双核酞菁铁电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酞菁类物质因其特殊的大环共轭结构而具有良好电催化性能,通过改变其共轭环上的取代基及中心金属原子和分子的聚集方式实现分子设计,这种结构的可调变性赋予它作为电催化剂性能开发的广阔空间。
     燃料电池是一种环境友好的发电装置,阴极氧还原催化剂对燃料电池的性能起着关键作用。燃料电池阴极催化剂通常分为铂系及非铂催化剂,贵金属铂及其合金具有良好的电催化性能,但该类催化剂存在价格昂贵及资源不足的问题,限制了燃料电池的商业化发展。因此,开发新型高效、廉价的可替代贵金属的催化剂及提高催化剂的性能以实现商业化是当前的重要任务。在非铂系催化剂研究中酞菁、卟啉等大环共轭配合物倍受人们关注,成为燃料电池最有希望的催化剂材料,被认为是铂系催化剂有应用前景的替代品之一。
     目前稳定性制约金属酞菁类配合物氧还原催化剂向实用化方向发展的最主要问题。在酞菁大环配合物催化氧还原的过程中会产生具有强氧化性的过氧化氢,并且随着反应的进行不断积累,严重腐蚀大环结构。因而,如何提高金属酞菁类配合物作为氧还原催化剂的稳定性是燃料电池催化剂研究领域中的一项非常重要的任务。
     本研究选择平面共轭双核酞菁配合物作为氧还原催化剂,通过双核酞菁配合物扩大的平面π共轭分子结构提高其作为氧还原催化剂的稳定性。鉴于其具有较好的电催化性能,本文将进一步研究其作为电催化剂进行脱氯、脱硝的性能。本课题的主要研究内容为:
     以邻苯二甲酸酐、均苯四甲酸酐和金属盐为原料,在尿素和钼酸铵存在下采用固相法合成了双核酞菁铁,粗产物经水洗、有机溶剂萃洗后经硅胶层析柱纯化。产物经红外光谱、UV-Vis电子吸收光谱、HNMR光谱、元素分析、激光解吸电离飞行质谱(LDT-TOF-MS)进行表征。
     利用CV和RDE方法研究了碳载双核酞菁铁的氧还原催化性能。结果表明,双核酞菁铁催化剂的在酸性介质中表现出较理想的氧还原催化性能,同时具有抗甲醇性能。与单核酞菁铁催化剂相比碳载双核酞菁铁催化剂的起始电位正移约100mV,双核酞菁铁配合物对氧还原的电催化活性大于单核酞菁铁配合物。旋转圆盘电极方法研究结果表明双核酞菁铁催化剂催化氧分子经过4e电子过程。通过恒电位计时电流测试方法研究碳载双核酞菁铁催化剂的稳定性,结果表明双核酞菁铁与单核酞菁铁相比在酸性溶液中作为氧还原催化剂其稳定性有显著提高。
     首次采用原位法将邻二腈基苯,1,2,4,5-苯四甲腈,FeCl_2·4H_2O按一定的摩尔配比在有机溶剂中与碳纳米管混合,合成了双核酞菁铁/碳纳米管复合物,通过测试产物在DMSO溶液中的电子吸收光谱确定双核酞菁铁生成,分别通过XRD和TEM考察了双核酞菁铁在碳纳米管表面的形貌和结构,研究了不同合成条件对双核酞菁铁/碳纳米管复合物产率的影响。
     通过改变反应时间来考察其对双核酞菁铁/碳纳米管复合物的形貌的影响,发现随着反应时间的加长,双核酞菁铁分子堆积到碳纳米管壁上的量增多,双核酞菁铁分子在碳纳米管壁包覆的厚度明显增大。
     利用CV和RDE方法研究了双核酞菁铁/碳纳米管复合物催化剂的氧还原催化性能。实验结果表明,双核酞菁铁/碳纳米管复合物在酸性介质中表现出较强的氧还原催化性能,双核酞菁铁催化剂催化氧分子经过4e电子过程。通过对电极进行恒电位下计时电流测试考察了双核酞菁铁/碳纳米管复合物作为氧还原催化剂的稳定性,结果表明原位法合成的双核酞菁铁/碳纳米管复合物在酸性溶液中氧化电流衰减缓慢,在酸性溶液中作为氧还原催化剂的稳定性优于碳载双核酞菁铁。
     以双核酞菁铁/碳纳米管复合物作为电催化剂还原含氯有机物阿特拉津,通过改变温度、pH值、电解质、催化剂用量、电解池的构造、反应体系流动类型以及电化学条件的设置等条件研究各影响因素与去除率的关系。双核酞菁铁/碳纳米管复合物能有效的降解含氯有机物阿特拉津,48h后降解率可达98%以上。采用计时电流法,电压的设置对反应去除率有一定的影响,电压为0.55V时效果最好。阿特拉津在电催化剂双核酞菁铁/碳纳米管复合物的作用下发生脱氯羟基化反应,产物为2-羟基-4-乙胺基-6-异丙胺基-1,3,5-三嗪,毒性大大降低。此研究不仅为酞菁的应用开拓了新领域,更为研究有效降解内分泌干扰物阿特拉津的新技术,为治理农药造成的水体面源污染问提供基础研究的参考。
     本文首次将双核酞菁铁/碳纳米管复合物用于电催化还原硝酸盐的实验中,双核酞菁铁/碳纳米管复合物具有良好的选择性。电流强度、初始pH值及催化剂的用量对催化反应的活性和选择性都有影响。在电流密度为2.3mA/cm~2,pH值为6.4,NO_3~--N含量为20mg·L~(-1)的条件下,反应20h后硝酸盐氮的浓度变13.7mg·L~(-1),去除率达31.5%,有极少量副产物产生,去除率有待进一步提高,为脱硝研究提供一种新型催化体系,也为酞菁类物质的应用提供的更广阔的空间。
Due to the large p-conjugated system in macrocycle, phthalocyanine compoundsnot only show good electrocatalytic activity, but also could be modified the structureof phthalocyanine molecule, This is by adjusting the central metal atom and peripheralsubstituent ground or the congregation morphology of the molecular to obtain therequired physical and chemical properties. The modifications of the structure makethem could be used in the fields of electrocatalytic activity widely in the future.
     Fuel cells is a kind of environmental friendly device that can convert chemicalenergy directly to electricity. Cathode oxygen reduction reaction (ORR) catalyst is thekey materials of Fuel Cells. Currently, Platinum and its alloys are good catalysts forORR used for fuel cell in low temperature condition, however, the high cost andshortage hinders its commercialization. In the effort to reduce the cost as well as toimprove the reliability of fuel cell catalysts, non-Pt (or non-noble metal) catalystshave attracted great attention over the last several decades. Among the non-noblemetal catalysts explored, transition metal-N4chelates such as metallophthalocyaninesand metalloporphyrins have shown great promise as candidates for fuel cell ORRcatalysts. Phthalocyanine compounds are considered as one of the most promisingcatalyst material to replace the noble metal.
     The stability of metallophthalocyanines is the main factor, which restrains thedevelopment of practicality as ORR catalysts. Being the ORR catalystsmetallphthalocyanine complexes will lead to the formation of a little amount of H_2O_2which will erode the Pc-ring and carrier badly, and then destroy the structure ofcatalysts. Thus how to improve the stability of metallophthalocyanines as the ORRcatalysts is all-important task in the fields of ORR electrocatalysts.
     In this study, we choose a planar binuclear iron phthalocyanine as ORR catalystand plan to improve the stability of ORR catalysts through its large p electronconjugated system. The main results and conclusions are as follows:
     Two binuclear metal phthalocyanine complexes are synthesized by solid routeUsing o-phthalic anhydride, pyromellitic dianhydride and metal salt as the rawmaterials at the present of urea and ammonium molybdate. The crude product waswashed with ammonia solution, hydrochloric acid, and water, followed by anextraction process with ethanol and tetrahydrofuran (THF) to purify the product. Afterthis extraction, the resultant dark blue solid was further purified by silica columnchromatography. The products have been characterized by IR, UV-Vis, HNMR,LDT-TOF-MS and elemental analysis respectively.
     The ORR catalytic activity of binuclear iron phthalocyanine (bi-FePc) has beeninvestigated using CV and RDE technique. The results show that this bi-FePc/Ccatalyst can catalyze a direct4-electron reduction of oxygen to water. The bi-FePc/C showed superior activity, has a about100mV higher ORR onset potential than theFePc/C catalyst. Chronoamperometry tests were conducted to examine the stability ofthe bi-FePc/C catalyst, and the results show that this bi-FePc/C electrocatalyst has abetter stability than the mononuclear FePc/C catalyst in acidic solution. This catalystalso has methanol tolerance, suggesting that it should be able to improve theperformance of a direct methanol fuel cell cathode.
     We successfully synthesized a planar binuclear iron phthalocyanine on carbonnanotube (bi-FePc/MWNT) catalyst for the oxygen reduction reaction by in situmethod for the first time. The electronic absorption spectra in a dimethyl sulfoxide(DMSO) solution of the products have been determined and indicated that bi-FePcwas successfully synthesized by this process. The influence of the reactants molarratio on the yield of bi-FePc/MWNT has been studied. The bi-FePc/MWNT catalystwas characterized by XRD, TEM and the results show that the bi-FePc was coateduniformly on the carbon nanotube. According to the high-resolution TEM image theclear lattice fringes can be observed.
     The effect of the time of the whole reaction process on the morphology of thebi-FePc/MWNT was discussed. The amount of molecules of bi-FePc coated on thecarbon nanotube was more and more as time prolonging.
     Using CV and RDE technique, it was confirmed that this bi-FePc/MWNT couldshow a nearly perfect ORR catalytic activity and stability in acidic solution. Thisnovel bi-FePc/MWNT catalyst can catalyze a direct4-electron reduction of oxygen towater. In comparison with a mononuclear FePc catalyst, this catalyst showed superioractivity and enhanced stability. This catalyst also has methanol tolerance, suggestingthat it should be able to improve the performance of a direct methanol fuel cellcathode.
     With dual-core iron phthalocyanine/carbon nanotube composites aselectrocatalysts chlorinated organics reduction of atrazine, by changing thetemperature, pH, electrolyte, the amount of catalyst, electrolytic cell structure, andelectrochemical reaction type of flow conditions set of conditions, such as removal ofthe influence factors and the relationship. Binuclear iron phthalocyanine/carbonnanotube composites can effectively degrade chlorinated organic compounds atrazine,48h after the degradation rate of up to98%. Using CA, the removal of the voltagesettings on the reaction to a certain extent, the voltage of0.55V is the best. Atrazine inthe dual-core power of iron phthalocyanine catalyst/carbon nanotube compositematerial under the action of hydroxyl dechlorination reaction, the product is2-hydroxy-4-amine base-6-isopropylamine-1,3,5-triazine, toxicity greatly reduced. Thisstudy not only the application of phthalocyanine opened up new areas of researchmore efficient degradation of endocrine disruptors atrazine new technologies for the treatment of pesticides resulting in contamination of water sources to provide a decentbasic research reference.
     This is the first time using dual-core iron phthalocyanine/carbon nanotubecomposite for electrocatalytic reduction of nitrate experiments; it has a certain natureof the electrocatalytic reduction of nitrate. The catalytic reduction of nitrate in waterhas been studied using bi-FePc loaded on multi-walled carbon nanotubes(bi-FePc/MWNT) as electrocatalyst. The results show that, bi-FePc/MWNT cancatalysis to remove nitrate in the water and shows a good selectivity towards nitrogen.The concentration of NO_3~--N was reduced from20mg·L~(-1)to13.7mg·L~(-1)in currentdensity of2.3mA/cm2, pH6.4and NO_3~--N of20mg·L~(-1)in the prstine water after20h. The removing rate of nitrate is up to31.5%. The catalytic activity and selectivitydepends on pH value, current density and catalyst amount.A small amount ofby-products are generated, but need to further improve the removal rate. But for thedenitrification study provide a new catalyst system, has made some contribution. Alsofor the application of phthalocyanine materials, provided broader space.
引文
[1] Karel Verschueren, Handbook of Environmental Data on Organic Chemicals VAN NOSTRANDREINHOLD,1983
    [2] U.S. Environmental Protection Agency, National Pollutant Discharge Elimination System. Code ofFederal Regulations.Tile40,Part122. Washington D.C.U.S. Govemment Printing Office,1980—1988
    [3] P. H. Howard. Handbook of Environmental Fate and Exposure Data for Organic Chemicls,Lewis Publishers,1990
    [4] Howard P. H.,Boethling R. S. Handbook of Environmental Degradi on Rates.Lewis Publishers,1991
    [5] TAO Qinghui, TANG Hongxiao, Influences of co-existing pollutants on the sorption of atrazinebynatural sediment [J]. Acta Scientiae Circumstantiae,2004,24(4):696—701
    [6] ANDERSON K L,WHEELER K A,ROBINSON J B,et al.Atrazine mineralization potential in twowetland[J],Water Research,2002,36:4785—4794
    [7]冯守华,谭持恒(编译).化学的黄金时代[J].化学通报,1998(7):9—14
    [8] Bashyam R, Zelenay P,A Class of Non-precious Metal Composite Catalysts for FuelCells[J],Nature,2006,443:63—66
    [9] Wiesener K,Ohms D,Neumann V,et al.N4-macrocycles as electrocatalysts for the cathodic reduction ofoxygen [J]. Materials Chemistry and Physics,1989,22(3-4):457—475
    [10] Reeve R W,Christensen P A,Dickinson A J,et al.Methanol-tolerant oxygen reduction catalysts basedon transition metal sulfides and their application to the study of methanolpermeation[J].Electrochimica Acta,2000,45:4237—4250
    [11] Wang Bin,Recent development of non-platinum catalysts for oxygen reduction[J],Journal of PowerSources,2005,152:1—15
    [12] Cicero W.B,Bezerra, L. Z., et al. A review of Fe-N/C and Co-N/C catalysts for the oxygenreductionreaction[J],Electrochimica Acta,2008,53:4937—4951
    [13] Jinfu M, Jin W, Yongning L.,Iron phthalocyanine as a cathode catalyst for a direct borohydride fuelcell[J],Journal of Power Sources,2007,172:220—224
    [14] Jinfu M, Yongning L, Peng Z, et al,A simple direct borohydride fuel cell with a cobaltphthalocyaninecatalyzed cathode[J],Electrochemistry Communications,2008,10(1):100—102
    [15] Cheng H, Scott K J. Investigation of non-platinum cathode catalystsfor direct borohydride fuelcells[J]·Electroanal.Chem.,2006,596:117—123
    [16] Schlettwein D, Yoshida T,Electrhemical reduction of substitutedcobalt phthalocyanines adsorbed ongraphite[J],J. Electroanal.Chem.,1998,441:139—146
    [17] Lezna R O, Juanto S, Zagal J H.,Spectroelectrochemical studies oftetrasulfonatedmetallophthalocyanines adsorbed on the basal plane ofgraphite in the presence of cysteine[J], J.Electroanal.Chem.,1998,452:221—228
    [18] Wang H, C téR, Fauber G,t et al.Effect of the Pre-Treatment of Carbon Black Supports on the Activityof Fe-Based Electrocatalysts for the Reduction of Oxygen[J]. J.Phys.Chem.B.1999,103:2042—2049
    [19] Phougat N, Vasudevan P.Electrocatalytic activity of some metal phthalocyanine compounds for oxygenreduction in phosphoric acid[J].Journal of Power Sources,1997,69:161—163
    [20] Coutanceau C, Rakotondrainibe A, Crouigneau P, et al.Sepctroscopic investigations ofpolymer-modified electrodes containing cobalt phthalocyanine:application to the study of oxygenreduction at such electrodes[J]. J. Electroanal.Chem.,1995,386:173—182
    [21] Mouahid O E, Coutanceau C, Belgsir E M, et al.Electrocatalytic reduction of dioxygen at macrocycleconducting polymer electrodes in acid media[J].J. Electroanal.Chem.,1997,426:117—123
    [22] Kanayama N, Kanbara T, Kitano H. Complexation of Porphyrin with a Pyridine Moiety inSelf-Assembled Monolayers on Metal Surfaces [J]. J.Phys.Chem.B,2000,104:271—278
    [23] Ishito A, Majima T.Photocurrent generation of porphyrin self-assembly monolayer on a gold filmelectrode by surface plasmon excitation using nearinfrared light[J].Chemical Physics Letters,2000,322:242—246
    [24] Ozoemena K I, Nyokong T.Electrochemical behaviour of thiol-derivatised zinc(Ⅱ)phthalocyaninecomplexes and their self-immobilised films at gold electrodes[J].Microchemical Journal,2003,75:241—247
    [25] Hu N, Howe D J.Ahmadi M F,et al.Stable films of cationic surfactants andphthalocyaninetetrasulfonate catalysts[J]. Anal Chem,1992,64(24):3180—3186
    [26] Jiang X. E., Guo L.P.Du X. G.,Electrochemistry and electrocatalysis of binuclear cobaltphthalocyaninehexasulfonate-surfactant film modified electrode[J].Talanta,2003,61(3):247—256
    [27] DeCher G. Fuzzy Nanoassembiles:Toward Layered Polymeric Multicomposites[J].Seience,1997,277(5330):1232—1237
    [28] Locklin J,Shinbo K,Onishi K,et al.Ambipolar Organic Thin Film Transistor-like Behavior of Cationicand Anionic Phthalocyanines Fabricated Using Layer-by-Layer Deposition from AqueousSolution[J].Chem Mater,2003,15(7):1404—1412
    [29] Jahnke H, Schonbron M, Zimmerman G. Organic Dyestuffs as Catalysts in Fuel Cells[J].Topics CurrentChem.,1976,61:133—181
    [30]杜锡光,杜国同,马春雨,等.平面双核酞菁钴中心离子价态及其性质研究[J].分子科学学报,2003,19(4):241—244
    [31] Jiang X E, Guo L P,Du X G.Electrochemistry and electrocatalysis of binuclear cobalt phthalocyaninehexasulfonate-surfanctant film modified electrode[J]. Talanta,2003,61:247—256
    [32]郭黎平,姜秀娥,武冬梅,等.混合价态双核磺化酞菁钴在非水溶剂中的电化学性质研究[J].东北师大学报(自然科学版),2002,34:45—50
    [33] Li Tie,James F.Reductive dechlorination of Trichloroethene and Carbon Tetrachloride using Iron andPalladized/Iron cathodes[J].Environ Sci Technol,200,34(1);173—179
    [34] Souhail R Al-Abed,Fang Yuanxiang.Influences of pH and current on electrolytic dechlorination oftrichloroethylene at a granular-graphite packed electrode[J].Chemosphere,2006,64(3):462—469
    [35] Chen Ge,Wang Zhenyao,Xia Dingguo,Electrochemically reductive dechlorination of micro amounts of2,4,6-trichlorophenol[J].Electrochem Coummun,2004,6(3):268—272
    [36] Chen Ge,Wang Zhenyao,Yang Tao, Xia Dingguo,Electrocatalytic hydrogenation of4-Chlorophenol onthe glassy carbon electrode modified by composite Polypyrrole/Palladium film[J].J PhysChem,2006,110(10):4863—4869
    [37]崔春月,具有微结构表面碳表面碳电极对水中氯代酚的电催化还原脱氯:[学位论文],大连,大连理工大学,2006.
    [38] Peel J W,Reddy K J,Sullivan B P,et al.Electrocatalytic reduction of nitrate in water[J].WatRes,2003,37(10):2512—2519
    [39] Shimazu K,Goto R, Tada K,Electrochemical Reduction of Nitra te Ions on Tin-Modified Platinum andPalladium Electrodes [J],Chem Lett,2002,31(2):204—205
    [40]周丽,邓慧萍,刘振中,等,多孔钛板负载Pd-Sn电催化去除硝酸盐氮的研究[J].供水技术,2007,1(5):32—36
    [41]周丽,邓慧萍,桑松表,多孔钛板负载Pd-Cu电催化去除硝酸盐氮的研究[J].环境化学,2008,27(2):172—176
    [42] Shuying Piao,Yota Kayama,Yuya Nakano,et al.Nitrate reduction on tin-modified rhodium,rutheniumand iridium electrodes[J].Journal of Electroanalytical Chemistry,2009,69(1-2):110—116
    [43]叶舒帆,胡筱敏,董俊,等,钛基修饰电极催化电解去除水中硝酸盐氮的研究[J].中国环境科学,2011,31(1):44—49
    [44] Gabriela Elena Badea,Electrocatalytic reduction of nitrate on copper electrode in alkalinesolution[J].Electroehimica Acta,2009,54:996—1001
    [45] Laurence Durivault, Oleg Brylev, David Reyter,et al. Cu-Ni materials prepared by mechanicalmilling:Their properties and electrocatalytic activity towards nitrate reduction in alkalinemedium[J].Journal of Alloys and Compounds,2007,432:323—332
    [46] Jasinski R.A New Fuel Cell Cathode Catalyst.Nature,1964,201(4925):1212—1213
    [47] Randin J P.Interpetation of the relative electrochemical activity of various metal phthalocyanines forthe oxygen reduction.Electrochim.Acta,1974,19(2):83—85
    [48] Beck F.The redox mechanism of the chelate-catalysed oxygen cathode.J.Appl. Electrochim.,1977,7(3):239-245
    [49] Zagal J H. Metallophthalocyanines as catalysts in electrochemical reactions[J].Coordination ChemistryReviews,1992,119:89—136
    [50] Pauling L. Nature of the iron-oxygen bond in oxyhaemoglobin[J]. Nature,1964,203:182—183
    [51] Collman J P, Marrocco M, Denisevich P, et al. Potent catalysis of the electroreduction of oxygen towater by dicobalt porphyrin dimers adsorbed on graphite electrodes[J].J. Electroanal.Chem.,1979,101:117—122
    [52] Collman J P, Denisevich P, Konai Y. Electrode c.atalysis of the four-electron reduction of oxygen towater by dicobalt face-to-face porphyrins[J]. J.Am.Chem.Soc.1980,102:6027—6036
    [53] Liu H Y, Weaver M J, Wang C B,et al. Dependence of electrocatalysis for oxygen reduction byadsorbed dicobalt cofacial porphyrins upon catalyst structure[J].J. Electroanal. Chem. Interfacial Electrochem.1983,145:439—442
    [54] Van Veen J A R, Visser C. Oxygen reduction on monomeric transition metal phthalocyanines in acidelectrolyte[J].Electrochim.Acta,1979,24:921—928
    [55] Wiesener K, Ohms D, Neumann V, et al. N4macrocycles as electrocatalysts for the cathodic reductionof oxygen[J].Materials Chemistry and Physics,1989,22(3-4):457—475
    [56] Lever A B P, Minor P C, Wilshire J P.The Electrochemistry of Manganese Phthalocyanines in NonAqueous Media[J].Inorg.Chem.,1981,20:2550—2553
    [57] Lever A B P, Minor P C.The Electrochemistry of Main Group Phthalocyanines[J]. Inorg.Chem.,1981,20:4015—4017
    [58] Minor P C, Gouterman M, Lever A B P. Electronic spectra of phthalocyanine radical anions andcations[J].Inorg.Chem.,1985,24:1894—1900
    [59] Nevin W A, Liu W, Lever A B P. Spectro-electrochemistry of cobalt and iron tetrasulphonatedphthalocyanines[J].J. Electroanal.Chem.,1986,213(2):217—234
    [60] Zagal J H, Gulppi M, Isaacs M. Linear versus volcano correlations between electrocatalytic activityand redox and electronic properties of metallophthalocyanines[J]. Electrochim.Acta,1998,44:1349—1357
    [61] Hoffmann R, Chem M, Thorn D L A Qualitative Discussion of Alternative Coordination Modes ofDiatomic Ligands in Transition Metal Complexes[J]. Inorg.Chem.,1977,16:503
    [62] Taube R. New aspects of the chemistry of transition metal phthalocyanines [J].PureAppl.Chem.,1974,38(3):427—438
    [63] Zagal J, Páez M. Electrocatalytic activity of metal phthalocyanines for oxygen reduction[J].J.Electroanal. Chem.,1992,339(1-2):13—30
    [64] Vasudevan P,Santosh, Mann N,et al. Transition metal complexes of porphyrins and phthalocyanines aselectrocatalysts for dioxygen reduction[J].Transition Met.Chem.,1990,15(2):81—90
    [65] Zagal J H,Gloria I.Cárdenas-Jirón.Reactivity of immobilized cobalt phthaloc-yanines for the electroreduction of molecular oxygen in terms of molecular hardness[J].J.Electroanal. Chem.,2000,489(1-2):96—100
    [66] Sehlotho N, Nyokong T.Effects of Ring Substituents on Electrocatalytic Activity of ManganesePhthalocyanines towards the Reduction of Molecular Oxygen[J].J. Electroanal.Chem.,2006,595:161—167
    [67] Isaacs M, Aguirre M J, Toro-Labbe A,et al.Costamagna J, Paez M, Zagal J H.Comparative study of theelectrocatalytic activity of cobalt phthalocyanine and cobalt naphthalocyanine for the reduction ofoxygen and the oxidation of hydrazine[J].Electrochimica Acta.,1998,43(12—13):1821—1827
    [68] Lever A B P. Derivation of Metallophthalocyanine Redox Potentials via Hammett ParameterAnalysis[J].Inorg.Chem.Acta,1993,203:171—174
    [69] Lever A B P. The Phthalocyanines-Molecules of Enduring Value; a Two Dimensional Analysis ofRedox Potentials[J]. J.Porphyrins Phthalocyanines,1999,3:488—489
    [70] Hesse K, Schlettwein D.Spectroelectrochemical investigations on the reduction of thin films ofhexadecafluorophthalocyaninatozinc (F16PcZn)[J].J.Electroanal. Chem.,1999,476:148—158
    [71] Schlettwein D, Yoshida T. Electrochemical Reduction of Thin Adsorbed Films of Substituted CobaltPhthalocyanines[J].J.Electroanal. Chem.,1998,441:139
    [72] Cicero W.B,Bezerra, Lei Zhang, et al. A review of Fe-N/C and Co-N/C catalysts for the oxygenreduction reaction[J]. Electrochimica Acta,2008,53:4937—4951
    [73] Weng L T, Bertrand P, Dodelet J P, et al. Surface characterization by time-of-flight SIMS of a catalystfor oxygen electroreduction: pyrolyzed cobalt phthalocyanine-on-carbon black[J].Applied SurfaceScience,1995,84:9—21
    [74] Tamizhmani G, Dodelet J P, Guay D, et al Electrocatalytic Activity of Nafion-Impregnated PyrolyzedCobalt Phthalocyanine[J]..J.Electrochem.Soc.,1994,141(1):41—45
    [75] Martins Alves M C, Dodelet J P, Guay D, et al. Origin of electrocatalytic properties for O2reduction ofsome heat-treated phthalocyanine cobalt compounds adsorbed on carbon black as probed byelectrochemistry and X-ray adsorption spectroscopy[J].J.Phys.Chem.,1992,96:10898—10905
    [76] Lalande G,C té R,Tamizhmani G,et al.Physical, chemical and electrochemical characterization ofheat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst foroxygen reduction in polymer electrolyte fuel cells[J]. Electrochimica Acta.,1995,40(16):2635—2646
    [77] Lefèvre M,.Dodelet J P. O2Reduction in PEM Fuel Cells: Activity and Active Site StructuralInformation for Catalysts Obtained by the Pyrolysis at High Temperature of FePrecursors[J].J.Phys.Chem.B,2000,104:11238—11247
    [78] Gupta S, Tryk D, Savinell R F, et al. Methanol-tolerant electrocatalysts for oxygen reduction in apolymer electrolyte membrane fuel cell[J].Journal of Applied Electrochemistry,1998,28:673—682
    [79] Gojkovic S Lj, Gupta S, Savinell R F.Heat-treated iron(III) tetramethoxyphenyl porphyrin chloridesupported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygenreduction[J].J.Electroanal. Chem.,1999,462:63—72
    [80] Sun G Q, Wang J T, Savinell R F. Iron(III) tetramethoxyphenylporphyrin (FeTMPP) as methanoltolerant electrocatalyst for oxygen reduction in direct methanol fuel cells[J]. Journal of AppliedElectrochemistry,1998,28:1087—1093
    [81] Gojkovic S Lj, Gupta S, Savinell R F. Heat-Treated Iron(III) Tetramethoxyphenyl Porphyrin Supportedon High-Area Carbon as an Electrocatalyst for Oxygen Reduction: Part I. Characterization of theElectrocatalyst[J]. J.Electrochem.Soc.,1998,145(10):3493—3499
    [82] Sun G Q, Wang J T, Gupta S,et al.Iron (III) tetramethoxyphenylporphyrin (FeTMPP-Cl) aselectrocatalyst for oxygen reduction in direct methanol fuel cells[J]..Journal of AppliedElectrochemistry,2001,31:1025—1031
    [83] Lefèvre M, Dodelet J P.Molecular Oxygen Reduction in PEM Fuel Cells: Evidence for theSimultaneous Presence of Tw o Active Sites in Fe-Based Catalysts[J].J.Phys.Chem.B,2002,106:8705—8713
    [84] Schulenburg Stankov H S, Schünemann V, Schünemann Volker, et al.Catalysts for the OxygenReduction from Heat-Treated Iron(III) Tetramethoxyphenylporphyrin Chloride: Structure and Stabilityof Active Sites[J]. J.Phys.Chem.B,2003,107:9034—9041
    [85] Mouahid O El, Coutanceau C, Belgsir E M, et al. Electrocatalytic reduction of dioxygen at macrocycleconducting polymer electrodes in acid media[J].J.Electroanal. Chem.,1997,426:117—123
    [86] Fukuzumi S, Okamoto K, Gros C P. et al.Mechanism of Four-Electron Reduction of Dioxygen to Waterby Ferrocene Derivatives in the Presence of Perchloric Acid in Benzonitrile, Catalyzed by CofacialDicobalt Porphyrins[J].J.Am.Chem.Soc.,2004,126:10441—10449
    [87] Anson F C, Shi C, Steiger B. Novel Multinuclear Catalysts for the Electroreduction of DioxygenDirectly to Water[J].Accounts of Chemical Reseach,1997,30(11):437—444
    [88] Durand R R Jr, Bencosme C S,Collman J P,et al.Mechanistic aspects of the catalytic reduction ofdioxygen by cofacial metalloporphyrins[J].J.Am.Chem.Soc.,1983,105:2710—2718
    [89]曹勇,郭黎平.平面双核酞菁钴修饰电极的制备及催化性能研究[J].东北师范大学报(自然科学版),2005,37(2):67—71
    [90]陈文兴,姚玉元,吕素芳.平面双核金属酞菁衍生物的催化氧化性能[J].化工学报,2004,55(6):924—928
    [91] Coutanceau C, Rakotondrainibe A, Crouigneau P,et al.Spectroscopic investigations ofpolymer-modified electrodes containing cobalt phthalocyanine: application to the study of oxygenreduction at such electrodes[J].J.Electroanal. Chem.,1995,386:173—182
    [92] Bull R A, Van F R, Bard A J. J. Polymer Films on Electrodes[J]. J.Electrochem.Soc.,1983,130(7):1636—1638
    [93] Coutanceau C, Hourch A E, Crouigneau P, et al.Conducting polymer electrodes modified by metaltetrasulfonated phthalocyanines: Preparation and electrocatalytic behaviour towards dioxygenreduction in acid medium[J].Electrochimica Acta,1995,40(17):2739—2748
    [94] Baranton S, Coutanceau C, Léger J M.Alternative cathodes based on iron phthalocyanine catalysts formini-or micro-DMFC working at room temperature[J].Electrochimica Acta,2005,51:517—525
    [95] Kunchan Lee, Lei Zhang, Jiujun Zhang. IrxCo1-x(x=0.3–1.0) alloy electrocatalysts, catalytic activities,and methanol tolerance in oxygen reduction reaction[J].Journal of Power Sources2007,170:291—296
    [96] Hidenobu Shiroishi,Yusuke Ayato,Ji?r′Rais,et al.Effect of cobalt bis(dicarbollides) on electrochemicaloxygen reduction on Pt electrode in methanol–acid solution[J].Electrochimica Acta2006,51:1225—1234
    [97] Ermete Antolini,Jose R C, Salgado,et al.The methanol oxidation reaction on platinum alloys with thefirst row transition metals: The case of Pt–Co and–Ni alloy electrocatalysts for DMFCs: A shortreview[J].Applied Catalysis B: Environmental,2006,63:137—149
    [98]李旭光,邢巍,陆天虹,直接甲醇燃料电池的耐甲醇阴极电催化剂炭载四羧基酞菁钴的研究[J].高等化学学报,2003,24(7):1246—1250
    [99] Yuhao L, Ramana G, Reddy.The Electrochemical Behavior of Cobalt Phthalocyanine/Platinum asMethanol-resistant oxygen-Reduction Electrocatalysts for DMFC[J].Electrochimica Acta.,2007,52:256—2569
    [100] Baranton S, Coutanceau C, Roux C.Oxygen reduction reaction in acid medium at iron phthalocyaninedispersed on high surface area carbon substrate: tolerance to methanol, stability andkinetics[J].J.Electroanal. Chem.,2005,577:223—234
    [101] M.Stillman and T.Nyokong, Phthalocyanines(Edited by C.C.Leznoff and A.B.P.Lever),Vol.4,VCHPublishers,U.S.A.(1993)
    [102] Y Lu,R G Reddy.The Electrochemical Behavior of Cobalt Phthalocyanine/Platinum asMethanol-resistant oxygen-Reduction Electrocatalysts for DMFC[J].Electrochimica Acta.,2007,52:2562—2569
    [103] Jimenez Mateos J M,Fierro J L G, X-rany, X-ray Photoelectron Spectroscopic Study of PetroleumFuel Cokes [J].X-rany,Surf.Interface Anal.,1996,24:223—236
    [104] R C M Jakobs, L J J Janssen, E Barendrecht, Hydroquinone oxidation and p-benzoquinonereduction at polypyrrole and poly-N-methylpyrrole electrodes[J].Electrochim.Acta,1985,30(10):1313—1321
    [105] C Coutanceau, A El Hourch, P Crouigneau, et al.Conducting polymer electrodes modified by metaltetrasulfonated phthalocyanines: Preparation and electrocatalytic behaviour towards dioxygenreduction in acid medium[J]. Electrochim. Acta,1995,40:2739—2748
    [106] S Baranton,C Coutanceau, C Roux,et al. Oxygen reduction reaction in acid medium at ironphthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability andkinetics [J].Journal of Electroanalytical Chemistry,2005,577:223—234
    [107] CPMD, version3.11; Copyright IBM Corp.1990-2006,Copyright MPI fu¨r Festko¨rperforschungStuttgart,1997,200
    [108] Iijima S. Helical microtubules of graphitic carbon [J].Nature,1991,354(6348):56—58
    [109] Iijima S,Ichlhashi T.Helical microtubules of graphitic carbon [J.]Nature.,1993,363(6430):603—605
    [110] Bethune D S,Kiang C H,Devries M S, Cobalt—catalyzed growth of carbon nanotubes withsingleatomic—layerwalls[J].Nature,1993,363(6430):605—607
    [111] Pan Z,Xie S,Chang B,et al. Very long carbon nanotubes [J].Nature,1998,394(6694):631—632
    [112] Ivanov V,Nagy J B,Lambin P,et al. The study of carbon nanotubules produced by catalyticmethod[J].Chem Phys Lett,1994,223(4):329—335
    [113] Peng H Y,Wang N,Zheng Y F,et al. Smallest diameter carbon nanotubes[J].Appl PhysLett,2000,77(18):2831—2833
    [114] Zhou X,Zhou J,Ou-Yang Z, Strain energy and Young’s modulus of single-wall carbon nanotubescalculated from electronic energy-band theory[J].Phys Rev B,2000,62(20):13692—13696
    [115] Treacy M M J,Ebbesen W,Gibson J M.Exceptionally high Young's modulus observed for individualcarbon nanotubes [J].Nature,1996,381(6584):678—680
    [116] Bower C,Rosen R,Jin L,et al. Deformation of carbon nanotubes in nanotube-polymercomposites[J].Appl Phys Lett,1999,74(22):3317—3319
    [117] Walters D A,Ercson L M,casavant M J,et al. Elastic strain of freely suspended single-wall carbonnanotube ropes [J].Appl Phys Lett,1999,74(25):3803—3805
    [118] Iijima S,Brabec C,Maiti A,et al. Structural flexibility of carbon nanotubes[J].J.ChemPhys,1996,104(5):2089—2092
    [119] Wei B,Vajtai R,Ajayan P M. Reliability and current carrying capacity of carbon nanotubes[J].Applphys Lett,2001,79(8):1172—1174
    [120] Britto P J,Santhanam K S V,Rubio A,et al. Improved charge transfer at carbon nanotube electrodes[J].Adv Mater,1998,11(2):154—157
    [121] R Saito,M Fujita,G Dresselhaus,et al. Electronic structure and growth mechanism of carbontubules[J].Materials Science and Engineering,1993,19(1-2):185—191
    [122] D Ugart,A Chatelain,W A deHeer, Nanocapillarity and Chemistry in CarbonNanotubes[J].Science,1996,274:1897—1899
    [123] Cao Q,Kim HS,Pimparkar N,et al. Medium-scale carbon nanotube thin-film integrated circuits onflexible plastic substrates[J].Nature,2008,454(7203):495—U4
    [124] Shin KM, Lee JW, Wallace GG, et al. Electrochemical properties of SWNT/ferritin composite forbioapplications[J].Sensors and Actuators B,2008,133(2):393—397
    [125] Lu SY, Chien LC, Carbon nanotube doped liquid crystal OCB cells: physical and electro-opticalproperties[J].Optics Express,2008,16(17):12777—12785
    [126] Kakade B, Mehta R, Durge A, et al. Electric field induced, superhydrophobic to superhydrophilicswitching in multiwalled carbon nanotube[J].Nano Letters,2008,8(9):2693—2696
    [127] W Z Li,C H Liang,J S Qiu, et al.Carbon nanotubes as support for cathode catalyst of a directmethanol fuel cell[J].Carbon,2002,40:787—803
    [128] C A Bessel,K laubernds,N M Rodriguez,et al. Graphite Nanofibers as an Electrode for Fuel CellApplications[J].J.Phys.Chem.B,2001,105:1115—1118
    [129] E SSteigerwalt,G A Deluga,D E Clieffl,et al. A Pt-Ru/Graphitic Carbon Nanofiber NanocompositeExhibiting High Relative Performance as a Direct-Methanol Fuel Cell AnodeCatalyst[J].J.Phys.Chem.B,2001,105:8097—8101
    [130] Sun Y, Wilson S R, Schuster D I, High Dissolution and Strong Light Emission of Carbon Nanotubesin Aromatic Amine Solvents[J].J. Am. Chem. Soc,2001,123(22):5348—5349
    [131] Chen J, Hamon M A, Haddon R C, et al. Solution Properties of Single-Walled CarbonNanotubes[J].Science,1998,282(2):95—98
    [132] Lu X,Chen Z,Curved Pi-Conjugation,aromaticity,and the Related Chemistry of Small Fullerenes(smaller than C60) and Single-Wall Carbon Nanotubes[J].Chem. Rev.2005,105:3643—3696
    [133] Banerjee S, Hemraj-Benny T, Wong S S, Covalent surface chemistry of single-walled carbonnanotubes[J].Adv. Mater.2005,17(1):17—29
    [134] Dyke C A,Tour J M,Covalent Functionalization of Single-Walled Carbon Nanotubes for MaterialsApplications[J].J. Phys. Chem. A,2004,108:11151—11159
    [135] Bahr J L,Tour J M, Covalent chemistry of single-wall carbon nanotubes[J].J. Mater. Chem.2002,12:1952—1958
    [136] Hamwi A, Alvergnat H, Bonnamy S, Beguin F, Fluorination of carbon nanotubcs Carbon [J].Carbon,1997,35:723—728
    [137] Yudanov N F, Okotrub A V,Shubin Y V,et al.Fluorination of Arc-Produced Carbon MaterialContaining Multiwall Nanotubes[J].Chem. Mater.2002,14:1472—1476
    [138] Pekker S,Salvetat J-P, Jakab E,Graphite Nanofibers as an Electrode for Fuel Cell Applications[J].J.Phys.Chem. B,2001,105:7938—7943
    [139] Khare B N, Meyyappan M,Cassell AM, et al. Functionalization of Carbon Nanotubes Using AtomicHydrogen from a Glow Discharge [J].Nano Lett.2002,2(1):73—77
    [140] Kamaras, K.,Itkis, M. E., Hu, H et al.Covalent bond formation to a carbon nanotube metal[J]. Science,2003,301(5639):1501—1502
    [141] Hu H, Zhao B,Hamon M A et al.Sidewall Functionalization of Single-Walled Carbon Nanotubes byAddition of Dichlorocarbene[J].J. Am. Chem. Soc.2003,125:14893—14900
    [142] Kelly K F,Chiang I W,Mickelson E T,et al.Insight into the mechanism of sidewall functionalization ofsingle-walled nanotubes: An STM study[J].Chem. Phys. Lett,1999,313(3-4):445—450
    [143] Mickelson E T,Chiang I W, Zimmerman J L,et al.Solvation of Fluorinated Single-Wall CarbonNanotubes in Alcohol Solvents[J].Phys Chem. B,1999,103(21):4318—4322
    [144] Boul P J, Liu J,Mickelson E T,et al.Reversible sidewall functionalization of buckytubes [J]. Chem.Phys. Lett,1999,310(3-4):367—372
    [145] Saini R K,Chiang I W,Peng H,et al.Convalent side wall functionalization of single wall carbonnanotubes[J].J. Am. Chem. Soc.,2003,125(12):3617—3621
    [146] Stevens J L, Huang A Y,Peng H,et al.Side wall amino-functionalization of single-walled carbonnanotubes through fluorination and subsequent reactions with terminal diamines[J]. Nano Lett.,2003,3:331—336
    [147] Chen J,Hamon M A,Haddon R C,et al.Solution properties of single-walled carbon nanotubes[J].Science,1998,282:95—98
    [148] Kamaras K,Itkis M E,Haddon R C,Covalent Bond Formation to a Carbon Nanotube Metal[J].Science,2003,301(5639):1501
    [149] Holzinger M,Vostrovsky O, Hirsch A,et al.Hirsch,Sidewall functionalization of carbonnanotubes[J].Angew. Chem. Int.Ed.2001,40(21):4002—4005
    [150] Hirsch A,Functionalization of Single-Walled Carbon Nanotubes[J].Angew. Chem., Int. Ed.2002,41(11):1853—1859
    [151] Holzinger M,Abraham J,Whelan P,et al.Functionalization of Single-Walled Carbon Nanotubes with(R-)Oxycarbonyl Nitrenes[J].J. Am. Chem. Soc.2003,125(28):8566—8580
    [152] Bahr J L,Yang J,Tour J M,Functionalization of Carbon Nanotubes by Electrochemical Reduction ofAryl Diazonium Salts: A Bucky Paper Electrode[J].J. Am. Chem. Soc.2001,123(27):6536—6542
    [153] Qin S,Qin D,Ford W T,et al.Functionalization of Single Walled Carbon Nanotubes with Polystyrenevia Grafting to and Grafting from Methods[J] Macromolecules,2004,37(3):752—757
    [154] Qin S,Qin D,Ford W T,et al.Solubilization and Purification of Single-Wall Carbon Nanotubes inWater by in Situ Radical Polymerization of Sodium4-Styrenesulfonate[J]. Macromolecules,2004,37(11):3965—3967.
    [155] Liu J,Rinzler A G,Dai H J,et al.Fullerene pipes[J].Science1998,280:1253—1256
    [156] Liu Z,Shen Z,Zhu T, et al.Organizing Single-Walled Carbon Nanotubes on Gold Using a WetChemical Self-Assembling Technique[J].Langmuir,2000,16(8):3569—3573
    [157] Lim J K,Yun W S, Yoon M H, et al.Selective thiolation of single-walled carbon nanotubes[J]. Synth.Met.,2003,139:521—527
    [158] Zhu J,Yudasaka M,Iijima S,A Surface Modification Approach to the Patterned Assembly ofSingle-Walled Carbon Nanomaterials[J].Nano Lett.2003,3(9):1239—1243
    [159] Zhu J,Yudasaka M,Zhang M,Iijima S J,Dispersing Carbon Nanotubes in Water:A Noncovalent andNonorganic Way[J].Phys. Chem. B2004,108(31):11317—11320
    [160] Taft B J,azareck A D,Withey G D, et al. Site-Specific Assembly of DNA and Appended Cargo onArrayed Carbon Nanotubes[J]. J. Am. Chem. Soc.2004,126:12750—12751
    [161] Rajendra J,Baxendale M,Dit Rap, G L, et al. Flow Linear Dichroism to Probe Binding of AromaticMolecules and DNA to Single-Walled Carbon Nanotubes[J].J. Am. Chem. Soc.2004,126:11182—11188
    [162] Strano M S, Zheng M, Jagota A,et al. Understanding the Nature of the DNA-Assisted Separation ofSingle-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy [J].Nano Lett.2004,4:543—550
    [163] Ajayan P M,Stephan O,Collex C,et al. Aligned Carbon Nanotube Arrays Formed by Cutting aPolymer Resin—Nanotube Composite[J].Science,1994,265(5176):1212—1214
    [164] Wagner H D,Lourie O,Feldman Y,et al. Stress-induced fragmentation of multiwall carbon nanotubesin a polymer matrix [J].Appl Phys Lett,1998,72(2):188—190
    [165] Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes[J]. Nature,1993,361:333—334
    [166] Ajayan P M, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal oxidenanocomposites and nanostructures[J]. Nature,1995,375:564—567
    [167] Ebbesen T W, Ichihashi T, Iijima S,et al.Opening carbon nanotubes with oxygen and implications forfilling[J]. Nature,1993,362:522—525
    [168] Wilson M, Madden P A. Growth of Ionic Crystals in Carbon Nanotubes[J]. J. Am. Chem. Soc.2001,123:2101—2102
    [169] Brown G,Bailey S R, Sloan J,et al. Electron beam induced in situ clusterisation of1D ZrCl4chainswithin single-walled carbon nanotubes[J].Chem. Commun.,2001:845—846
    [170] Govindaraj A,Satishkumar B C,Nath M, et al.Metal Nanowires and Intercalated Metal Layers inSingle-Walled Carbon Nanotube Bundles[J].Chem. Mater.,2000,12(1):202—205
    [171] Liu S, Zhu J,Mastai Y, et al. Preparation and Characteristics of Carbon Nanotubes Filled withCobalt[J].Chem. Mater.2000,12:2205—2211
    [172] Bao J, Wang K, Xu Z, Zhang H, et al.A novel nanostructure of nickel nanotubes encapsulated incarbon nanotubes [J]. Chem. Commun.2003,2:208—209
    [173] Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbonnanotubes in solution and the formation of porphyrin-nanotube nanocomposites[J].Chem. Phys.Lett,2003,378:481—485
    [174] Li H,Zhou B,Sun Y P,Selective Interactions of Porphyrins with Semiconducting Single-WalledCarbon Nanotubes[J].J. Am. Chem. Soc.2004,126:1014—1015
    [175] Chen J,Collier C P, Noncovalent Functionalization of Single-Walled Carbon Nanotubes withWater-Soluble Porphyrins[J] J. Phys. Chem. B,2005,109:7605—7609
    [176] Satake A,Miyajima Y, Kobuke Y, Porphyrin-Carbon Nanotube Composites Formed by NoncovalentPolymer Wrapping[J].Chem Mater.,2005,17:716—724
    [177] Guldi D M, Rahman G M A, Jux N, et al.Integrating Single-Wall Carbon Nanotubes intoDonor–Acceptor Nanohybrids[J].Angew. Chem., Int. Ed.2004,43(41):5526—5530
    [178] Huaping L,Robert B M,Sun Y P, Single-Walled Carbon Nanotubes Tethered with Porphyrins:Synthesis and Photophysical Properties[J]. Adv. Mater.2004,16:896—900
    [179] Ballestero B,Guldi D M,Torres T, Single-Wall Carbon Nanotubes Bearing Covalently LinkedPhthalocyanines-Photoinduced Electron Transfer[J].J. Am. Chem. Soc.2007,129:5061—5068
    [180] Schulte K,Swarbrick J C,Smith N A, et al. Assembly of Cobalt Phthalocyanine Stacks inside CarbonNanotubes[J].Adv. Mater.2007,19:3312—3316
    [181] Baskaran D,Mays J W,Zhang P,et al. Carbon Nanotubes with Covalently Linked Porphyrin Antennae:?Photoinduced Electron Transfer[J].J. Am. Chem. Soc.2005,127:6916—6917
    [182] Cioffi C,Compidelli S,Sooambar C,et al. Synthesis, Characterization, and Photoinduced ElectronTransfer in Functionalized Single Wall Carbon Nanohorns[J].J. Am. Chem. Soc.2007,129:3938—3945
    [183] Lei Cao,Hongzheng Chen,Mang Wang. Photoconductivity Study of Modified CarbonNanotube/Oxotitanium Phthalocyanine Composites[J].J.Phys.Chem.B2002,106:8971—8975
    [184] Lei Cao,Hongzheng Chen,Mang Wang et al. Fabrication of Rare-Earth BiphthalocyanineEncapsulated by Carbon Nanotubes Using a Capillary Filling Method[J].Chem.Mater.,2003,15:3247—3249
    [185] Lei Cao,Hongzheng Chen,Mang Wang,et al. Carbon Nanotube Templated Assembly of Rare-EarthPhthalocyanine Nanowires[J].Adv. Mater.2003,15:909—913
    [186] Jian-Shan Y,Ying W,Fwu-Shan S,et al. Electrochemical Biosensing Platforms UsingPhthalocyanine-Functionalized Carbon Nanotube Electrode[J].Electroanalysis,2005,17(1):89—96
    [187] R C M Jakobs, L J J Janssen, E Barendrecht, Oxygen reduction at polypyrrole electrodes—I. Theoryand evaluation of the rrde experiments[J].Electrochim.Acta30,1985,1085—1091
    [188] S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J.-M. Leger Journal of Electroanalytical Chemistry577(2005)223—234
    [189] Best. A.,J. B. Weber. Disappearance of s-triazines as affected by soil pH using a balance sheetapproach. Weed Sci.,1974,22:364—373
    [190] Cohen. S., S. Creager, R.Carsel, C.Enfield. Potential pesticide contamination of groundwater fromagricultural uses, in R.F.,Krueger, J.N.S.,Treatment,disposal of pesticide waste, American ChemicalSociety,Washington.D.C.,1984,297—325
    [191] TAO Qinghui,TANG Hongxiao, Influences of co-existing pollutants on the sorption of atrazinebynatural sediment[J]. Acta Scientiae Circumstantiae,2004,24(4):696—701
    [192] ANDERSON K L,WHEELER K A,ROBINSON J B,et al.atrazine mineralization potential in twowetland[J],Water Research,2002,36:4785—4794
    [193]弓爱君,叶常明.除草剂阿特拉津(Atrazine)的环境行为综述[J].环境科学进展,1997,5(2):37—47
    [194] Chan K H,Chu W,The system design of atrazine oxidation by catalytic oxidation process through akinetic approach[J].Water Reasearch,2003,37(16):405—408
    [195] Hayes TB.Collins AC.Lee M.Mendoza M.Noriega N.Stuart AA.VonkA.Hermaphroditicdemasculinized frogs after expose to the herbicide atrazine at low ecologically relevant doces.ProcNatl Acad Sci USA,2002,99(8):5476—5480
    [196] Mandelbaum,R.T.,L.P.W.,D.L.Rapid hydrolysis of atrazine to hydroxyatrazine by soilbacteria.Envion.Sci.&Technol.,1993(27):1943—1946
    [197] Dhlleepan R.Nair,J. S. Effect of two electron acceptors on atrazine mineralization rates insoil.Environ.Sci.&Technol.,1992(26):2298—2300
    [198] Arántegui J, Proda J, Chamarro E,et al. Kinetics of the UV degradation of atrazine in aqueoussolution in the presence of hydrogen peroxide [J]. Journal of Photochemistry and Photobiology,1995,88(1):65—74
    [199] Zwiener C, Weil L, Niessner R. Atrazine and Parathion-methyl removal by UV and UV/O3indrinking water treatment [J].Intern.J.Envino.Anat.Chem.,1995,58(1-4):247—264
    [200] Sylvie N, Lucien K, Jacques E. Degradation of atrazine into ammeline by combined ozone/hydrogenperoxide treatment in water [J]. Environ.Sci.Technol.,2000,34(3):430—437
    [201] Konstantinou I K, Sakellarides T M, Sakkas V A,et al. Photocatalytic degradation of selecteds-trazine herbicides and organophosphorus insecticide over aqueous TiO2suspensions [J].Environ.Sci.Technol.,2001,35(2):398—405
    [202]刘爱菊,朱鲁生,王军,等.除草剂阿特拉津的环境毒理研究进展[J].土壤与环境,2002,11(4):405—408
    [203] Gratzel C K et al. J. Decomposition of organophosphorus compounds on photoactivated TiO2surfaces[J].of Molecular Catalysis,1990,60(3):375—387
    [204] Pape B E, Zabik M J,Photochemistry of selected2-chloro-and2-methylthio-4,6-di(alkylamino)-s-triazine herbicides[J].Agric. Food Chem.,1970,18(2):202—207
    [205] Orth W S,Gillham R W.Dechlorination of trichloroethene inaqueous solution usingFe0[J].Environ.Sci.Technol.,1996,30(1):66—71
    [206] Pospisil L,Trskova R,Fuoco R,et al.Electrochemistry of s-trazine herbicides:reduction of atrazine inaqueous solutions[J].Journal of Electroanalytical Chemistry,1995(395):189—193
    [207] Cheng SF,Wu SC. The enhancement methods for the degradation of TCE by zerovalentmetals[J].Chemosphere,2000(41):1263—1270
    [208]刘娜,赵勇胜等,锌粉降解地下水中的农药阿特拉津[J].中国环境科学,2006,26(1):116—119
    [209] Kim Y,Carrawa Yer.Dechlorination of pentachlorophenol by zero valent iron and modified zero valentirons[J].Environ Sci.Technol.,2000,34(10):2014—2017
    [210] Claudia L B,Carlo P,Vittorio R,et al.Mechanism and efficiency of atrazine degradation undercombined oxidation processes[J].Appl Catal B:Environ,2006,64(1-2):131—138
    [211] T.Dombek,E.Dolan,J. et al.Rapid reducetive dechlorination of atrazine by zero-valent iron underacidic conditions [J]. Environmental Pollution,2001(111):21—27
    [212] Choi W J,Han G H,Lee S M,et al. Impact of land-use types on nitrate concentration and δ15N inunconfined groundwater in rural areas of Korea[J].Agr. Ecosyst. Environ.,2007,120:259—268
    [213] Glass C,Sliverstein J, Denitrification of high-nitrate high-salinity waste water[J].Wat Res,1999,33(1):223—229
    [214] Galvez J M,Gomez M A,Hontoria E,et al.Influence of hydraulic loading and air flow rate on urbanwaste water nitrogen removal with a submerged fixed-film reactor[J].Hazard Mater,2003,101:219—229
    [215] Shrinali M,Singh K P.New method of nitrate re-moval from water[J].Environ Pollut,2001,112:351—359
    [216] Gupta SK,Gupta RC,Seth AK,et al.Meth moglobin mia of twelve years' standing[J].Natl Med JIndia,2000,13(2):58—61
    [217] Rocca CD,Belgiorno V,Meric S,Overview of in-situ applicable nitrate removalprocesses[J].Desalination,2007,204:46—62
    [218] European Community,Council direction of July1980relating to the quality of water intended forhuman consumption,Official J. European Community, Brussels, Belgium,1980,23(L229):11—29
    [219] Health Canada.Guidelines for Canadian Drinking Water Quality6thed.Ministry of health,Ottawa,1996
    [220]毕二平,李政红.石家庄市地下水中氮污染分析[J].水文地质工程地质,2001,2:31—34
    [221]罗泽娇,勒孟贵.地下水三氮污染的研究进展.水文地质工程地质,2000,4:65—69
    [222] Williams A. E.,Lund L. J.,Johnoson J. A. et al.Natural and anthropogenic nitrate Contamination ofgroundwater in a rural community,California.Environ. Sci. Technol.,1998,32(1):32—39
    [223] Keeney D. R..Sources of nitrate to groundwater.Critical Reviews in EnvironmentalControl,1986,16(3):257—304
    [224] Voelop K D,Tacke T.Erste schritte auf dem weg zur edelmetall katalysierten nitrund nitritent fernungaus trinkwasser[J].Chem.Ing.Tech.,1989,61:836—845
    [225]吴辉煌,水中有机污染物电化学清除的研究进展[J].环境污染与防治,2000,22(4):39—42.
    [226] Peel J W,Reddy K J,Sullivan B P,et al.Electroc-atalytic reduction of nitrate in water[J].WatRes,2003,37(10):2512—2519
    [227] Kerkeni S,Lamy-Pitara E,Barbier J,Copper-platinum catalysts prepared and characterized byelectrochemical methods for the reduction of nitrate and nitrite[J].Catal Today,2002,75(1-4):35—42
    [228] Vooys A C A,Santen R A,Veen J A R,Electrocatalytic reduction of NO3-on palladium/copperelectrodes[J],J Mol Catal A;Chem,2000,154(1-2):203—215
    [229] HJ/T346-2007水质硝酸盐氮的测定紫外分光光度法(试行)[S].
    [230] GB/T7493-87水质亚硝酸盐氮的测定分光光度法[S].
    [231] HJ535-2009水质氨氮的测定纳氏试剂分光光度法[S].
    [232]范经华,范彬,鹿道强,等.多孔钛板负载Pd-Cu阴极电催化还原饮用水中的硝酸盐的研究[J],环境科学,2006,27(6):1117—1122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700