三维有序大孔Fe_2O_3及ZnO薄膜的制备、表征与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文用逐层沉积水解FeCl3的方法制备了三维有序的Fe2O3薄膜。并且用扫描电镜,X射线衍射分析,紫外可见漫反射吸收光谱对其进行了分析。样品均有三维有序,且互相连通的大孔结构,孔径为340nm,并且墙体材料属于赤铁矿型的α-Fe2O3(晶粒尺寸为27.2nm)。在有双氧水存在,可见光照射的情况下,三维有序大孔的纳米晶Fe2O3薄膜降解染料的速率常数是无孔纳米晶α-Fe2O3薄膜的2.4倍,并且表现出良好的光催化活性。我们制备的三维有序大孔纳米晶薄膜比参比的Fe2O3薄膜具有较高的可见光催化活性,原因是它具有独特的纳米结构以及规则的三维有序大孔结构,而这种三维有序大孔结构使得前者比后者能够捕获更多的光能量和具有更远的光传输轨道。我们同时进行了改变角度的固相单色光催化实验来研究光学带隙对于三维有序大孔Fe2O3薄膜的光催化活性的影响。我们证明了通过光学带隙的红边调整到电子禁带宽度的附近,可以得到慢光子增强效应,从而提高样品的光催化活性。我们也研究了在双氧水存在的情况下三维有序大孔Fe2O3薄膜降解结晶紫染料的机理。
     此外,本论文依据相同的方法通过逐层水解醋酸锌制备了三维有序ZnO薄膜,并且进行了扫描电镜,X射线衍射分析,紫外可见漫反射吸收光谱对其进行了分析。结果证明:样品均有三维有序,且互相连通的大孔结构,孔径为270nm,并且墙体材料属于六角纤锌矿ZnO,三维有序ZnO薄膜降解结晶紫的速率常数为参比ZnO的2.4倍,三维有序ZnO的光电流为参比ZnO的1.8倍。
     由此可见,由本论文方法制备的三维有序大孔纳米晶材料可以用来设计高效的光电化学材料和光催化材料和太阳能及环境治理装置。因为这种材料具有内部相连的大孔结构和纳米尺寸的墙体材料,结合了纳米材料以及反蛋白石材料的优点。
A facile approach of layer-by-layer depositing and hydrolysis of FeCl3 is developed to fabricate 3D-ordered Fe2O3 film. The 3D-ordered Fe2O3 film was characterized by SEM, XRD, and DRUV-vis. It has 3D-ordered interconnecting macropores (340 nm) with nanocrystalline hematite Fe2O3 walls (27.2 nm). The 3D-ordered macroporous nanocrystalline Fe2O3 film exhibits 2.4 times larger photocatalytic activity for the photodegradation of dye in the presence of H2O2 under visible irradiation than the nanocrystallineα-Fe2O3 film without macropores, and very good photostability. The much higher photocatalytic activity of the 3D-ordered macroporous nanocrystalline Fe2O3 film than that of the reference Fe2O3 film is attributed to the unique nanostructure and architecture of the 3D-ordered Fe2O3 film, which result in the much greater light harvesting efficiency and efficient mass transport in the former than in the latter due to the existence of 3D-ordered interconnecting macropores. The effect of photonic stop band on the photocatalytic activity of the 3D-ordered Fe2O3 film was studied by angle-dependent solid state photodegradation experiments with monochromatic irradiation. A slow-photon enhancement of photocatalytic activity was achieved by adjusting the red edge of photonic stop band of the 3D-ordered Fe2O3 film close to the electronic bandgap of Fe2O3. The photodegradation mechanism of crystal violet on the 3D-ordered Fe2O3 photocatalyst in the presence or absence of H2O2 was discussed.
     Besides,3D-ordered ZnO film was fabricated via the same method, and was characterized by SEM, XRD, and DRUV-vis.The sample has 3D-ordered interconnecting macropores (270 nm) with nanocrystalline spiauterite ZnO walls. The 3D-ordered macroporous nanocrystalline ZnO film exhibits 2.4 times larger photocatalytic activity for the photodegradation of dye than the nanocrystalline ZnO film without macropores.
     These architecture characteristics of inverse opal are useful for designing high efficient photoelectrochemical and photocatalytic materials or devices that are very significant to solar energy utilization and environmental detoxification. We combined the advantages of nanosizedα-Fe2O3 and inverse opal ofα-Fe2O3 together.
引文
[1]邹志刚,赵进才,付贤智,等.光催化太阳能转换及环境净化材料的现状和发展趋势[J].功能材料,2004,16(4):83-88.
    [2]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238:37-38.
    [3]Zeng S Y, Tang K B, Li T W,et al. J. Phys. Chem. C ,2008,112,4836.
    [4]IUPAC Mannual of Symbols and terminology, Appendix 2, Part 1,Collidal and Surface Chemistry[c].Pure Appl.Chem.Soc.,1972,31:578.
    [5]Ishizaki k, Komarineni S, Nanko M. Porous materials: Process technology and application. Kluwer Academic Publishe:Norwell,1998:960.
    [6]Coelho M B,Soares I R, Chmelka B F,et al. Chem.Mater.,1991,11:1174-1178.
    [7]容建华,杨振忠,齐凯,等.二氧化硅模板技术制备三维有序聚苯乙烯孔材料[J].科学通报,2000,45:1627-1630.
    [8]Gundiah G, Rao C N R. Macroporous oxide Materials with Three-Dimensionally intereormeetPores[J]. Solid State Science,2000,2:877-882.
    [9]Yablonowitch. Inhibited Spontaneous Emissionin Solid-State Physics and Electronics Eli [J].Physical Review Letters,58(1987):2059.
    [10]Sajeev John. Strong Localization of Photos in Certain Disordered Dielectric Superlattices[J]. Physical Review Letters,58(1987):2486.
    [11]卜涛,李福利,冯宇.光波在一维光子晶体中传播行为的数值模拟[J].西安交通大学学报,2007,41(2):201-203.
    [12]章炜,王奇,陈圆圆.一维多层介质光子晶体的禁带特征及其在滤波中的应用[J].量子光学学报,2007,24(1):69-71.
    [13]祁建霞.光子晶体及其应用[J].西安邮电学院学报,2007,12(5):139-141.
    [14]陈伟,李进延,李诗愈.光子晶体光纤及其在光器件领域的应用[J].光通信研究,2007,144:27-30.
    [15]Gratzel M. Heterogeneous photochemical electron transfer[J]. CRC Press, Baton Rouge, F L,1988,93(2):671-674.
    [16]贺飞,唐怀军,赵文宽,等.纳米TiO2光催化剂负载技术研究[J].环境污染治理技术与设备,2001,2(2):47-56.
    [17]魏洪斌.光催化氧化法影响因素和发展趋势[J].上海环境科学,1995,14(3):7-10.
    [18]Okazaki M, Takeshi S, Shigera S, et al. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair[J]. J. Phys. Chem.,1988,92(6):1402.
    [19]Ishibashi K I, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative species formed on TiO2 photocatalyst[J]. J. Photochem. Photobio. A:Chem.,2000,134(1-2): 139-142.
    [20]Assabane A, Yahia A I, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.:Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2, 4-benzene tricarboxylic acid) [J]. Appl. Catal. B:Environ.,2000,24(2):71-87.
    [21]Behnajady M A, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of C. I. Acid Yellow 23 by ZnO photoeatalyst[J]. Journal of Hazardous Materials,2006, 133(1-3):226-232.
    [22]韩世同,习海玲.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339-349.
    [23]Spathis P, Poulio I. The corrosion and photocorrosion of zinc and zinc oxide coatings[J]. Corros. Sci.,1995,37(5):673-680.
    [24]Wang D, Song C. Controllable synthesis of ZnO nanorod and prism arrays in a large area[J]. J. Phys. Chem. B,2005,109(26):12697-12700.
    [25]Fu H B, Xu T G., Zhu S B, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environ. Sci. Technol.,2008, 42(21):8064-8069.
    [26]Wang Yan, Du Weiping, Xu Yiming. Effect of Sintering Temperature on the Photocatalytic Activities and Stabilities of Hematite and Silica-Dispersed Hematite Particles for Organic Degradation in Aqueous Suspensions [J]. Langmuir,2009,25 (5):2895-2899
    [27]Li Lili, Chu Ying, Liu Yang, et al. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres [J]. J. Phys. Chem. C,2007,111 (5): 2123-2127.
    [28]Wu Changzheng, Yin Ping, Zhu Xi, et al. Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors [J]. J. Phys. Chem. B,2006,110 (36):17806-17812.
    [29]Zeng Suyuan, Tang Kaibin, Li Tanwei, et al. Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties [J]. J. Phys. Chem. C,2008,112 (13): 4836-4843.
    [30]Jain G, Balassubramanian M, Xu, J, et al. Structural Studies of Lithium Intercalation in a Nanocrystalline α-Fe2O3 Compound [J]. Chem. Mater.,2006,18 (2):423-434.
    [31]Woo K, Lee H J, J.-P. Ahn, et al. Sol-Gel Mediated Synthesis of Fe2O3 Nanorods[J]. Adv. Mater.,2003,20:1761-1764.
    [32]Wang X, Chen X, Cao L, et al. Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH [J].J. Mater. Chem.,2004,14,905-907.
    [33]Chen J, Xu L, Li W, et al. α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications[J].Adv. Mater.,2005,17 (5):582-586.
    [34]Sun Z, Yuan H, Liu Z, et al. A Highly Efficient Chemical Sensor Material for H2S:α-Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates [J]. Adv.Mater.,2005,17: 2993-2997.
    [35]Liu Lu, Kou Huizhong, Mo Wenling, et al. Surfactant-Assisted Synthesis of α-Fe2O3 Nanotubes and Nanorods with Shape-Dependent Magnetic Properties [J]. J. Phys. Chem. B, 2006,110 (31):15218-15223
    [36]Zheng Yuanhui, Cheng Yao, Wang Yuansheng, et al. Quasicubic α-Fe2O3 Nanoparticles with Excellent Catalytic Performance[J]. J. Phys. Chem. B,2006,110 (7):3093-3097.
    [37]Wen Xiaogang, Wang Suhua, Ding Yong, et al. Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3 Nanobelts and Nanowires[J]. J. Phys. Chem. B,2005, 109 (1):215-220.
    [38]Jia C J, Sun L D, Luo F, et al. Cervera-Gontard, L.; Dunin-Borkowski, R. E.; Tzvetkov, G.; Raabe, J. J. Am. Chem. Soc.,2008,130,16968.
    [39]Yu Jiaguo, Yu Xiaoxiao, Huang Baibiao, et al. Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres [J].Crystal Growth Design.2009,9.1474.
    [40]Bang J H, Suslick K S. Sonochemical Synthesis of Nanosized Hollow Hematite [J]J. Am. Chem. Soc.129 (8):2242-2243.
    [41]Cao Shaowen, Zhu Yingjie, Ma Mingyan, et al. Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3: Preparation and Potential Application in Drug Delivery [J]. J. Phys. Chem. C,2008,112 (6):1851-1856.
    [42]Zeng Suyuan, Tang Kaibin, Li Tanwei, et al. Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment[J]. J. Phys. Chem. C,2007,111 (28):10217-10225.
    [43]Gates B, Xia Y. Photonic Crystals That Can Be Addressed with an External Magnetic Field [J].Adv. Mater.2001,13 (21):1605-1608.
    [44]Lopez C. Materials Aspects of Photonic Crystals [J].Adv. Mater.2003,15(20),1679-1704.
    [45]Zheng S P, Ross E, Legg M A, et al. High-Speed Electroseparations Inside Silica Colloidal Crystals [J].J. Am. Chem. Soc.,2006,128 (28):9016-9017.
    [46]Guan G Q, Zapf R, Kolb G, et al. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in a microchannel reactor [J].Chem. Commun.,2007,260-262.
    [47]Sakamoto J S, Dunn B. Hierarchical battery electrodes based on inverted opal structures [J]J. Mater. Chem.,2002,12:2859-2861.
    [48]Chen J I L, Freymann G, Choi S Y, et al. Amplified Photochemistry with Slow Photons[J]. Adv. Mater.,2006,18(14):1915-1919.
    [49]Usami A, Ozaki H. Optical Modeling of Nanocrystalline TiO2 Films[J].J. Phys. Chem. B, 2005,109 (7):2591-2596.
    [50]Imhof A, Vos W L, Sprik R, et al. Large Dispersive Effects near the Band Edges of Photonic Crystals [J].Phys. Rev. Lett.,1999,83,2942-2945.
    [51]Nishimura S, Abrams N, Lewis B A, et al. Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals [J]. J. Am. Chem. Soc.,2003,125 (20):6306-6310.
    [52]Halaoui L I, Abraams N M, Mallouk T E. Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals [J].J. Phys. Chem.B,2005,109 (13):6334-6342.
    [53]Li Yuanzhi, Kunitake Toyoki, Fujikawa Shigenori. Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres[J]. J. Phys. Chem. B,2006,110 (26):13000-13004.
    [54]Norris D J, Vlasov Y A. Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals[J].Adv. Mater.,2001,13(6),371-376.
    [55]Kay A, Cesar I, Gratzel M. New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films [J]. J. Am. Chem. Soc.,2006,128 (49):15714-15721.
    [56]Wang Y, Du W P, Xu Y M. Effect of Sintering Temperature on the Photocatalytic Activities and Stabilities of Hematite and Silica-Dispersed Hematite Particles for Organic Degradation in Aqueous Suspensions [J]. Langmuir,2009,25 (5):2895-2899.
    [57]Rothenberger G, Comte P, Gratzel M. A contribution to the optical design of dye-sensitized nanocrystalline solar cells [J].Sol. Energy Mater. Sol. Cells,1999,58(3),321-336.
    [58]Hore S, Nitz P, Vetter C, et al. Scattering spherical voids in nanocrystalline TiO2 enhancement of efficiency in dye-sensitized solar cells[J]. Chem. Commun.,2005:2011-2013.
    [59]Mihi A, Miguez H. Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B,2005, 109 (33):15968-15976.
    [60]Liu J, Li M Z,Wang J X, et al. Hierarchically Macro-/Mesoporous Ti-Si Oxides Photonic Crystal with Highly Efficient Photocatalytic Capability[J]. Environ. Sci. Technol.,2009,43 (24):9425-9431.
    [61]Schroden R C, Al-Daous, M, Blanford C F, et al. Optical Properties of Inverse Opal Photonic Crystals[J]. Chem. Mater.,2002,14 (8):3305-3315.
    [62]Serpone N, Lawless D, Khairutdinov R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization versus Direct Transitions in This Indirect Semiconductor? [J]. J. Phys. Chem.,1995,99 (45):16646-16654.
    [63]Patterson E M, Shelden C E, Stockton B H. Kubelka-Munk optical properties of a barium sulfate white reflectance standaxd[J]. Appl. Opt.,1977,16:729.
    [64]Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures [J].Appl. Catal. B,2009,90(3-4),595-602.
    [65]Ishibashi K, Fujishima A, Watanabe T. et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique[J].Electrochem. Commun.,2000,2:207-110.
    [66]Xiao Q,Si Z C, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline [J].J. Hazard. Mater.,2008,150(1):62-67.
    [67]Puangpetch T, Sreethawong T, Yoshikawa S, et al. Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts[J]. J. Mol. Catal A,2009,312(1-2),97-106.
    [68]Ming Y, Chenthamarakshan C R, Rajeshwar K. Radical-mediated photoreduction of manganese(Ⅱ) species in UV-irradiated titania suspensions [J]. J. Photochem. Photobiol. A, 2002,147(3),199-204.
    [69]Li Yuanzhi, Zhang Hua, Hu Xuelei, et al. Efficient Visible-Light-Induced Photocatalytic Activity of a 3D-Ordered Titania Hybrid Photocatalyst with a Core/Shell Structure of Dye-Containing Polymer/Titania[J].J. Phys. Chem. C,2008,112 (38):14973-14979.
    [70]Gondal M A, Hameed A,Yamani Z H. Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3[J]. A. Appl. Catal. A,2004,268(1-2),159-167.
    [71]Masahiro Miyauchi, Akira Nakajima, Toshiya Watanabe, et al. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films[J]. Chem. Mater.,2002,14 (6):2812-2816.
    [72]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science,2001, 291(5510):1947-1949.
    [73]Sernelius B E, Berggren K F, Jin Z C, et al. Band-gap tailoring of ZnO by means of heavy Al doping[J]. Phys. Rev. B,1988,37(17):10244-10248.
    [74]Xu Q, Schmidt H, Hartmann L, et al. Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects[J]. Appl. Phys. Lett.,2007,91(9):492-503.
    [75]Fujihara S, Ogawa Y, Kasai A. Tunable Visible Photoluminescence from ZnO Thin Films through Mg-Doping and Annealing[J]. Chem. Mater.,2004,16(15):2965-2968.
    [76]Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective[J]. Phys. Rev. B,2002,66(7):073202.
    [77]Xiang B, Wang P, Zhang X, et al. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition[J]. Nano. Lett.,2007,7(2):323-328.
    [78]Yuan G D, Zhang W J, Jie J S, et al. p-type ZnO nanowire arrays[J]. Nano. Lett.,2008,8(8): 2591-2597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700