基于VxWorks的五自由度气浮台姿态控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国航天领域小卫星的逐渐开发与应用,研制高性能、低成本的全物理小卫星位置和姿态仿真系统已成为航天仿真技术的发展要求。而全物理仿真是通过多自由度气浮台模拟卫星在太空的运动状态,五自由度卫星仿真气浮实验台是一个能在地面上实现微重力、低摩擦环境的新方案。五自由度气浮台由位置平台和姿态平台两部分组成。本文主要着眼于姿态平台姿态控制系统的研究,气浮台姿态控制系统包括姿态的确定和姿态的控制两部分,姿态的确定是研究气浮台对于某个基准的姿态定位,而姿态控制是指气浮台在某个规定的预先确定的方向上定向的过程。
     本文在基于已有的姿态确定系统的基础上主要对姿态的控制部分进行分析和设计。首先,针对五自由度气浮台姿态平台进行动力学建模,建立了气浮台姿态控制系统的数学模型。其中包括气浮台动力学模型、执行机构飞轮电机模型。还针对三正交零动量飞轮设计了单通道控制回路,对三正交一斜装飞轮控制系统进行描述并给出相应的方向矩阵和动量分配矩阵。
     其次,设计了一种典型的Mamdani型的模糊控制对经典PID系数进行整定的模糊自适应PID。利用MATLAB对姿态控制动力学模型仿真,根据仿真结果分析得出模糊自适应PID作为一种人工智能控制有着可以和PID相比拟的控制精度,而且响应速度快,对参数可变的被控对象有着较强的鲁棒性。
     最后,选择高性能的基于PC104总线标准的CPU处理板设计基于VxWorks嵌入式实时系统的数字控制器,完成硬件的搭建、软件的配置、功能齐全的上位机控制程序和友好的上位机操作界面设计以及上下位机通讯,并编写将模糊自适应PID控制算法在PC104上实现的应用程序。
With the development and application of small satellites in space field of our country, it becomes a development requirement of space simulation techniques to research the full-physical location of small satellites and the attitude simulation systems with high performance and low cost. The motion state of satellites in space can be simulated on multiple DOF air-bearing test-bed. The 5 DOF air-bearing test-bed used for small satellites simulation is a new project to emulate a zero-gravity and free-floating environment of space on the ground. The 5 DOF air-bearing test-bed is composed of position platform and attitude platform. This thesis focuses on the attitude control system of the attitude platform. The attitude control system of air-bearing test-bed includes the attitude location and the attitude control. The location of the system studies on the location of air-bearing test-bed to certain datum, while the attitude control refers to process which shows how the air-bearing test-bed orients by the pre-determined direction.
     Based on previous research on attitude location system, this thesis focuses on the attitude control system. Firstly, in this paper the five degrees of freedom air-bearing test-bed is carried out air-bearing attitude dynamics modeling platform which contains dynamic model of air-bearing test-bed and flywheel-motor model, Besides designed a single control circuit of the three-orthogonal zero momentum flywheel system.
     Secondly, a digital controller was designed based on a computer which is PC104 bus by designing hardware structures and software configuration in embedded real time operation system VxWorks, simultaneity completed the communication between service and client.
     Finally, a digital controller was designed based on a computer which is PC104 bus by designing hardware structures and software configuration in embedded real time operation system VxWorks, simultaneity completed the communication between service and client.
引文
1杨相军.基于图像处理的五自由度气浮台位置控制系统的研究.哈尔滨工业大学硕士学位论文. 2008:1~5
    2周军.航天器控制原理.西北工业大学出版社, 2001:44~51
    3刘慎钊.卫星控制系统仿真.系统仿真学报. 1995,7(2):19~24
    4 H.H.Hoop,Facilities for simulating Attitude motion of spacecraft, AD 65899 0
    5林来兴.试论气浮台仿真的功能.控制工程. 1983, 4:1~11
    6 M. Romano and B. N. Agrawal. Acquisition, tracking and pointing control of the Bifocal Relay Mirror spacecraft. in Proceedings of the 53rd International Astronautical Congress of the International Astronautical Federation. Houston, Texas, 2002,10:10~19
    7 B. Agrawal and R. Rasmussen. Air Bearing Based Satellite Attitude Dynamics Simulator for Control Software Research and Development. in Proceedings of the SPIE Conference on Technologies for Synthetic Environments: Hardware-in-the-Loop Testing VI. Orlando, Florida,2001, 4: 204~214
    8 J. Stanton. Navy, Air Force to Develop Twin-Mirror Laser-Retargeting Satellite Technology. National Defense Magazine. 2002:33~40
    9 Zhang, Jin-Jiang. Research on physics simulation of large spacecraft attitude control system using SGCMG. Yuhang Xuebao/Journal of Astronautics. 2004, 25(4):382~388
    10 R. Stapf, K. Becker. Simlation Tests of on Attitude Control System with Staggered Pulsers on the DFVLR Satellite Motion Simulator. IFAC Symposium on automatic control in space, 1973:458~639
    11 Wu. Guoqiang. Simulation research of damping control based on MicroSim system. 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin, China, 2006:118~121
    12 Agrawal BN, Rasmussen RE. Air bearing based satellite attitude dynamics simulator for control software research and development. Murrer RL. Conference on Technologies for Synthetic Environments-Hardware-in-the-Loop Testing VI. ORLANDO, FL. 2001. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA. SPIE-INT SOC OPTICAL ENGINEERING. 2001:204~214
    13 Schwartz. Jana L, Peck. Mason A, Hall. Christopher D. Historical review of air-bearing spacecraft simulators. J Guid Control Dyn. 2003,26(4):513~522
    14 J. Young. Development of an automatic balancing system for a small satelliteattitude control simulator. Master’s thesis, Utah State University. 1998:5~10
    15 J. Schwartz. The Distributed Spacecraft Attitude Control System Simulator: From Design Concept to Decentralized Control, Doctor’s thesis, Virginia Polytechnic Institute and State University. 2004:46~52
    16 J. Schwartz. C Hall. System Identification of A Spherical Air-Bearing Spacecraft Simulator. the AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, 2004:23~31
    17 J. Schwartz, C. Hall. Comparison of System Identification Techniques for a Spherical Air-Bearing Spacecraft Simulator. the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Montana, 2003:45~50
    18 Martin W.Regehr. The Formation Control Testbed.. 2004 IEEE Aerospace Conference Proceedings. 2004:557~564
    19 Shields, Joel F. The formation control testbed Celestial Sensor: Overview, modelling, and calibrated performance. 2005 IEEE Aerospace Conference, Big Sky, MT, United States, 2005:559~573
    20郭良斌.小卫星三轴仿真气浮台气体球轴承之动静态特性研究.哈尔滨工业大学博士学位论文. 2005:1~17
    21王晶.平面气浮轴承的静态特性计算及实验研究.哈尔滨工业大学硕士学位论文.2005:1~10
    22吕彦东.三自由度气浮台自动平衡系统算法研究.哈尔滨工业大学硕士论文. 2004:1~18
    23 Wang. Feng,Cao. Xi-bin,Yang. Yong,Gao. Dai. Small satellite large angle attitude maneuver Hardware-In-the-Loop simulation based on three-axis air bearing table. Coll Technic Papers AIAA Model Simulat Technol Conf. 2006,2:123~125
    24张劲夫、秦卫阳.高等动力学.科学出版社,2004:32~95
    25杨大明.空间飞行器姿态控制系统.哈尔滨工业大学出版社. 2002:26~129
    26黄圳圭.航天器姿态动力学.国防科技大学出版社,1997:59~58
    27章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社,1998:45~58
    28 A.Das.The On-Orbit Attitude Determination and Control System for The Landset-D Spacecraft. AIAA-1982
    29徐福祥.“风云一号”B卫星姿态控制系统.中国空间科学技术. 1997.6(3):1~8.
    30 Ramos A. Air Bearing Testing of Skewed Reaction Wheel System for Attitude Control. COMSAT Technical Review. 1979,.9(1):78~80
    31 Fleming A W. Precision Three-Axis Attitude Control Via Skewed ReactionWheel Momentum Management. AIAA paper 79~1719
    32钱杏芳等.导弹飞行力学.北京:北京理工大学出版社,2000:23~69
    33陶永华.新型PID控制及其应用.第二版.机械工业出版社,2003:1~7
    34李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社, 1998:254~295
    35曾光奇等.模糊控制理论与工程应用.华中科技大学出版社,2000:15~105
    36李国勇.智能控制及MATLAB实现.电子工业出版社, 2005:194~252
    37 Chang S S, Zadeh L A. Fuzzy Mapping and Control. IEEE Trans. On SMC. 1972,2(1):30~34
    38刘金琨.先进PID控制MATLAB仿真.第二版.电子工业出版社,2004:67~86
    39孔祥营,柏桂枝. .嵌入式实时操作系统VxWorks及其开发环境Tornado.中国电力出版社,2002:1~6
    40周启平,张杨,吴琼. VxWorks开发指南与Tornado实用手册.中国电力出版社, 2004:25~26
    41 WindRiver System, Inc. Tornado 2.2 Online Manuals.2002
    42 WindRiver System, Inc. Tornado User’s Guide.1999
    43 Liu.Ying-Ying. Experiment research for satellites’multi-axis pointing attitude control. Yuhang Xuebao/Journal of Astronautics. 2006, 27(4):790~793
    44 A. Tanenbaum.计算机网络.潘爱民.第四版.清华大学出版社, 2004:409~420
    45杨乐平,李海涛、杨磊. LabVIEW程序设计与应用.第二版.电子工业出版社,2006:1~6
    46杨乐平,李海涛、赵勇、杨磊. LabVIEW高级程序设计.清华大学出版社,2003:425~430
    47李军.三轴气浮台测控系统软件的设计与开发.西安电子科技大学硕士论文. 2001:6~7
    48程敬原. VxWorks软件开发项目实例完全解析.中国电力出版社, 2005:20~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700