阳极支撑SOFC及Ni-YSZ掺杂包覆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是将储存在燃料中的化学能直接转化为电能的装置,具有能源利用率高、对环境友好的突出特点,被称为是二十一世纪的绿色发电技术。但迄今为止,SOFC仍然有许多制作和材料等方面的基础问题尚未妥善解决。
     结合SOFC研究现状和本实验室现有条件,论文主要研制了阳极支撑的SOFC和对Ni-YSZ金属陶瓷阳极材料进行了掺杂、包覆研究。本文的主要工作和结论如下:
     (1)采用价格低廉且易于放大的挤压成形方法、浆料喷覆工艺和浆料涂覆方法成功地制备了Ni-YSZ/YSZ/LSM阳极支撑的SOFC,所制备的致密YSZ电解质薄膜厚约为15-20μm。考察了阳极支撑SOFC制备过程中的主要影响因素,指出基底不均匀性和焙烧升温速率过快是导致成型压力在25MPa-250MPa范围内阳极基底翘曲和开裂的主要原因;影响阳极基底与YSZ电解质薄膜共焙烧匹配性的主要因素是成型压力、预焙烧温度和焙烧升温速率。考察了阳极支撑SOFC电性能,800℃下,阳极H_2进气流量为250ml/min时,电池开路电压1.097V,最大功率密度0.13W/cm~2。进一步优化电极结构,可制备高性能阳极支撑的SOFC。
     (2)制备了NiO+(Ca_(0.1)Ce_(0.9)O_(1.9))_x(YSZ)_(1-x)阳极材料,其中氧化钙掺杂的氧化铈Ca_(0.1)Ce_(0.9)O_(1.9)(简称10CCO)采用沉淀法制备。10CCO与阳极粉料中的YSZ和YSZ电解质基片在1400℃共焙烧过程中形成了(Ce_(0.9)Ca_(0.1)O)_x(YSZ)_(1-x)固熔体,(Ce_(0.9)Ca_(0.1)O)_x(YSZ)_(1-x)固熔体是混合离子-电子导体,它的电导率比YSZ大,因此,掺杂10CCO的Ni-YSZ金属陶瓷作为阳极材料,具有更好的催化活性和较小的界面阻抗。
     (3)沉淀法制备了YSZ包覆Ni粒子的Ni-YSZ阳极材料。应用此阳极材料制备的SOFC阳极在1400℃焙烧2h后形成了持续的网状结构,表明包覆在Ni粒子外面的YSZ有效地阻止了Ni颗粒的烧结,从而使阳极结构(三相界面、孔隙率等)得到优化,电池性能提高。
Solid oxide fuel cell (SOFC) has been receiving increasing attraction with regard to the direct conversion of chemical energy of fuels into electrical energy. Because of its substantially higher energy conversion efficiency than the present techniques and negligible production of pollutants, it has been considered as the "green power technology" of the 21~(st) century. However, there are many problems to be solved such as material and Fabrication on SOFC.In this paper, a fabrication of anode supported for SOFC and a research on Ni-YSZ anode material are made, the main work and conclusions of this paper are as follows:(1) Ni-YSZ/YSZ/LSM anode supported PEN for solid oxide fuel cell is fabricated. Anode substrate, thin film YSZ electrolyte and LSM cathode are fabricated by dry-pressing process, spray-coating technique and slurry coating process respectively. Asymmetric anode substrate and temperature raised rapidly are the main factor of anode substrate warp and crack under molding pressure 25MPa-250MPa. Molding pressure, Sinter temperature in advance and the velocity of temperature raised are the main factors for the matching of anode substrate and thin film YSZ electrolyte. Dense and crack-free films are obtained with thickness in the range of 15-20μm. The open circuit voltage (OCV) of the cells reached 1. 097V and maximum power density 0.13W/cm~2 at 800℃ with 250 ml/min of hydrogen airflow rate.(2) A study is made on NiO+ (Ca_(0.1)Ce_(0.9)O_(1.9))_x(YSZ)_(1-x) anode material. The calcium(10mol%) doping ceria(Ca_(0.1)Ce_(0.9)O_(1.9)) is prepared by the solution route with copreciptation. After sintered at 1400℃ for 2 hour, a solid solution reaction occurs between YSZ and Ca_(0.1)Ce_(0.9)O_(1.9) and a (Ca_(0.1)Ce_(0.9)O_(1.9))_x(YSZ)_(1-x) solid solution is synthesized. It is a mixed (electronic and ionic) conductor, and the total conductivity is greater than that of YSZ. The application of the solid solution as SOFC anodes enhances the threephase boundary, which improves the performances of the anode and the single cell.(3) NiO/YSZ cermet anode material is preparated by coating precipitation
    
    method. SOFC anode formed a continuous network structure at 1400℃ for 2 h with this NiO coated by YSZ material. This means that the YSZ coating layer on the NiO surface using the coating precipitation method efficiently prevented the sintering and agglomeration of Ni. Therefore, electrode structure (such as TPB .region or porous structure) is optimized and.cell performance is improved greatly.
引文
[1] 衣宝廉.燃料电池—原理·技术·应用.北京:化学工业出版社,2003.
    [2] 迟克彬,李方伟,李影辉等.固体氧化物燃料电池研究进展.天然气化工.2002.27(4)37-44.
    [3] 项敬岩,王培斌.燃料电池及其联合循环的理论效率.材料与冶金报.2003,2(2):141-144.
    [4] Minh N Q. Ceramic fuel cells [J]. Am Ceramic Soc, 1993, 76 (3): 563-588.
    [5] Hirschenhofer J, Stauffer D, Engleman R. Fuel Cells (Vol. 5) [M]. West Virginia: Dept. of Energy, 1995. 1-26.
    [6] George R A, Bossette N F. Reducing the manufacturing cost of tubular SOFC technology. J of Powers Sources, 1998, 71: 131-137.
    [7] 江义,李文钊.王世忠.高温固体氧化物燃料电池进展.化学进展,1997,9(4):387-396.
    [8] 阎景旺,程谟杰,衣宝廉.固体氧化物燃料电池材料的开发.电池.2002,32(3).
    [9] 许兴燕.夏长荣.彭定坤等.中低温固体氧化物燃料电池研制.电池2004,34(3).
    [10] Minh N Q, Takahashi T. Science and technology of ceramic fuel cells. Torrance, California, USA, 1995, 149.
    [11] S. K. Pratihar, R. N. Basu, S. Mazumder et al. Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-Ⅵ), Honolulu, Hawaii, 17-22 October 1999, p. 513.
    [12] B. de Boer, M. Gonzalez, M. Bouwmeester et al. The effect of the presence of fine YSZ particles, on. the. performance, of. porous, nickel, electrodes. Solid. State. Ionics, 127(2000) 269-276.
    [13] Chang-Hyun Lee, Cheong-Hee Lee, Hee-young Lee et al. Microstrcture and anodic properties of Ni/YSZ cermets in solid oxide fuel cells. Solid State Ionics 98 (1997) 39-48.
    [14] F. H. wang, R. S. Guo, Q. T. Wei et al. preparation and properties of Ni/YSZ anode by coating precipitation method. Materials Letters, 58 (2004) 3079-3083.
    [15] Takehisa Fukuia, Satoshi Oharaa, Makio Naitoa et al. Synthesis of NiO-YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis. Powder Technology, 132 (2003) 52-56.
    [16] Yoshio Matsuzaki, Isamu Yasuda. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part Ⅰ. Dependence on temperature, time, and impurity concentration. Solid State Ionics, 132 (2000) 261-269.
    [17] Tatsuya Takeguchi, Yukimune Kani, Tatsuya Yano et al. Study on steam reforming of CH_4 and C_2 hydrocarbons and carbon deposition on Ni-YSZ cermets. Journal of Power Sources, 112 (2002) 588-595.
    
    [18] V. D. Belyaev, T. I. Politova, O. A. Marina et al. Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells. Appl.Catal.A:Gen, 133 (1995) 47-57.
    [19] Tatsuya Takeguchi , Ryuji Kikuchi , Tatsuya Yano et al. Effect of precious metal addition to Ni-YSZ cermet on reforming of CH_4 and electrochemical activity as SOFC anode. Catalysis Today, 84 (2003) 217-222.
    [20] Masashi Moria, Yoshiko Hieia, Hibiki Itoha et al. Evaluation of Ni and Ti-doped Y203 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells. Solid State Ionics, 60 (2003) 1-14.
    [21] 吉林大学.固体氧化物燃料电池的复合阳极材料及电极制作方法.CN1293459A.
    [22] R. M. C. Clemmer, S.F. Corbin. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes. Solid State Ionics, 166 (2004) 251 - 259.
    [23] 李英, 唐子龙, 谢裕生等. 缓冲溶液法制备 SOFC 用 Ni/YSZ 负极材料. 材料科学与工艺, 2001, 9(1).
    [24] Kim, Jai Who, Fung. High power density solid oxide fuel cell having a graded anode. United States Patent, 6, 228, 521 May 8, 2001.
    [25] E. Ramyrez-Cabrera, A. Atkinson, D. Chadwick. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis. Solid State Ionics, 136-137 (2000) 825-831.
    [26] Mogens Mogensen, Nigel M. Sammes , Geoff A. Tompsett. Physical, chemical and electrochemical properties of pure and doped ceria Solid State Ionics, 129 (2000) 63-94.
    [27] B. C. H. Steele. Appraisal of Ce _(1-y)Gd_y O_[(2-y)/2] electrolytes for IT-SOFC operation at 500℃. Solid State Ionics, 129 (2000) 95-110.
    [28] C. Lu , W. L. Worrell , C. Wang et al. Development of solid oxide fuel cells for the direct oxidation of hydrocarbon fuels. Solid State Ionics, 152 - 153 (2002) 393 - 397.
    [29] R. J. Gorte, and J. M. Vohs. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 216 (2003) 477 - 486.
    [30] By Raymond J. Gorte, Seungdoo Park, John M. Vohs et al. Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell. Adv. Mater, 2000, 12, No. 19, October2.
    [31] Olga A. Marina , Carsten Bagger, Soren Primdahl et al. A solid oxide fuel cell with a gadolinia-doped ceria anode:preparation and performance. Solid State Ionics, 123 (1999) 199 - 208.
    [32] Olga A. Marina , Mogens Mogensen. High-temperature conversion of methane on a composite gadolinia-doped ceria - gold electrode. Applied Catalysis A: General, 189 (1999) 117-126.
    
    [33] Jenshi B. Wang , Jiun-Ching Jang , Ta-Jen Huang. Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells. Journal of Power Sources, 122 (2003) 122-131.
    [34] Tatsumi Ishihara, Takaaki Shibayama, Hiroyasu Nishiguchi et al. Nickel - Gd-doped CeO cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO -based perovskite electrolyte. Solid State Ionics, 132 (2000) 209-216.
    [35] Takashi Hibino , Atsuko Hashimoto , Masaya Yano et al. Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochimica Acta, 48 (2003) 2531-2537.
    [36] Mogensen, M., Lindegaard, T. and Hansen, U. R. Physical properties of Mixed conductor Solid Oxide Fuel Cell Anodes of Doped CeO_2. J. Electrochem. Soc, 1994, 141, 2122-2128.
    [37] SHANWEN TAO AND JOHN T. S. IRVINE. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2, 320.
    [38] P. R. Slater , J. T. S. Irvine. Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/ Sr/Ca/La)_(0.6) M_x Nb_(1-x)O_(3-δ) (M=Mg, Ni, Mn, Cr, Fe, In, Sn): evaluation as potential anode materials for solid oxide fuel cells. Solid State Ionics, 124 (1999)61-72.
    [39] C. M. Reich, A. Kaiser and J. T. S. Irvine. Niobia Based Rutile Materials as SOFC Anodes. FUEL CELLS, 2001, 1, No. 3-4.
    [40] P. Holtappels , F. W. Poulsen, M. Mogensen. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics, 135 (2000) 675-679.
    [41] 江义. 固体氧化物燃料电池最新发展动态[J]. 电化学, 1998, 4(4) :353.
    [42]J. Will, A. Mitterdorfer, C. Kleinlogel et al.. Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics, 131 (2000) 79-96.
    [43] R. Maric, S. Ohara, T. Fukui, H. Yoshida, et al. Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCo03 Cathode, and Ni-Samalia-Doped ceria cermet anode. J Electrochem Soc, 146(6)2006-2010(1999).
    [44] E. Perry Murray, M. J. Sever, S. A. BarnettElectrochemical performance of (La,Sr)(Co,Fe)O_3 - (Ce,Gd)O_3 composite cathodes. Solid State Ionics, 148 (2002) 27-34.
    [45] V. Dusastre , J. A. Kilner. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126 (1999) 163 - 174.
    [46] 韩敏芳,李伯涛,彭苏萍.SOFC 电解质薄膜 YSZ 制备技术. 电池, VOl 32, No. 3 Jun, 2002.
    [47] RAJEDRA N B, CLIVE A R, MERRILEA J M. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition [J]. Journal of American Ceramic Society, 2001, 84(1): 33-39.
    
    [48] Casanova A. A consortium approach to commercialized Westinghouse solide oxide fuel cell technology. J. of power sources, 1998, 71: 65-70.
    [49] SASAEIH, OTOSH, SUZUKIM et al. Fabrication of high power density tubular type solidoxidefuel cells [J]. Solide State Ionics, 1994, 72: 253-256.
    [50] CHARPENTER P, FRAGNAND P, SCHLEICHD M, et al. Preparation of thin film SOFCs working at reduced temperature [J]. Solid State Ionics, 2000, 135: 373-380.
    [51] KIM S G, YOON S P, NAN S W et al. Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method [J]. Journal of Power Sources, 2002, 110: 222-228.
    [52] RajivDoshi, Richardsvonl, Carter. J. D et al. Development of solid oxide fuel cells that oerateat 500℃. J. Electrochem soc. 2000. 147(5): 173.
    [53] 张义煌,董永来,江义,卢自桂,闫景旺薄膜型中温固体氧化物燃料电池(SOFC)研制及性能考察电化学Vol.6 No.1 Feb.2000.
    [54] Yonglian Zhang, Jianfeng Gao, Dingkun Peng et al. Dip-coating thin yttria-stabilized zirconia films for solid oxide fuel cell applications Ceramics International, 30 (2004) 1049-1053.
    [55] Y. J. Leng, S. H. Chan., K. A. Zhor et al. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte International Journal of Hydrogen Energy, 29 (2004) 1025-1033.
    [56] Takehisa Fukui a,., Kenji Murata a, Satoshi Ohara b, Hiroya Abec, Makio Naito c, Kiyoshi Nogi Morphology control of Ni-YSZ cermet anode for lower temperature operation of SOFCs Journal of Power Sources, 125 (2004) 17-21.
    [57] J. H. Leea, J. W. Heoa, D. S. Leea et al. The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics, 158 (2003) 225-232.
    [58 Xiqiang Huaag, Zhe Lu, Li Pei et al. Anode for solid fuel cells:NiO+(Ce_(0.9)Ca_(0.1)O_(1.9)_(0.25)(YSZ)_(0.75) solid solution. Journal of Alloys and Compounds 360 (2003) 294-297.
    [59] Hideaki Inaba, Hiroaki Tagawa. Review Ceria-based solid electrolytes Solid State Ionics 83 (1996) 1-16.
    [60] Bin Zhu, Xiangrong Liu, Mingtao Sun et al. Calcium doped ceria-based materials for cost-effective intermediate temperature solid oxide fuel cells, solid state sciences 5 (2003) 1127-1134.
    [61] Takehisa Fukui, Kenji Murata, Satoshi Ohara et al. Morphology control of Ni-YSZ cermet anode for lower temperature operation of SOFCs. Journal of power sources, 125 (2004) 17-21.
    [62] 毋伟,陈建峰,卢寿慈.超细粉体表面修饰.化学工业出版社.2004.
    [63] 张宁,茹红强,巩甘雷等.pH值对Al(OH)_3和Y(OH)_3共沉淀包覆SiC颗粒的影响.材料与冶金学报.2002,11(11).
    
    [64] 彭冉冉,夏长荣,杨蔚光等.纳米级钇稳定氧化锆的制备与电性能表征.中国科学技术大学学报.2001.31(2).
    [65] Mojie CHENG, YongLai DONG. Research and Development of IT-SOFCs at DICP. Program and Book of Abstracts. First Sion-German Workshop on Fuel cells. Oct. 30-Nov. 4, 2002, 141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700