家蚕谷胱甘肽-S-转移酶基因转录水平定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽-S-转移酶(glutathione S-transferases, GSTs)是一个多功能超基因家族,在昆虫抗性方面起到很重要的作用。为探究家蚕(Bombyx mori)谷胱甘肽-S-转移酶基因(BmGSTs)的功能,本研究采用双跟踪标定实时荧光定量RT-PCR(dual spike-in qPCR)方法,对家蚕和野蚕(Bombyx mandarina)部分重要的BmGSTs基因转录水平进行了定量研究,主要研究结果如下:
     1、BmGSTd1基因诱导表达定量分析
     采用实时荧光定量RT-PCR方法,对BmGSTd1基因在正常饲养及添食NaF的家蚕5龄幼虫不同组织中的转录水平进行检测,并采用家蚕Actin3、GAPDH、28S rRNA 3种內源参照基因对检测结果进行归一化处理?峁砻鳎築mGSTd1基因在家蚕5龄幼虫各组织的转录水平存在差异,且采用不同内参照基因归一化的结果也有较大差异。研究认为,检测基因在不同组织中的转录水平,采用合适的内参照基因对保证检测结果的可靠性非常重要。
     2、不同蚕品种BmGSTs基因转录水平的测定
     采用dual spike-in qPCR方法,对野蚕和不同品种家蚕各组织中BmGSTs基因的转录水平进行检测,结果表明:不同蚕品种之间被测BmGSTs基因的转录水平存在差异,菁松和皓月BmGSTs基因的转录水平较高,老挝L11种的转录水平次之,大造和野桑蚕BmGSTs基因的转录水平相对较低;不同组织之间BmGSTs基因的转录水平也存在一定的差异。
     3、杀虫剂诱导下BmGSTs基因转录水平的测定
     采用dual spike-in qPCR方法,测定了在杀虫剂敌敌畏和溴氰菊酯诱导下,家蚕L11和野蚕不同BmGSTs基因的表观转录水平。结果表明:在敌敌畏和溴氰菊酯诱导下,老挝L11 BmGSTs基因在中肠的转录水平上调最显著,其次是脂肪体。野桑蚕在溴氰菊酯诱导下,被测BmGSTs基因转录水平有显著上调,而在敌敌畏诱导下,未检测到较高的转录水平。所选基因以BmGSTe5在中肠和BmGSTs1基因在脂肪体中被诱导上调为主,预测这两个基因与家蚕抗性的关系比较密切。
     4、氟化物诱导下BmGSTs基因转录水平的测定
     采用dual spike-in qPCR方法,测定了家蚕皓月在NaF诱导下,5龄幼虫各组织BmGSTs基因的转录水平。结果表明:NaF对家蚕体内某些组织BmGSTs基因的表达具有诱导作用,比如:中肠中的BmGSTe5和BmGSTs1基因,脂肪体中的BmGSTo3和BmGSTs1基因;而在另外一些组织中则具有抑制作用,例如BmGSTs基因在马氏管中的表达。
     本研究阐明了BmGSTs基因在家蚕和野蚕体内各组织表达的基本信息,为研究该基因家族在家蚕抗性中的作用提供数据参考,并为培育家蚕抗逆性新品种提供重要的理论依据。
Glutathione S-transferases (GSTs) are a multifunctional supergene family and some play an important role in insecticide resistance. In order to explore the roles of Bombyx mori glutathione S-transferase genes (BmGSTs), we investigated the transcription levels of some BmGST genes in Bombyx mori and Bombyx mandarina with the dual spike-in qPCR method. The main results are as follows:
     1. Induced expression and quantitative analysis of BmGSTd1
     We used a real-time fluorescent quantitative PCR method to detect the transcription levels of BmGSTd1 in different tissues of the 5th instar larvae feeding on both normal mulberry leaves and sodium fluoride treated mulberry leaves. The detection results were normalized by using 3 Bombyx mori internal reference genes namely Actin3, GAPDH and 28S rRNA. The results indicated that the transcription levels of BmGSTd1 were different in various tissues of the 5th instar larvae. They were also varied while different internal reference genes were used. It is thus concluded that, for detection of gene transcription levels, it is very important to choose adequate internal reference genes so as to ensure the reliability of the detection results.
     2. Transcription levels of BmGST genes in varieties of silkworm
     We have determined the transcription levels of BmGSTs in five varieties of Bombyx mori and Bombyx mandarina with the dual-spike-in qPCR method. The results indicated that the transcription levels of BmGSTs shows differences between different varieties. To sum up, the transcription levels of BmGSTs in Jingsong and Haoyue are highest, those of L11 are following, and the transcription levels of BmGSTs in Dazao and Bombyx mandarina are lowest. And the transcription levels of BmGSTs in different tissues are also different.
     3. Insecticides-induced transcription levels of BmGST genes We have determined the transcription levels of BmGSTs induced by Dichlorvos and Deltamethrin in silkworm L11 and Bombyx mandarina with the dual-spike-in qPCR method. The results indicated that the transcription levels of BmGSTs induced by Dichlorvos and Deltamethrin in midgut of L11 are up-regulated most, the following are fat body. In Bombyx mandarina, the transcription levels of BmGSTs induced by Deltamethrin are significantly up-regulated, but those induced by Dichlorvos can not be detected significantly. The transcription levels of BmGSTe5 in midgut and BmGSTs1 in fatbody are up-regulated most, so we predict that these two genes are related with resistance of silkworm.
     4. NaF-induced transcription levels of BmGST genes
     We have determined the transcription levels of BmGSTs induced by NaF in silkworm Haoyue with dual-spike-in qPCR method. The results indicated that the transcription of some BmGSTs such as BmGSTe5 and BmGSTs1 in the midgut as well as BmGSTo3 and BmGSTs1 in the fat body can be induced by NaF, and they can be inhibited by NaF, such as the BmGSTs in the Malpighian tubule.
     The production of this research illuminated the basic information of distributing of BmGSTs in various tissues of Bombyx mori, and it can provide data for studying the function of BmGSTs in the development of resistance and developing new pesticide resistant silkworm varieties.
引文
[1] Yamamoto K, Zhang P B, Banno Y, et al. Identification of a Sigma-class glutathione S-transferase from the silkworm, Bombyx mori[J]. Appl Entomol. 2006, 130: 515-522
    [2]沈卫德,李兵,季平,等.野桑蚕和家蚕的环境适应性比较研究.蚕业科学, 2003, 29(4): 375-379
    [3] Melander P H, Sawicki R M. Diagnosis of resistance to organaphosphorus insecticide in Myzus persicae. Nature. 1971, 230: 125
    [4] Dautem an W C, In Kerkut G A, Gilbert, et al. Comprehensive Insect Physiology, Biology and Pharmacology[M]. New York Pergam on Press, 1985, 713-730
    [5] Motoyama N, Dauterman W C. Glutathione S-transferases: their role in the metabolism of organophosphorus insecticides. Rev Biochem Toxicol. 1980, 2: 49-69
    [6] Clark A G, Shanmaan, N A. Evidence that DDT-dehydrochlorinase from the housefly is a glutathione S-tranferase. Pestic Biochem Physiol, 1984, 22(3): 249-261
    [7] Vontas J G ,small G J, Herningway J. Gutathione S-transferaes as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001, 357(l): 65-72
    [8] Hayes J D, Flanagan J U, Jowsey I R. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005, 45: 51-88
    [9] Chelvanayagam G, Parker M W, Board P G, et al. Fly fishing for GSTs: aunified nomenclature for mammalian and insect glutathione transferases. Chem. Biol. Interaet. 2001, 133(l-3): 256-260
    [10] Chen Y Y, Wu Y C. Study on the effect of fluoride on the growth, development and economic parameters of silkworm Bombyx mori L. Sericologia, 1994, 34: 627-635
    [11] Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily [J]. J Biochem, 2001, 360(1): 1-16
    [12] Booth J, Boyland E, Sims P. An enzyme from rat liver catalyzing conjugation withglutathione. Biochem J. 1961, 79: 516-524
    [13] Hayes J D, Strange R C. Glutathione S-transferase polymorphisms and their biological consequences. Phamacology. 2000, 61(3): 154-166
    [14] Hayes J D, Pulford D J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995, 30: 445-600
    [15] Erika L A, Theo K B, David L E. Biotransformation of Methy1 Parathion by Glutathione S-Transferases. Toxicol. Sci. 2004, 79(2): 224-232
    [16] Kristensen M Glutathione S-transferase and insecticide resistance in laboratory strains and field populations of Musca domestica. J Econ Entomol. 2005, 98(4): 1341-1348
    [17] Kraus P. Resolution, purification and some properties of three glutathione transferases from rat liver mitochondria. Hoppe Seylers Z Physiol Chem. 1980, 361(1): 9-15
    [18] Fournier, Bride J M., Poirie M, et al. Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J. Biol. Chem. 1992, 267(3) :1840-1845
    [19] Beall C, Fyrberg C, Song S, et al. Isolation of a Drosophila gene encoding glutathione S-transferase. Biochem Genet. 1992, 30(9-10): 515-527
    [20] Snyder M J, Walding J K, Feyereisen R. Glutathione S-transferase from larval Manduca sexta midgut: sequence of two cDNAs and enzyme induction. Insect Biochem Mol Biol. 1995, 25(4): 455-465
    [21] Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione S-transferase involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem. J. 2001, 359: 295-304
    [22] Board P G, Baker R T, Chelvanayagam G, et al. Zeta, a novel class of glutathione transferases in a range of species from Plants to humans. Biochem J. 1997, 328(3): 929-935
    [23] Ding Y, Ortelli F, Rossiter L C, et al. The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics.2003, 4(l): 35
    [24] Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferase. Genome Biol. 2002, 3(3): Reviews 3004
    [25] Board P G, Coggan M, Chelvanayagam G, et al. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem. 2000, 275(32): 24798-24806
    [26] Chen L, Hall PR, Zhou XE, et al. Structure of an insects delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anpheles gambiae. Acta Crystalloge D Biol Crystallogr. 2003, 59(pt12): 2211-2217
    [27] Wilce M C, Board P G, Feil S C, Crystal structure of a theta-class glutathion transferase. EMBO J. 1995, 14(10): 2133-2143
    [28] Armstrong R N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997, 10(1): 2-18
    [29] Frova C. Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng. 2006, 23(4): 149-169
    [30] Jakoby W B. The glutathione S-transferases: a group of multifunctional detoxifieation proteins Adv Enzymol Relat Areas Mol Biol .1978, 46: 383-414
    [31] Foumier D, Bride J M, Poirie M, et al. Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant toi nsectieides Biol Chem J.1992, 26(3): 1840-1845
    [32] Meyer D J, Muimo R, Thomas M, et al. Purifieation and characterization of prostaglandin-HE-isomerase, a sigrna-class glutathione S-transferase, from Asearidia galli.Biochem J.1996, 313(l): 223-27
    [33] Feng Q L, Davey K G, Pang A S D, et al. Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana: identification, charaeterization, loealiZation, cDNA cloning, and expression Insect Biochemistry and Molecular Biology. 1999, 29: 779-793
    [34] Kong K H, Nishida M, houe H, et al. Tyrosine-7 is an esseniial residue for thecatalytic acticity of human class PI glutathione S-transferase:chemical modifieation and site-direeted mutagenesis studies [J]. Biochem Biopys Res Common, 1992, 182: 1122-1129
    [35] Thomson R E, Bigley A L, Foster J R et al. Tissue-specific expression and subcellular distribution of murine glutathione S-transferase class kappa. J. Histochem Cytochem. 2004, 52(5): 653-662
    [36]张常忠,高希武,郑炳宗.农药学学报, 2001, 3(l): 30-35
    [37] Nakarnura A, Yoshizaki I, Kobayashi S. Spatial expression of Drosophila glutathione S-transferase-D1 in the alimentary canal is regulated by the overlying visceral mesoderm. Dev Growth Differ.1999, 41(6): 699-702
    [38] Papadopoulos A I, polemitou I, Laifi P. et al. Glutathione S-transferase in the developmental stages of the insect AP is mellifera macedonica. Comp Biochem Physiol C Toxicol Pharmacol. 2004, 139(l-3): 87-92
    [39] Papadopoulos A I, Stamkou E I, Kostaropoulos I, et al. Effect of Organophosphate and Pyrethroid Insecticides on the Expression of GSTs from Tenebrio molitor Larvae. pest Biochem physiol. l999, 63: 26-33
    [40] Ottea J A, plapp Jr F W. Induction of glutathione S- transferase by phenobarbital in the house fly. pest Biochem physiol. 1981, 15: 10-13
    [41] Kirby M L, Ottea J A. Multiple mechanisms for enhancement of glutathione S-transferase activities in spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Biochem Mol Biol. 1995, 25(3): 347-353
    [42] Le Goff G, Hilliou F, Siegfried B D, et al. Xenobiotie response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol. 2006, 36(8): 674-682
    [43] Clark A G,Shamaan N A, Sinclair M D, et al. Insectieide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domeslica (L.). Pestic Biochem Physiol. 1986, 25: 169-175
    [44] Ottea J A, Plapp F W. Glutathione S-transferase in the house fly: Biochemical andgenetic changes associated with induction and insecticide resistance. PesticBiochem Physiol. 1984, 22: 203
    [45]黄天芳.植物次生物质对于植物生存的重要作用.生物学杂志, 2003, 20(5): 60-61
    [46]高希武,董向丽,郑炳宗,等.棉铃虫谷胱甘肽-S-转移酶(GSTs):杀虫药剂和植物次生性物质的诱导与谷胱甘肽S-转移酶对杀虫药剂的代谢.昆虫学报. 1997, 40(2): 122-127
    [47]高希武,董向丽,赵颖,等.槲皮素对棉铃虫体内一些解毒酶系和靶标酶的诱导作用.农药学学报. 1999, l (3): 56-60
    [48] Yu S J. Induction of detoxifying enzymes by al1eloehemieals and host plants in the fall armyworm . Pestic Biochem Physiol. 1983, 19: 330-336
    [49] Wadleith R W. Yu S J. Glutathione S-transferase activity of fall armyworm larvae towardα,β-unsaturated carbonyl alleloehemicals and its induction by alleloehemeials. Insect Biochem.1987, 17: 759-764
    [50] Wadleith R, Yu S J. Detoxfieation of isothiocyanate allelochemicals by glutathione S-transferases in three Lepidoterous species. J Chem Ecol. 1988, 14: 1279-1288
    [51] Yu S J. Host plant induction of glutathione S-transferase in the fall armyworm. Pesticide Biochemistry and Physiology. 1982, 18: 101-106
    [52] Havaoka T, Dautennan W C. Induction of glutathione S-transferases by phenobarbital and pesticides in various housefly strains and its effect on toxicity. Pest Biochem Physiol. 1982, 17: 113-119
    [53] Papadopoulos A I, Stamkou E I, Kostaropoulos I, et al. Effect of Organophosphate and Pyrethroid Insecticides on the Expression of GSTs from Tenebrio molitor Larvae. Pest Biochem Physiol. l999, 63: 26-33
    [54]唐振华.昆虫抗药性及其治理.农业出版社, 1993, pp: 235-257
    [55] Fournier D, Bride J M, Poirie M, et al. Insect glutathione S-transferases. Biochemical Characteristics of the major forms from houseflies susceptible and resistant to insecticides. Jourmal of Biological Chemistry. 1992, 267: 1840-1845
    [56] Huang H S, Hu N T, Yao Y E, et al. Molecular cloning and heterologous expression ofa glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 1998, 28(9): 651-658
    [57] Ranson H, PraPanthadara L, Hemingway. Cloning and characterization of two glutathione S-transferases from a DDT resistant strain of Anopheles gambiae. Biochemical, Journal. 1997, 324: 97-102
    [58] Yu S J. Biochemical characteristics of microsomal and cytosolic glutathione S-transferases in larvae of the fall armyworm. Spodoptera frugiperda (J.E.Smith). Pestieide Biochemistry and Physiology, 2002, 72: 100-110
    [59] Wei S H, Clark A G. Syvanen M. Identification and cloning of a key Insecticide-metabolizing Glutathione S-transferase (MdGST-6A) from a hyper Insectieide-resistant strain of the housefly Musca domestica. Insect Biochem. Mol . Bio 2001, 31(12): 1145-1153
    [60] Enayati A A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol, 2005, 14(l): 3-8
    [61] Tang A H, Tu C P. Biochemical characterization of Drosophila glutathione S-transferases Dl and D21 The Journal of biological chemistry, 1994, 269(45): 27876-27884
    [62] Vontas J G, small G J Nikou D C, et al. Purifieation, molecular cloning and heterologous expression of a glutathione S-tranferase involved in insectieide resistance from the rice brown plant hopper, Nilaparvata lugens. Biochem J. 2002, 362(2): 329-337
    [63] Grant D F, Hammoek B D. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegyti. Mol. Gen. Genet. 1992, 234: 169-176
    [64] Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem. Mol. Biol, 2000, 30(11): 1009-1015
    [65] Tang A H, Tu CPD. Pentobarbital-induced changes in Drosophila glutathioneS-transferases D21 Mrna stability. J. Biol, Chem. 1995, 270(23): 13819-13825
    [66] Tang Z H, Bi Q. Moleeular Behavior of Insecticide Action. Shanghai: Shanghai Yuandong Press. 2003, 200-240
    [67]Grant D F, Hammock B D. Genetic and molecular evidence for a transacting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Mol Gen Genet. 1992, 234: 169-176
    [68]Tang A H, Tu C P. Pentobarbital-induced changes in Drosophila glutathione S-transferase D21 mRNA stability. J Biol Chem. 1995, 270: 13819-13825
    [69]侯成香,桂仲争.家蚕谷胱甘肽-S-转移酶的组织分布及发育期变化规律.蚕业科学, 2007, 33(3): 409-413
    [70] Quanyou Yu. Identification, genomic organization and expression pattern of glutathione S-transferases in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology. 2008, 38: 1158-1164
    [71]左伟东,余泉友,李斌,等.家蚕谷胱甘肽转移酶基因的克隆、序列分析及其表达模式.农业生物技术学报, 2007, 15(4): 595-601
    [72]许湲.家蚕谷胱甘肽-S-转移酶BmGSTe3基因的克隆和真核表达.硕士论文.重庆:西南大学, 2008
    [73] Yamamoto K, Zhang P B, Miake F, et al. Cloning, expression and characterization of Theta-class glutathione S-transferase from the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol. 2005, 141: 340-346
    [74] Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 2001, 25 (4): 386-401
    [75] Ririe, K.M., Rasmussen, R.P., Wittwer, C.T.. Product differentiation by analysis of DNA melting curves during polymerase chain reaction. Analytical Biochemistry, 1997, 245, 154-160
    [76] Kellogg, D.E., J.J. Sninsky, and S. Kowk.. Quantitation of HIV-1 proviral DNA relative to cellular DNA by the polymerase chain reaction. Anal. Biochem. 1990, 189: 202-208
    [77] Wittwer, C.T., Herrmann, M.G., Moss, A.A., Rasmussen, R.P.. Continuous fluorescence monitoring of rapid cycle DNA amplification. Bio Techniques 1997, 22: 130-138
    [78] Kutyavin I V, Afonina I A, Mills A, et al. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res, 2000, 28(2): 655-661
    [79] Dheda K, Huggett J F, Bustin S A, Johnson M A, Rook G, Zumla A Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004, 37: 112-119
    [80] Radonic A, Thulke S, Mackay I M, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications 2004, 313: 856-862
    [81] Yi Zhang, Zhenguo Wei, YuanYuan Li, et al. Transcription level of messenger RNA per gene copy determined with dual-spike-in strategy.Analytical Biochemistry, 2009, 394: 202-208
    [82]马德和,李荣琪.氟化物对蚕桑的影响试验[J].蚕业科学, 1982, 8(4): 209-212
    [83]张耀民.我国大气氟污染对农业环境的影响及其经济损失的估算[J].环境科学, 1986, 7(6): 82-86
    [84]林健荣,史奕山,卢日成,等.氟素对家蚕幼虫血淋巴中酶活性及钙镁离子含量的影响[J].蚕业科学, 1994, 20(2): 115-118
    [85]臧荣春,吕顺霖,徐俊良,等.氟化物对家蚕幼虫中肠(钙,镁)-三磷酸腺苷酶活性的响[J].蚕业科学, 1993, 19(3): 156-161
    [86]陈志伟.家蚕氟中毒后某些生化变化[J].蚕业科学, 1987, 13(3): 164-167
    [87]路爱成.野桑蚕不同组织细胞色素P450 CYP305B1V1基因的诱导表达特征研究[J].安徽农业科学, 2009, 37(12): 5400-5402
    [88] Schefe J H, Lehmann K E, Buschmann I R, et al. Quantitative real-time RT-PCR data analysis: current concepts and the novel“gene expression’s CT difference”formula [J]. J Mol Med, 2006, 84: 901-910
    [89] Jacques B K, Rain W R, Belinda A G, et al. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes [J]. Lab Investigation, 2005, 85: 154-159
    [90]孙霞,朱晨,汪生鹏,等.家蚕丝素基因表达水平的定量分析[J].蚕业科学, 2009, 35(1): 30-35
    [91] Stevens J L, Snyder M J, Koener J F, et al. Inducible P450s of the CYP9 family from larval Manduca sexta midgut[J]. Insect Biochem Mol Bio1, 2000, 30: 559-568
    [92] J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989
    [93] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using realtime quantitative PCR and the 2(_DDCT) method, Methods, 2001, 25: 402-408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700