SOFC阳极纳米复合粉体及电池成型工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种将化学能直接转化为电能的能量转换装置,具有能量转换效率高、对环境友好和操作简单等优点,在世界范围内得到了极大的关注和各国政府的大力支持。由于传统的机械混合造成Ni和YSZ(三氧化二钇稳定二氧化锆)两相分布不均,直接影响了SOFC性能的进一步提高。采用Pechini法合成了NiO/YSZ阳极纳米复合粉,实验结果表明,pH值和柠檬酸/金属阳离子物质的量配比是影响阳极复合粉粒径、团聚情况和阳极性能的主要因素。通过实验优化了阳极复合粉体的制备工艺(pH=7.0,柠檬酸/金属阳离子物质的量配比为2∶1),合成的复合粉体在阳极当中NiO、YSZ两相颗粒的分布最均匀。
     将合成的复合粉体用压片法制备成阳极(面积为Φ20mm),涂敷电解质并组装模拟电池,800℃(H_2流量为50mL/min)时放电的最大功率密度达到850mW/cm~2;将复合粉作为阳极功能层通过流延工艺制备了半电池(面积为Φ20mm)并组装成模拟电池,在800℃(H2流量为50mL/min)具有最大的功率密度达到1000mW/cm~2。
     为了组装SOFC电堆,需要制备大尺寸半电池,研究大尺寸半电池的流延成型工艺。首先,减小了造孔剂淀粉的含量,防止裂纹出现;其次,研究YSZ的粒径变化对半电池成型的影响,发现随煅烧温度的增加,YSZ颗粒的粒径加大,900℃煅烧2小时所得YSZ(颗粒粒径2.0μm)成型性最好(作为支撑层只有少量细微裂缝的产生);在YSZ确定的条件下,考察了北京建材NiO(颗粒粒径6.3μm)和上海国药NiO(颗粒粒径2.0μm)粒径变化对半电池成型的影响,发现采用上海国药NiO与YSZ匹配性最好,得到平整无缺陷的大尺寸半电池,并且通过改进流延浆料组分,于1300℃获得了致密的YSZ电解质,半电池800℃开路电压达到1.05V,接近理论电压。
     采用优化的流延工艺,成功制备出面积为7.5×7.5cm~2的半电池及7×7cm~2的阳极。流延法制备的半电池所组装的模拟电池(面积为Φ20mm,丝网印刷阴极面积0.6×0.6cm~2)的放电性能,800℃(H_2流量为100mL/min)的最大功率密度为560mW/cm~2,以800mA/cm~2的电流密度放电,9小时无衰减。在7×7cm~2的阳极上涂敷电解质,将其制备成5×5cm~2的半电池,组装成单体电池。单体电池放电测试结果表明,当阳极面积为5.0×5.0cm~2 ,阴极面积为3.0×3.0cm~2时,800℃(H2流量为500mL/min)最大功率为1.32W,最大功率密度为146mW/cm~2。
Solid oxide fuel cell (SOFC) is considered as the electrochemical device that converts the chemical energy of reaction directly into electrical energy. It possesses the advantages of high conversion efficiency, environmental friendness, and abroad adaptive fuels. So, people worldwide focus on the research and development of SOFC. The anode performance obviously influences the cell performance. In order to advance the cell discharging performance, the NiO/YSZ (Yttrium oxide stabilized zirconium dioxide) composite nano-powders were synthesized by the Pechini method. Testing results showed that both the pH value and the citric acid/ metal cation mol ratio were the dominating factors which influence the gain size of the composite powders, the conglomerating phenomena and the anode performance. As the pH value increased, the particle size of the composite powders increased first, and then decreased. The optimum process of synthetizing NiO/YSZ composite powders was obtained when the pH value was 7.0 and the citric acid/ metal cation mol ratio was 2:1, the NiO and YSZ powders got the most uniform distribution in the anode.
     The obtained NiO/YSZ composite powders were die-pressed and tape-casted into the anode pellets. Then the YSZ electrolyte thin films were dip-coated on the anodes, and the simulating cells were assembled and tested. When the H2 flux was 50mL/min, at 800℃, the maximum power density for the single cell with the die-pressed anode (Φ20mm) was 850mW/cm~2, and that for the single cell with the tape-casted anode (Φ20mm) was 1000 mW/cm~2.
     Large-size planar cell was needed for the assembling the SOFC stack. In this paper, the tape-casting process for fabricating the large-size half cell was studied. First, the starch content was reduced, and the cracks on the cell were eliminated. Second, YSZ powders were calcined in order to change its particle size, and influence of the YSZ particle size on the molding of the half cell was studied. Testing results showed that the YSZ particle size increased with the increasing of the calcining temperature. After being calcined at 900℃for 2 h, the YSZ powders (with the particle size of 2.0μm) presented the best molding property, and only a few cracks occurred when the YSZ powders were used as the the supported layer. Keeping the YSZ conditions the same, influence of the NiO particle size on the molding of the half cell was studied. The Beijing Jiancai NiO (with the particle size of 6.3μm) and the Shanghai Guoyao NiO (with the particle size of 2.0μm) were investigated. Testing results showed that the Shanghai Guoyao NiO matched better with the YSZ, and the even and defect-free large-size half cell was obtained. Besides, by reducing the sintering temperature from 1500℃to 1300℃, dense YSZ electrolyte was obtained. At 800℃, the open circit voltage for the half cell reached 1.05V, which was close to the theoretical value.
     After employing the optimized tape-casting process, the half cell with the area of 7.5×7.5cm~2 and the anode with the size of 7×7cm~2 were successfully fabricated. The simulating cell performance fabricated by tape-cating (with the diameter ofΦ20mm, and with the cathodic area of 6×0.6cm~2 prepared by screen-printing) was tested. At 800℃( with the H2 flux 100mL/min), the maximum power density was 550mW/cm~2, and when discharging with the current density of 800mA/cm~2, there is no attenuation in 9 h. YSZ electrolyte was dip-coated on the anode with the size of 7×7cm~2, and the half cell with the size of 5×5cm~2 was obtained. The single cell was assembled. The discharging performance for the single cell was tested. At 800℃( with the H_2 flux of 100mL/min),the maximum power was 1.32W, and the maximum power density was 146mW/cm~2, when the anode area was 5.0×5.0cm~2 and the cathode area was 3.0×3.0 cm~2.
引文
1 S. C. Singhal, K. Kendall. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elselvier Ltd, 2003:150-155
    2 N. Q. Minh and T. Takahashi. Science and Technology of Ceramic Fuel Cells. Elsevier Science B. V. Amsterdam, 1995:15
    3 S. McIntosh, J. G. Raymond. Direct Hydrocarbon Solid Oxide Fuel Cells. Chemical Review. 2004, 104:4845-4865
    4 M. Yokoo, Y. Tabata, Y. Yoshida, et al. Development of 1kW class SOFC stack using anode supported planar cells. Journal of Power Sources. 2008, 182(2):496-502
    5程继贵,邓丽萍,孟光耀.固体氧化物燃料电池阳极材料制备及性能研究进展.兵器材料科学与工程. 2002, 25(6):45-49
    6 T. L. Cable, S. W. Sofie. A symmetrical, planar SOFC design for NASA's high specific power density requirements. Journal of Power Sources. 2007, 174(1): 221-227
    7 M. Ni, K.H. Leung, Y. C. Leung. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy. 2008, 33(9):2337-2354
    8 A. B. Stambouli, E. Traversa. Renewable and Sustainable Energy Reviews. Solid State Ionics. 2002, 146(3-4): 433-455
    9 R. J. Gorte, J. M. Vohs. Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbons. Journal of Catalysis. 2003, 216(1-2): 477-486.
    10 S. C. Singhal. Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications. Solid State Ionics. 2002, 152-153:405-410
    11 J. Rutman, I. Riess. Placement of Reference Electrode in Solid Electrolyte Cells. Electrochimica Acta. 2007, 52(20):6073-6083
    12 R. H. Kyoung, J. Younji, L. Haiwon, et al. Fabrication of NiO/YSZ Anode Material for SOFC via Mixed NiO Precursors. Materials Letters. 2007, 61(4-5):1242-1245
    13 K. Masato, A. Momoko, Y. Masahiro, et al. Synthesis of High Surface Area LaMnO3 +d by a Polymerizable Complex Method. Alloys and Compounds. 1999,283(1-2):102-105
    14 M.A. Dulce, M.M. Filipe. XAFS Characterization of La1-xSrxMnO3±d Catalysts Prepared by Pechini’s Method. Chemical Physics. 2006, 322(3):477-484
    15 J. Malzbender, W. Fischer, R.W. Steinbrech. Studies of residual stresses in planar solid oxide fuel cells. Journal of Power Sources. 2008, 182(2):594-598
    16彭苏萍,韩敏芳,杨翠柏等.固体氧化物燃料电池.物理. 2004, 33(2):90-94
    17路甬祥.燃料电池的研究现状及其发展趋势.自然杂志. 1997, 19(3):125-134
    18毛宗强.燃料电池.化学工业出版社, 2005:23-24
    19陆天虹,张玲玲,唐亚文等.各国燃料电池产业化概况.电池工业. 2007, 12 (2):119-121
    20 R. M. Ormerod. Solid Oxide Fuel Cells. Chemical Society Reviews. 2003, 32 (1):17-28
    21 S. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000, 135(1-4):305-313
    22 M. Mogensen, K. V. Jensen, M. J. Drgensen, et al. Progress in Understanding SOFC Electrodes. Solid State Ionics. 2002, 150(1-2):123-129.
    23 Baukje Boer. Hydrogen Oxidation at Porous Nickel and Nickel/Yttriastabilised Zirconia Cermet Electrodes. Ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus. 1998, 9
    24马学菊,马文会,杨斌等.固体氧化物燃料电池阳极材料的研究进展.电源技术. 2007, 31(9):751-756
    25 J. H. Lee, H. Moon, H. W. Lee, et al. Quantitative Analysis of Microstructure and Its Related Electrical Property of SOFC Anode, Ni-YSZ Cermet. Solid State Ionics. 2002, 148(1-2): 15-26
    26 X. G. Zhang, O. Satoshi, M. Radenka, et al. Ni-SDC Cermet Anode for Medium-Temperature Solid Oxide Fuel Cells with Lanthanum Gallate Electrolyte. Journal of Power Sources. 1999, 83(1-2):170-177.
    27 I. Umi, S. Takaaki, H. Nishiguchi, et al. Nickel-Gd-Doped CeO2 Cermet Anode for Using LaGaO3 Based Perovskite Electrolyte. Solid State Ionics. 2000, 132(3-4):209-216
    28黄贤良,赵海雷,吴卫江等.固体氧化物燃料电池阳极材料的研究进展.硅酸盐学报. 2005, 33(11):1407-1413
    29 O. A. Marina, N. L. Canfield, J. W. Stevenson. Thermal, Electrical andeElectrocatalytical Properties of Lanthanum-doped Strontium Titanate. Solid State Ionics. 2002, 149(1-2):21-28
    30 P. Huang, A. Horky, A. Petric, et al. Interfacial Reaction between Nickel Oxide and Lanth-anum Gallate during Sintering and Its Effects on Conductivity. Journal of the Amercican Ceramic Society. 1999, 82(4):2402-2408
    31 S. Ohara, R. Maric, X. Zhang, et al. High Performance Electrodes for Reduced Temperature SOFCs with Doped Lanthanum Gallate Electrolyte. Journal of Power Sources. 2000, 86(1-2):455-458
    32 K. Huang, J. B. Goodenough. A solid Oxide Fuel Cell Based on Sr- and Mg- Doped LaGaO3 Electrolyte: the Role of a Rare-earth Oxide Buffer. Alloys and Compounds. 2000, 303-304:454-464
    33 A. L. Sauvet, J. Fouletier, F. Gaillard. Surface Properties and Physic Chemical Characterizations of a New Type of Anode Material, La1-xSr x Cr1-yRuy O3-δfor a Solid Oxide Fuel Cell under Methane at Intermediate Temperature. Journal of Catalysis. 2002. 209(1):25-34
    34 H. Itoh, Y. Hiei, T. Yamamoto. Optimized Mixture Ration in YSZ-supported Ni-YSZ Anode Material for SOFC. Electrochemica Society Proceedings. 2001, 16 (7):751-757
    35 S. Hui, A. Pertic. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. Journal of European Ceramic Society. 2002, 22(9-10): 1673-1681
    36阎景旺,董永来,于春英.中温固体氧化物嫩料电池阳极基底及负载型电解质薄膜的研制.无机材料学报. 2001, 16(5):804-814
    37 M. G. Catherine, G. G. Richard, Du Weifang, et al. Synthesis and Characterization of NiO-YSZ Anode Materials: Precipitation, Calcination, and the Effects on Sintering. Journal of the Amercican Ceramic Society. 2005, 88(11):3081-3087
    38 S. P. JIANG. Sintering Behavior of Ni/Y2 O3 -ZrO2 Cermet Electrodes of Solid Oxide Fuel Cells. Materials Science. 2003, 38:3775-3782
    39 A. Alecander, A. Galina, B. Sergi, et al. Structure Evolution of an NiO-YSZ Electrocatalytic Electrode. Journal of the Amercican Ceramic Society. 2005, 88(5):1180-1185
    40王凤华,郭瑞松,魏楸桐. SOFC阳极用NiO-YSZ粉末的制备技术.硅酸盐通报. 2004, (3):81-84
    41 K. F. Chen, Z. Lu, X. J. Chen. Characteristics of NiO-YSZ Anode Based on NiO Particles Synthesized by the Precipitation Method. Journal of Power Sources. 2007, 154(1):36-42
    42李英,唐子龙,谢裕生.缓冲溶液法制备SOFC用Ni/YSZ负极材料.材料科学与工艺. 2001, 9(1):91-94
    43 M. Marinsek, K. Zupan, J. Maeek. Preparation of Ni-YSZ Composite Materials for Solid Oxide Fuel Cell Anodes by the Gel-Precipitation Method. Journal of Power Sources. 2000, 86(1-2): 383-389
    44 K. Yamaji, H. Negishi, T. Horia, et al. Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the Electrolyte for SOFCs. Solid State Ionics. 1998, 108(1-4): 415-421
    45 J. W. Moon, H. L. Lee, J. D. Kim, et al. Preparation of ZrO2-coated NiO Powder Using Surface-Induced Coating. Materials Letters. 1999, 38(3):214-220
    46 A. Ringuede, J. R. Frade, J. A. Labrincha, et al. A Combustion Synthesis of Zirconia-based Cermet Powders. Solid State Ionics. 2001, 141-142:273-278
    47 A. Ringuede, D. Bronine, J. R. Frade. Assessment of Ni/YSZ Anodes Prepared by Combustion Synthesis. Solid State Ionics. 2002, 146(3-4):219-224
    48 S. T. Aruna, M. Muthuraman, K. C. Patil. Synthesis and Properties of Ni-YSZ Cermet: Anode Material for Solid Oxide Fuel Cells. Solid State Ionics. 1998, 111(1-2):45-51
    49 M. Marinsek, K. Zupan, J. Maeek. Ni-YSZ Cermet Anodes Prepared by Citrate/Nitrate Combustion Synthesis. Journal of Powder Sources. 2002, 106(1-2):178-188
    50 M. P. Pechini. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Forma Capacitor. U. S. Pat. No.3330697. 1967.
    51 M. P. Pechini. Barium Titanium Citrate, Barium Titanate and Processes for Producing Same. U. S. Patent. No. 3231328. 1966
    52 S. D. Kim, H. Moon, S. H. Hyun, et al. Nano-composites Materials for High Performance and Durability of Solid Oxide Cells. Journal of Power Sources. 2006, 163(1):392-397
    53 R. Barfod, M. Mogensen, T. Klemens, et al. Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy. Journal of The Electrochemical Society. 2007, 154(4):371-378
    54 J. D. Tsy, T. T. Fang. Effects of Molar Ratio of Citric Acid to Canons and of pH Value on the Formation and Thermal-Decomposition Behavior of Barium Titanium Citrate. Journal of the American Ceramic Society. 2001,82(6):1409-1415
    55苏言杰,张德,徐建梅.柠檬酸盐凝胶自燃烧法合成超细粉体.材料导报. 2006, 20(5):142-144
    56 T. Fang, J. D. Tsy. Effect of pH on the Chemistry of the Barium Titanium Citrate Gel and Its Thermal Decomposition Behavior. Journal of the American Ceramic Society. 2001, 84(11):2475-2478
    57 Qi Xiwei, Zhou Ji, Yue Zhenxing, et al. Auto-combustionsynthesis of nanocrystalline LaFeO3. Materials Chemistry Physics, 2002, 78(1):25-29
    58 Yue Zhenxing, Guo Wenyu, Zhou Ji, et al. Synthesis of Nanocrystilline Ferrites by Sol-Gel Combustion Process: the Influence of pH value of solution. Journal of Magnetism and Magnetic Materials. 2004, 270(1-2):216-223
    59理查德.布鲁克.陶瓷工艺.材料科学与技术丛书.第17A卷1999年06月第1版, 191~227科学出版社,黄勇译
    60 N. Das, H.S. Maiti. Effect of Size Distribution of the Starting Powder on the Pore Size and Its Distribution of Tape Cast Alumina Microporous Membranes. Journal of European Ceramic Society. 1999, 19(3):341-345
    61 T. Chartier, T. Rouxel. Tape-Cast Alumina-Zirconia Laminates: Processing and Mechanical Properties. Journal of European Ceramic Society. 1997, 17(2-3): 299-308
    62韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社, 2004: 2-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700