol Gel Spin Coated Yttria-stabilized Zirconia Layers for the Improvement of Solid OxideFuel Cell Electrolytes Produced by Atmospheric Plasma Spraying. Journal of Power Sources. 2007, 167: 340~345
    163 Y. Z. Xing, C. J. Li, C. X. Li, G. J. Yang. Influence of Through-lamella Grain Growth on Ionic Conductivity of Plasma-sprayed Yttria-stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells. Journal of Power Sources. 2008, 176: 31~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700