掺杂钛酸锶SOFC阳极材料的制备与电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺杂钛酸锶材料由于其具有混合离子-电子电导且对碳氢燃料有良好的催化性能而被认为具有作为新型SOFC阳极材料潜在的应用价值。本文对掺杂钛酸锶新型SOFC阳极材料的制备和电学性能进行了研究,探讨了其作为新型阳极材料的可行性。
     对Y2O3掺杂钛酸锶Sr1-1.5xYxTiO_3(x=0.01、0.02、0.03、0.04、0.05)和La2O3掺杂钛酸锶Sr1-1.5xLaxTiO_3(x=0.1、0.2、0.3、0.4、0.5)的预合成和烧结工艺进行了研究。通过DSC-TG分析粉料的预合成制度;通过XRD分析了1100℃下预合成后粉料的晶体结构为典型的钙钛矿结构;根据DIL分析确定不同物质掺杂钛酸锶的最佳烧结温度,采用排水法测定了试样的烧结密度;1400℃烧结的Y_2O_3掺杂钛酸锶的试样密度达到理论密度的93%以上,1600℃烧结的La_2O_3掺杂钛酸锶试样的密度达到理论密度的94%以上。
     对掺杂钛酸锶的电学性能进行了研究,Y2O3和La2O3掺杂钛酸锶的电导率均随掺杂量的增加而出现最大值,随测试温度的增加而降低,其中,1400℃烧结的Y_2O_3掺杂钛酸锶电导率高于1450℃下烧结的试样电导率,当钛酸锶中Y_2O_3的掺杂量为0.04mol时,800℃电导率达到最大为26.3 S/cm;1600℃下烧结La2O3掺杂钛酸锶的电导率高于Y_2O_3的电导率,且当钛酸锶中La_2O_3掺杂量为0.15mol时其电导率在800℃最高为103.5 S/cm。对掺杂钛酸锶材料和电解质YSZ在1400℃下共烧没有发生化学反应,表现出良好的化学相容性。
     为优化阳极材料的电学性能,对Y_2O_3、Co_3O_4和La_2O_3、Co_3O_4复合掺杂钛酸锶材料的电学性能进行了尝试性研究,但是复合掺杂产生了缺陷缔合而不利于电导率的提高。
Doped SrTiO3 is considered to be the potential anode material for SOFC because of its mixed ionic-electronic conductivities and excellent catalysis to hydrocarbon fuels. In this paper, the preparation and electrical performance of SrTiO3 used for SOFC anode materials were investigated.
     The calcinations process of Y2O3 doped SrTiO3 Sr1-1.5xYxTiO3 (x=0.01, 0.02, 0.03, 0.04, 0.05) and La2O3 doped SrTiO3 Sr1-1.5xLaxTiO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) were investigated by DSC-TG. The structure of the 1100℃calcined powders was examined by X-ray diffraction (XRD). The optimal sintering temperature of SrTiO3 doped with different substances was investigated based on DIL analysis. Density of samples was measured by the Archimedes principle. The relative density of Y2O3 doped SrTiO3 samples is larger than 93 %, and La2O3 doped SrTiO3 is larger than 94 %.
     Electrical performance of doped SrTiO3 was studied. The conductivity of doped SrTiO3 showed a peak as the increase of dopant content, and decreased with the increase of test temperature. Y2O3 doped SrTiO3 sintered at 1400℃is higher than that at 1450℃. The conductivity reached the maximal 26.3 S/cm at 800℃when the content of Y2O3 was 8mol%. The conductivity of La2O3 doped SrTiO3 sintered at 1600℃was 103.5 S/cm at 800℃when the content of La2O3 was 30mol%. There is no chemical reaction between doped SrTiO3 and YSZ sintered at 1400℃that showed good chemical compatibility.
     Complex-doped SrTiO3 was studied in order to improve the electrical performance of the anode materials. But the association of defects in the complex-doped SrTiO3 have disadvantage to the improvement of electrical conductivity.
引文
[1] 刘旭利,马俊峰,刘文化,等,固体氧化物燃料电池的研究进展,硅酸盐通报,2001(1):24~29
    [2] 彭茂公,燃料电池研究与开发的现状及必要性,能源研究与信息,2000,16,3:47~57
    [3] 韩敏芳,尹会燕,唐秀玲等,固体氧化物燃料电池发展及展望,真空电子技术,2005,4:23~26
    [4] 张义煌,董永来,江义等,薄膜型中温固体氧化物燃料电池制备及性能考察,电化学,2000,6(1):78~83
    [5] 孟光耀,付清溪,彭定坤,中温固态氧化物燃料电池,太阳能学报,2002,23(3):378~382
    [6] 刘旭利,马俊峰,刘文化等,固体氧化物燃料电池的研究进展,硅酸盐通报,2001(1):24~29
    [7] 程继贵,邓丽萍,孟光耀,固体氧化物燃料电池阳极材料制备及性能研究进展,兵器材料科学与工程,2002,25(6):45~49
    [8] 赵兵,卢立柱,谢慧琴,中低温固体氧化物燃料电池(SOFC)电解质材料,稀土,1998,19(4):55~61
    [9] 魏丽,陈诵英,王琴,中温固体氧化物燃料电池电解质材料的研究进展,稀有金属,2003,27(2):286~292
    [10] Xinge Zhang, Satoshi Ohara, Radenka Maric, et al., Interface reactions in the NiO-SDC-LSGM system, Solid State Ionics, 2003, 133: 153~160
    [11] 唐先敏,向梅芝,孙尧卿,固体氧化物燃料电池的材料研究进展,材料导报,1995,(1):28~32
    [12] 于兴文,黄学杰,陈立泉,固体氧化物燃料电池的研究进展,电池,2002,32(2):110~112
    [13] 刘莉,唐超群,CeO2基低温固体电解质材料的研究进展,电源技术,2001,25(6):428
    [14] 梁广川,刘文西,陈玉如,等,Sm,Gd共同掺杂的CeO2基电解质性能研究,硅酸盐学报,2000,28(1):44~46
    [15] Herle J V, Hortia, Kawada T, et al., Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte, Solid State Ionics, 1996, 86~88: 1225-1258
    [16] Kuroda K, Hashimoto I, Adachi K, et al., characterization of solid fuel cell using doped lanthanum gallate, Solid State Ionics, 2000, 132(3-4): 199-208
    [17] Ishihara T, Honda M, Nishiguchi H, et al., Intermediate temperature solid oxide fuel cell using LaGaO3 electrolyte II, Improvement of oxide ion conductivity and powerdensity by doping Fe for Ga site of LaGaO3, Journal of Electrochemical Society, 2000, 147(4): 1333~1337
    [18] Misha Y, Mitsuysau H, Ohtaki M, et al., Solid oxide fuel cell with comoposite electrolyte consisting of samaria doped ceria and yttria stabilized electrolyte, Journal of Electrochemical Society, 1998, 145(3): 1004-1007
    [19] Ma Gi L, Shimara T, Iwahara T, et al., ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3-δ, Solid state Ionics, 1998,110: 103~110
    [20] 吕喆,刘江,黄喜强,等,SrCe0.9Gd0.1O3固体电解质燃料电池性能研究,高等学校化学学报,2001,22(4):630~633
    [21] Zhu Bin, Bengt-Erik Mellander, Intermediate temperature fuel cells with electrolytes based on oxyacid salts, Journal of Power Sources, 1994, 52: 289~293
    [22] Zhu Bin, Bengt-Erik Mellander, Proton conduction in salt-ceramic composite systems, Solid State Ionics, 1995, 77: 244~249
    [23] Zhu Bin, Meng Guangyao, Mellander Bengt-Erik, Non-conventional fuel cell systems: new concepts and development, Journal of Power Sources, 1999, 79: 30~36
    [24] Peng-nian Huang, Anthony Petric, Super oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium, Journal of Electrochemical Society, 1996, 143(5): 1647-1648
    [25] Takeda Y, Nakai s, Kojima T, et al., phase relation in the system (La1-xAx)1-yMnO3 (A=Sr and Ca), Materials Research Bulletin, 1999, 26: 153
    [26] 翟秀静,符岩,刘忠文,微波合成固体氧化物燃料电池阴极材料La1-xSrxMnO3的研究,材料与冶金学报,2002,1(4):294-296
    [27] Petrov A N, Kononchuk O F, Andreev A V, et al., Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y, Solid State Ionics, 1995, 80(3-4): 189~199
    [28] Ishihara T, Kudo T, Matsuda H, et al., Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation, Journal of Electrochemical Society, 1995, 142(5): 1519~1524
    [29] Stephen J Skinner, Recent advances in Perovskite-Type materials for solid oxide fuel cell cathodes, International Journal of Inorganic Materials, 2001, 3(2): 113~121
    [30] 刘荣辉,马文会,王华,等,固体氧化物燃料电池阴极材料的研究进展,云南化工,2005,32(3):45~49
    [31] 衣宝廉,燃料电池-原理、技术、应用,北京:化工出版社,2003
    [32] 程继贵,邓丽萍,孟光耀,固体氧化物燃料电池阳极材料的制备和性能研究进展,兵器材料科学与工程,2005,25(6):45~49
    [33] Wang J B, Jiun Ching J, Huang T J, Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells, Journal of Power Source, 2003, 122(2): 122~131
    [34] Toru I, Kazuhiro M, Hiroyuki Y, High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte II: La(Sr)CoO3 cathode, Journal of power source, 2000, 86(1-2): 347~351
    [35] Huang P, Horky A, Petric A, et al., Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity, Journal of the American Ceramic Society, 1999, 82: 2402
    [36] Ohara S, Maric R, Zhang X, et al., High performance electrodes for reduced temperature SOFCs with doped lanthanum gallate electrolyte, Journal of Power Source, 2000, 86: 455
    [37] Zhe Lu, Li Pei, Tian-min He, et al., Study on new copper-containing SOFC anode materials, Journal of Alloys and Compounds, 2002, 334: 299–303
    [38] R J Gorte, J M Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis, 2003,216: 477~486
    [39] 韩敏芳,彭苏萍,固体氧化物燃料电池(SOFC)阳极材料,第十一次全国电化学会议论文集,北京:中国化学会,2001,B100
    [40] Murray, E perry, Tsai T, Barnett S A, A direct-methane fuel cell with a ceria-based anode, nature, 1999, 400(6745): 649~651
    [41] Seungdoo Park, John M Vohs, Rauymond J Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 2000, 404(6775): 265~267
    [42] Yoo Y, Koutcheiko S, petric A, Strontium titanate doped with lanthanides (Ln=Nd, Eu, Sm) for SOFC Anode Materials, Proceedings of the 5th European Solid Oxide Fuel Cell Forum, Luceme, Switzerland, 2002: 507~514
    [43] Atkinson A, Barnett S, Gorte R J, et al., Advanced anodes for high temperature fuel cells, Nature Materials, 2002, 3(1): 17~27
    [44] 阎景旺,中温固体氧化物燃料电池的研制与电极过程的研究:[博士学位论文],中国科学院大连化学物理研究所,2002
    [45] 周东祥,龚树萍,PTC 材料及应用,武汉:华中理工大学出版社,1989,67~69
    [46] S Shirasaki, H Yamamura, H. Haneda, Defect structure and oxygen diffusion in undoped and La-doped polycrystalline barium titanate, Journal of chemical physics, 1980, 73(9): 4640~4645
    [47] I Burn, S Neirman, Dielectric properties of donor-polycrystalline SrTiO3, Journal of material Society, 1982, 17: 3510~3513
    [48] M J Akhtar, Z Akhtar, R A Jackon, Computer simulation studies of strontium titanate, Journal of the American Ceramic Society, 1995, 78(2): 421-428
    [49] 钟吉品,赵梅瑜,王鸿,BaTiO3 和 SrTiO3 陶瓷半导化机理的研究,无机材料学报,1987,2(1):22~25
    [50] 朱连杰,徐跃华,冯守华,高等学校化学学报,1996,17(12):1824~1827
    [51] 陈铜,李文钊,于春英,等,高等学校化学学报,1996,17(10):1617~1621
    [52] 曲昭君,于春英,李文钊,等,掺杂钙铁矿型氧化物的固体结构及其可交换氧,物理化学学报,1994,10(9):796-801
    [53] 缪建文,范以宁,金永漱,等,掺杂SrTiO3体系上甲烷氧化偶联催化性能的研究,化工时刊, 2003,17(11): 21-24
    [54] Battle P D, Brnnett J E, Sloan J, et al., A-site cation-vacancy ordering in Sr1-3x/2LaxTiO3: A study by HRTEM, Journal of Solid State Chemistry, 2000, 149: 360~369
    [55] 莫以豪,李标荣,周国良,半导体陶瓷及敏感元件,上海:上海科学技术出版社,1983:86-88
    [56] Chiang Y M, Takagi T J, Grain-boundary of barium titanate and strontium titanate equilibrium space charge. Journal of the American Ceramic Society, 1992, 75(11): 3286-3291
    [57] Chiang Y M, Takagi T J, Comment on “interfacial segregation in perovskites: I-IV”, Journal of the American Ceramic Society, 1992, 75(3): 2017-2019
    [58] Philippe B, Jean F B, Pierre A, Effects of Yittrium Doping on the grain and Grain-boundary Resistivities of BaTiO3 for positive temperature coefficient thermistors, Journal of American Ceramic Society, 1992, 75(5): 1068-1072
    [59] W.G. Menesklou, H J Schreiner, I T Ellen, High temperature oxygen sensors based on doped SrTiO3. Sensors and actuators, 1999, B(59) 184-189
    [60] Komornicki, Stanislaw; Grenier, Jean Claude, et.al., Influence of stoichiometry on dielectric properties of boundary layer ceramics based on yttrium - doped strontium titanate, Materials Science & Engineering, B: Solid-State Materials for Advanced Technology, 1991, B10(2): 95-98
    [61] C C Jiao, J A Labrincha, J R Frade, Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics, Journal of the European Ceramic Society, 2000, 20: 1603-1609
    [62] Hui Shiqiang, Petric, Anthony, Electrical properties of yttrium-doped strontium titanate under reducing conditions, Journal of the Electrochemical Society, 2002, 149(1): J1-J10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700