SOFC中镍铜合金材料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了固体氧化物燃料电池(SOFC)复合阳极材料的合成及其电化学性能,讨论了利用硬模板法制备的镍铜合金材料对电池电性能和抗积碳稳定性的影响。
     采用X射线衍射仪(XRD)和扫描电镜(SEM)对阳极材料粉末进行表征;用SEM对单电池阳极表面和电池横截面的形貌和微观结构进行表征;用电化学工作站对电池电性能、活化极化和交流阻抗进行测定,并对其长期稳定性进行了实验。
     研究结果表明:自制NixCu1-x阳极材料粉末形成了立方晶型结构的镍铜合金结构,呈现出大小不一的长条柱状,相互之间连接紧密,无团聚现象且有着丰富的孔隙结构。单电池阳极疏松多孔,与电解质连接紧密,但是其在长时间高温运行后会与电解质之间产生间隙。Ni-YSZ单电池随着温度升高性能提升,以氢气和甲烷为燃料在1000℃时产生最大功率密度为554mW·cm-2和489mW·cm-2,但是抗积碳性能差。NixCu1-x-YSZ电池的性能较Ni-YSZ有所下降,在800℃下并在以氢气和甲烷为燃料的条件下,该种电池可以产生了470mW·cm-2和315mW·cm-2的最大功率密度,且电压稳定,阳极无团聚和积碳产生。对电池在活化极化中j-V拟合曲线的分析得出制备电池在Cu的加入之后,以甲烷为燃料时电池极化分出了明显的梯度,说明阳极中加入了铜之后,对电池性能有影响,但是对抗积碳有积极作用。以H2和CH4进行实验,硬模板制备镍铜合金材料的单电池开路电压比溶胶-凝胶法制备材料得到单电池低,但是最大功率密度前者是后者的两倍以上。进行长期稳定性试验之后,阳极表面颗粒孔隙完好,颗粒粒径分布均匀,无团聚,也没有明显积碳现象。自制的加入铜的NixCu1-x-YSZ阳极材料制备电池在长期稳定性试验中能够保持电压的稳定,并且随着铜含量的变化,整体在抗积碳性能方面无明显差别。因此:硬模板法制备NixCu1-x-YSZ电池具有良好的催化和抗积碳性能。
In this paper, a new Ni-Cu alloy composite anode materials (SOFC) was synthetized with hard template method. Its Carbon Deposition stability and electrochemical performance were investigated.
     The Ni-Cu alloy anode materials powder was characterized by XRD and SEM. The morphology and microstructure of the surface of anode and cross section of single cells were characterized by SEM. By the use of electrochemical workstation, the electrical properties, activation polarization and AC impedance spectroscopy were tested.
     The results show that:the NixCu1-x anode material powder has a cubic crystal structure with long columnar shape, and closely connected with each other, leading to porouse structure without agglomerations. The anode of single cells was porous and tighten-connected with electrolyte substrates. However, they were gapped at high temperature in a long period. The performance of traditional NiO-YSZ single cell was increased as the operation temperature rises. The maximum power density were554mW·cm-2and489mW·cm-2respectively in hydrogen and methane at1000℃,but shows a poor performance in resistance of coking. The power performances of NixCu1-x-YSZ single cell was were lower than NiO-YSZ. NixCu1-x-YSZ single cell has stable voltage without agglomeration and carbon deposition in hydrogen and methane at800℃,simultaneously output470and315mW·cm-2maximum power density respectively. Experiments with H2and CH4,the open voltage of Ni-Cu alloy prepared by hard template used to make single cell is lower than gel-sol method, but the maximum powder density is higher than the latter one.
     The results show that:NixCu1-x-YSZ single cell has a good catalytic activity and resistance of coking properties.
引文
[1]毛宗强、谢晓峰等.燃料电池[M].可再生能源丛书,2005:1-1.
    [2]Grove W R. On voltaic series and the combination of gases by platinum. [J]London and Edinburgh Philosophical Magazine and Journal of Sciences, Series 3,1839, (14):127-130.
    [3]Kordesch K, Oliverira J. Fuel Cells, in:Ulmann's Encyclopedia of Industrial Technology, Vol.A-12, Weinheim, Germany:VCH 1989.55.
    [4]Baur E, Tobler J. Z. Elektrochemie[M],1933,36:169.
    [5]Bacon F T. BEAMA J[M].,1954,6:61.
    [6]Broers G. High temperature gravanic fuel cells..Amsterdam[C]:University of Amsterdam,1958.
    [7]黄喜强,固体氧化物燃料电池复合电极材料的制备及性能研究[M],博士后研究工作报告,2003.
    [8]黄镇江,燃料电池及其应用[M],电子工业出版社,2005.
    [9]韩敏芳,李伯涛,彭苏萍等.高效洁净的能源技术——固体氧化物燃料电池(SOFC)开发利用[M],21世纪绿色城市论坛论文汇编,2001,11:190-194,中国厦门.
    [10]Droushiotis N, Doraswami U, Kanawka K, et al. Characterization of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes[J]. Solid State Ionics,2009,180(17-19):1091-1099.
    [11]Li C-J,Li C-X, Ning X-J. Performance of YSZ electrolyte layer deposited by atmospheric plasma spraying for cermet-supported tubular SOFC[J]. Vacuum,2004,73(3-4):699-703.
    [12]Minh N Q, Takahashi T. Science and technology of cerarmic fuel cells. Elsevier[J] Science B V., ISBN:0-444-895668-X, U.S.A.1995,11:92-96.
    [13]刘晓梅,纳米稀土复合氧化物在固体氧化物燃料电池阴极材料和连接材料中的应用研究[M],吉林大学博士学位论文.
    [14]高展,张萍,高瑞峰,et al钙钛矿型中低温固体氧化物燃料电池阴极材料研究进展[J].化工新型材料,2007,35:6-8.
    [15]Li Z, Behruzi M, Fuerst L. In Proceeding of the Third International Symposium on Solid Oxide Fuel Cells[J],May 16-211993, Honolulu, H I, Singhal S C, Iwahara H eds.Electrochemical Society, Pennington, Nj,1993,171.
    [16]King D L,Strohm J J, Wang X, et al. Effect of nickel microstructure on methane steam-reforming activity of Ni-YSZ cermet anode catalyst[J]. Journal of Catalysis,2008,258(2):356-365.
    [17]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells[J]. Elsevier Science B.V.1995,146.
    [18]Sun-Dong Kim, Hwan Moon, Sang-Hoon Hyun. Performance and durabilitu of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics,2006,177(9-10):931-938.
    [19]Sun-Dong Kim, Hwan Moon, Sang-Hoon Hyun. Ni-YSZ Cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells[J].Solid State Ionics,2007,178(21-22):1304-1309.
    [20]T. Hatae, N. Kakuda, T. Taniyama, Y. Yamazaki. Low temperature preparation and performance of Ni/YSZ anode with a multi-layered structure for SOFC[J]. Journal of Pwer Sources.2004,135 (1-2):25-28.
    [21]Wei Wang, Wei Zhou, Ran Ran, et al. Methane-fueled SOFC with traditional nickel-based anode by applying Ni/A12O3 as a dual-functional layer[J]. Electrochemistry Communications,2009,11 (1)194-197.
    [22]Bae G, Bae J,Kim-Lohsoontorn P, et al. Performance of SOFC coupled with n-C4H10 autothermal reformer:Carbon deposition and development of anode structure[J]. International Journal of Hydrogen Energy,2010,35(22):12346-12358.
    [23]Eon Woo Park, Hwan Moon, Moon-soo Park, Sang Hoon Hyun. Fabrication and characterization of Cu-Ni-YSZ SOFC anodes for diect use of methane via Cu-electroplating. International[J] Journal of Hydrogen Energy.2009,34(13):5537-5545.
    [24]Thermal stability of atmospheric plasma sprayed(Ni, Cu, CO)-YSZ and Ni-Cu-Co-YSZ anodes cermets for SOFC application[J].Journal of Physics and Chemistry of Solid.2009 70 (12) 1487-1495.
    [25]Synergistic effects of Ni1-xCo,-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S[J]. Journal of Power Sources 2008 183 (1) 26-33.
    [26]Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces[J]. International Journal of Hydrogen Energy, xxx(2012) 1-5.
    [27]Gorte R J, Park S, Vohs J M, Wang C[M]. Advanced materials,2000,12:1465.
    [28]Kim H,Park S, Vohs J M, Gorte R J[M]. Electrochem. Soc.,2001,148:A693.
    [29]Park S, Gorte R J, Vohs J M. Applied Catalsis A[C]:General,2000,200:55.
    [30]Tatsumi Ishihara, Takaaki Shibayama, Hiroyasu Nishiguchi, et al. Nickel-Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte[J]. Solid State Ionics,2000,132 (3-4) 209-216.
    [31]Takashi Hibino, Atsuko Hashimoto, Masaya Yano, et al. Ru-catalyzed anode materials for direct hydrocarbon SOFCs[J]. Electrochimica Acta,2003,48(17)2531-2537.
    [32]Lu C,An S, Worrell W L, et al. Development of intermediate-temperature solid oxide fuel cells for direct utilization of hydrocarbon fuels[J]. Solid State Ionics,2004,175(1-4):47-50.
    [33]A. Montenegro Hernandez, L. Mogni, A. Caneiro. La2NiO4+[delta] as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes[J]. International Journal of Hydrogen Energy,2010,35(11) 6031-6036.
    [34]Gross M D, Carver K M, Deighan M A, et al. Redox Stability of SrNbxTil-xO3-YSZ for Use in SOFC Anodes [J]. J. Eletrochemical. Soc,2009,156:540-550.
    [35]Osamu Yamamoto, Yoshinori Arati, Yasuo Takeda, et al. Electrical conductivity of stabilized zirconia with ytterbia and scandia[J]. Solid State Ionics,1995, 79137-142.
    [36]Yao Zheng, Ran Ran, Hongxia Gu, et al. Characterization and optimization of La0.8Sr0.3Sc0.1Mn0.9O3-based composite electrodes for intermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources,2008,185(2)641-648.
    [37]T. valdes-Solis, A. B. Fuertes. High-surface area inorganic compounds prepared by nanocasting techniques[J]. Materials Research Bulletin 41 (2006) 2187-2197.
    [38]Oulmi K,Zitouni B,Ben Moussa H, et al. Total polarization effect on the location of maximum temperature value in planar SOFC[J]. International Journal of Hydrogen Energy,2011,36(6):4236-4243.
    [39]Tafel J Z. Physik.Chem.,1905,50:641.
    [40]Oulmi K, Zitouni B,Ben Moussa H, et al. Total polarization effect on the location of maximum temperature value in planar SOFC[J]. International Journal of Hydrogen Energy,2011,36(6):4236-4243.
    [41]Subhash C. Singhal, Kevin Kendall高温固体氧化物燃料电池-原理、设计和应用[M].科学出版社.
    [42]Kim J, Lee S M, Srinivasan S. Modeling of proton exchange memberrane fuel cell performance with an empirical equation[J]. J. Electrochem. Soc.,1995,142(8):2670-2674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700