青藏高原冈底斯造山带变质地质作用及其大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变质岩是地壳的重要组成部分之一,占地壳总体积的近三分之一。研究区域变质岩石,可以获取该区域深部地壳演化的相关信息,还有利于发现其中丰富的矿产资源。变质岩石和变质地质作用已成为当今地质学家十分关注的研究课题,也是前寒武纪地质和探索地壳早期演化的重要内容,同时已成为近年来地质学领域内发展较快的学科之一。
     青藏高原是当今世界上海拨最高、面积最大、形成年龄最年轻的高原。西藏冈底斯造山带位于雅鲁藏布江结合带和班公湖—怒江结合带之间,向西与克什米尔-拉达克岩浆弧地块相接,向东延伸至滇西腾冲陆块。研究区内构造运动频繁,变质岩分布广泛。本文立足于新一轮青藏高原1:25万区域地质调查的大量成果和数据之上,系统消化吸收并整合相关资料;依据古特提斯洋、新特提斯洋所经历的闭合碰撞造山作用,以及造山期后的高原隆升过程中所发生的一系列变质地质作用,自北向南依次将冈底斯造山带划分为班公湖-怒江变质带、革吉-班戈-洛隆变质带、隆格尔-工布江达变质带、冈底斯-察隅变质带、雅鲁藏布—南迦巴瓦变质带共五条变质带;在系统分析冈底斯造山带内五条变质带的变质岩石类型、出现的变质矿物组合,以及前人对这些变质岩石的岩石地球化学分析数据的系统分析基础上,在研究区内划分出八种不同变质强度的变质相类型:次绿片岩相、低绿片岩相、高绿片岩相、低角闪岩相、高角闪岩相、蓝片岩相、麻粒岩相和高压-超高压榴辉岩相。系统总结了各变质带中变质岩的地质特征、变质矿物组合、变质作用类型、变质作用事件及不同变质岩石的P-T条件;在前人的相关研究成果基础上,聚焦于各变质带中特征的变质矿物组合特征,在各变质带中分别划分出葡萄石—绿纤石带、绢云母—绿泥石带、黑云母带、铁铝榴石带、透辉石带、十字石—蓝晶石带、红柱石—堇青石带、蓝闪石带、矽线石带等特征的变质矿物带。
     基于上述研究,本文较系统总结了冈底斯造山带变质岩区的主要变质地质作用特点:
     1.变质岩和变质作用类型的多样性:冈底斯造山带的变质岩分布广泛,类型复杂,大体可分为七种岩石类型;变质作用类型齐全:区域变质作用、接触变质作用和动力变质作用均有出现,其中以区域变质作用为甚。
     2.区域变质作用的多期性:区域变质作用的变质时代具有明显的多期性,大体可划分为前泛非期、泛非期、加里东期、华力西期、印支期、燕山期、喜马拉雅期等7期,其中前泛非期、泛非期、燕山期和喜马拉雅期为研究区内主要变质时期;不同时期的变质作用在空间上多有叠加。
     3.变质地质作用过程的旋回性:冈底斯造山带内的变质作用受控于区内经历的复杂而多期构造旋回,其中新特提斯大洋板块构造演化的燕山晚期—喜马拉雅期变质旋回记录最为完整。此旋回清晰地展示了一套从海底埋深变质作用开始,经历洋壳俯冲高压埋深变质作用、陆缘和岛弧低压区域动力热流变质作用、陆—陆碰撞区域低温动力变质作用、陆内汇聚中压区域动力热流变质作用,而终止于地壳大规模造山隆升的退变质作用的完整变质演化历程。
     4.变质程度的差异性:整个冈底斯造山带的变质程度的非均匀性,总体上呈“南多北少,东高西低”的规律。即南北以雅鲁藏布结合带为界,南部变质岩出露面积大于北部;东西以当雄—羊八井断裂为限,东部变质程度高于西部。
     本文在上述的相关研究成果基础上,初步较系统的归纳和总结出了一套能反映研究区变质岩分布、变质强度变化、变质时期的能客观表达研究区变质作用时空演化规律的编图原则和图示方案,编制完成了《青藏高原冈底斯造山带变质地质图》(1:150万),具有较好的可读性。本论文从冈底斯造山带变质岩和变质作用方面的大量实际材料,结合沉积建造、岩浆建造和同位素年代学等多方面的信息和资料的综合研究,将研究区划分出基底形成、特提斯大洋闭合碰撞、喜马拉雅造山三个主要大地构造演化阶段;并分别就三阶段构造演化时期的变质地质作用,开展了较细致的论述。其中变质基底在研究区主要由念青唐古拉岩群和聂荣岩群组成,变质程度已达到角闪岩相和麻粒岩相。极低变质作用发生的时代在792~950Ma,480~590Ma两个时段,分别代表了前泛非期和泛非期两套构造-热事件的变质年龄。
     古特提斯和新特提斯大洋的构造演化造就了研究区内两条巨大的结合带:班公湖—怒江结合带和雅鲁藏布结合带。自二叠纪末始至始新世末止,二者的形成、发展和消亡经历了一系列变形-变质作用,形成了大量变质强度不同的变质岩石,构成了整个冈底斯造山带变质地带和变质带的骨架;印度洋板块从白垩纪晚期开始向北的快速漂移,到中新世末期与欧亚大陆板块的陆—陆碰撞,导致雅鲁藏布江洋的最后关闭,形成了一系列的逆冲推覆带,自此整个冈底斯造山带北西西—南东东向的地块展布格局基本定型;喜马拉雅地区地壳急剧增厚,同时也在该地区形成了一系列高压-超高压深成变质体。
     综上所述,本文初步总结了冈底斯造山带各变质带从发生、发展到最后形成这一过程的时空演化及相互之间的成因关系,对揭示变质地质作用对冈底斯造山带地壳形成演化过程的响应,以及在该区寻找与变质作用有关矿产资源具有积极的意义和有益的探索。
Metamorphic rocks are an important part of the crust, crustal volume of nearly one-third.Researching regional metamorphism can acquire the information of evolution from rocky deep crustal, and thus found mineral resources which is rich in metamorphic rocks.Metamorphic rocks and metamorphic geological effect has become the focus of attention by geologists in recent years, and also is an important part for Precambrian geological and the early evolution of crust. So it is one of the fastest growing branch about geology in recent years.
     Qinghai-Tibet Plateau is the highest、largest and youngest plateau in the world. The Gandise orogenic zone in Tibet, westward joining Keshimier arc massif and eastward extending to Tengchong landmass in West Yunnan, is located between the Brahmaputra suture and the Ban-gong-Co-Nujiang suture. There are frequently tectogenesis and widespread metamorphic rocks in this area. This paper integrate relevant datum which is based on the data and results form 1:250000 regional geological survey of qinghai-tibet plateau. We divided Gandise orogenic zone into 5 metamorphie zones from north to south, they are Ban-gong-Co-Nujiang zone,Geji-Bango-Lolong zone, Ronger-Gongbujande zone, Gandise-Chai zone, Brahmaputra-Nanjabarwa zone. We analyzed the type of metamorphic rocks, metamorphic mineral association, geochemistry data from previous research achievements, so differentiated 8 metamorphic facies in Gandise. They are very low Greenschist facies, low Greenschist facies, high Greenschist facies, low Amphibolite facies, high Amphibolite facies, Blueschist facies, Granulite facies and Eclogite facies with high pressure. Geological characteristics of metamorphosed rock, metamorphic mineral association, metamorphism, metamorphic event and P-T condition with different metamorphosed rock in each zone are collected. We are focus on the metamorphic mineral association in each zone, and mark off prehnite-pumpellyite belt, sericite-chlorite belt, biotite belt, almandine belt, diopside belt, staurolite-kyanite belt, andalusite-Cordierite belt, glaucophane belt and Sillimanite belt from these zones.
     Based on the above research in this paper, it systematically summarizes the characteristics of metamorphism geological process in Gangdisi orogenic zone metamorphic rocks :
     1.The diversification of metamorphic rocks and metamorphism:metamorphic rocks with wide distribution in Gangdisi orogenic,type complex ,it can be roughly classified into seven types of rocks;Complete metamorphism:there are contact metamorphism、dynamic metamorphism and with regional metamorphism prominent.
     2. The multi-epoch of regional metamorphism: the metamorphic period of regional metamorphism has the obvious of multi-epoch, it can be roughly classified into sevent epochs. There are Caledonian、Variscan、Indo-Chinese epoch and with chief metamorphic period of former Pan-African epoch、Pan-African epoch、Yanshanian epoch and Himalayan epoch; Different periods of metamorphism superimposed in space.
     3.The cyclicity of metamorphism geological process:the metamorphism of metamorphism Gangdisi orogenic zone is controlled by the complex and multiphase structure cyclicity,there is complete metamorphism cyclicity record of of Late Yanshanian-Himalayan epoch in Neo-Tethys oceanic plate. This cyclicity clearly demonstrates a suit of complete metamorphic evolutionary process start from seabed buried depth metamorphism, experienced ocean crust high pressure subduction buried depth metamorphism、continental margin and arc low-pressure area dynami cheat flux metamorphism, ending at complete metamorphic evolutionary process of retreat metamorphism in earth's crust extensive orogenic uplift.
     4. The difference in degree of metamorphism:the whole heterogeneity of degree of metamorphism in Gangdisi orogenic zone which generally displayed the rule of“largger Outcropped in south and smaller in north,highter in east and lower in weast”. That is to say, to the limit of the Yarlungzangbojiang suture in southnorth, the metamorphic rock outcrop area in south is larger than north; To the limit of the Yangba well- DangXiong breakage in eastweast,the degree of metamorphism in east in higher than west.
     In this paper, a set of principles of compilation and graphics program were established on the basis of the above-mentioned relevant research results,which can reflect the distribution of metamorphic rock, metamorphic grade, the tine of metamorphism and the law of Space-time evolution of metamorphism in the study area. The "Geological Map of Qinghai-Tibet Plateau Gangdise metamorphic belt" (1:150 million) was done and readable. Three main stages of tectonic evolution: Basement formation, Tethys Ocean closed, collision, Himalayan orogeny was recognized and the metamorphism of each stage was depicted particularly in the area based on the study about the metamorphosed rock and metamorphism of theGangdise zone applied sedimentary formation, magmatic formation and isotope chronology.
     In the study area, metamorphic basement mainly be composed of nyainqentanglha and Neirong group, whose metamorphic grade reached the amphibolite facies and granulite facies. The period of Basement metamorphism is 792 ~ 950Ma and 480 ~ 590Ma, corresponding the former Pan-African and Pan-African period of two structural - metamorphic thermal event ages.
     The tectonic evolution of Paleotethys and Neo-Tethys Ocean had created two zones: a great combination of two zones: Bangong-Nujiang suture and Yarlung Zangbo suture. From late Permian to the late Eocene, a series of deformation– metamorphism and formed a large number of metamorphic rocks of different metamorphic grade through both of suture formation, development and disappearance, which constituted the skeleton of metamorphic zone of the entire Gangdise orogenic zone. The Indian plate started rapid drift northward at the late Cretaceous, it occurred continent-continent collision with the Eurasian at late Miocene, leading to the final closure of the Brahmaputra Ocean, forming a series of thrust belt, and shaping the Gangdise belt‘s NWW - NEE framework. It rapid thickened of the crust, simultaneously, and formed a series of high pressure plutonic metamorphics in the Himalayan region.
     From the above, this paper summarizes the relationship between different metamorphic zone from origin to formed in Gandise Orogenic zone. These works are beneficial to open out the connection between metamorphism geological process and the crust of Gandise. And in the future, they are positive and helpful for mineral products prospection which is created by metamorphism in Gandise Orogenic zone.
引文
[1]王仁民,游振东,富公勤编.变质岩石学[M].地质出版社,1989:1~280.
    [2]西藏自治区地矿局.西藏自治区区域地质志[M].北京地质出版社,1993:1~450.
    [3]郭铁鹰,梁定益,张宜智,等.西藏阿里地质[M].武汉:中国地质大学出版社,1991,1~464.
    [4]李廷栋.青藏高原地质科学研究的新进展[J].地质通报,2002,21(7):370~376.
    [5]李廷栋.青藏高原隆升过程和机制[J].地球学报,1995, (1): 1-9.
    [6]潘桂棠,丁俊,王立全,等. 1:150万青藏高原及邻区地质图.成都:成都地图出版社.2004.
    [7]傅昭仁,蔡学林编著.变质岩区构造地质学[M].地质出版社.1996,1~243.
    [8]刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化[M].地质出版社.1990,1~174.
    [9]中国地质科学院主编,喜马拉雅岩石圈构造演化[M].地质出版社.1990,1~206.
    [10]潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002.21(11):701~707.
    [11]侯增谦,孟祥金,曲晓明,高永丰.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性源岩相变及深部过程约束.矿床地质[J].2005,24:108~121.
    [12]蒋光武,郭建慈.西藏谢通门—拉萨—沃卡韧脆性剪切带特征及其地质意义[J].西藏地质.2002,2:64~70.
    [13]潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学间题的思考[J].地质通报.2004.23:12~19.
    [14]播桂棠,郑海祥,徐报荣.初论班公湖—怒江结合带.青藏高原地质文集12[C].北京地质出版社,1983.229~242.
    [15]邱瑞照,周肃,邓晋福,李金发,肖庆辉,蔡志勇.以西藏班公湖—怒江带西段舍马拉沟蛇绿岩中辉长岩年龄测定兼论班公湖怒江蛇绿岩带形成时代[J].中国地质,2004.31(3):262~268.
    [16]丙宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳.冈底斯斑岩矿床的成矿时代及青藏高原隆升[J].矿床地质,2003.22(3):217~225.
    [17]王建平,李秋生,刘彦明,裴放.西藏东部特提斯地质[M].北京科学出版社,2003.1~330.
    [18]肖序常,李廷栋,李光岑.喜马拉雅岩石圈构造演化[M].北京地质出版社,1988.201~210.
    [19]肖序常,李廷栋.青藏高原的构造演化与隆升机制[M].广州广东科技出版社,2000.239~268.
    [20]张旗,周国庆.中国蛇绿岩[M].北京科学出版社,2001.1~110.
    [21]朱弟成,潘桂棠,莫宣学,王立全,廖忠礼,赵志丹,董国臣,周长勇.冈底斯中北部晚侏罗世—早白垩世地球动力学环境火山岩约束[J].岩石学报,2006.22(3):534~546.
    [22]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].北京:地质出版社,1997.1~218.
    [23]曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二个“玉龙”铜矿带?[J].矿床地质,2001,20(4):355~366.
    [24]王成善,丁学林.青藏高原隆升研究新进展综述[J].地球科学进展,1998,13(6):526~531.
    [25]钟大赉,丁林.青藏高原隆升过程及其机制探讨[J].中国科学(D辑),2005,26(4):289~295.
    [26]徐正余,陈福忠,郑延中,等.青藏高原主要矿产及其分布规律[M].北京:地质出版社,1991.44~123.
    [27]中国地质调查局.喜马拉雅带区域地质调查成果与进展[J].2004.23(1):27~3
    [28]董国臣,莫宣学,赵志丹等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报,2006.22(4):835~844.
    [29]高洪学,宋子季.西藏泽当蛇绿混杂岩研究新进展[J].中国区域地质,1995.4:316~322.
    [30]耿全如,潘桂棠,郑来林,孙志明,欧春生,董翰.藏东南雅鲁藏布蛇绿混杂岩带的物质组成及形成环境[J],地质科学,2004.39(3):388~406.
    [31]候增谦,莫宣学,杨志明等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006.33:348~359.
    [32]候增谦,杨竹森,徐文艺等.青藏高原碰撞造山带:I.主碰撞造山成矿作用[J].矿床地质, 2006.25 (4):337~358.
    [33]候增谦,潘桂棠,王安建等.青藏高原碰撞造山带:II.晚碰撞转换成矿作用[J].矿床地质, 2006.25 (5):521~543.
    [34]候增谦,曲晓明,杨竹森等.青藏高原碰撞造山带:后碰撞伸展成矿作用[J].矿床地质, 2006.25 (6 ): 629~651.
    [35]李光明,王高明,高大发,黄志英,姚鹏.西藏冈底斯南缘构造格架与成矿系统[J].沉积与特提斯地质,2002.22 (2),1~7.
    [36]李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,2003.22 (9):699~703.
    [37]李光明,潘桂棠,王高明等.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工大学:自然科学版,2004.31(1):22~27.
    [38]李才,王天武,李惠民,曾庆高.冈底斯地区发现印支期巨斑花岗闪长岩古冈底斯造山的存在证据[J],地质通报,2003.22:364~366.
    [39]李国彪.西藏南部古近纪微体古生物及盆地演化特征[D].中国地质大学(北京).2004.
    [40]刘振声,王洁民.青藏高原南部花岗岩地质地球化学[M].四川科学技术出版社,1994.
    [41]莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.印度—亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003.10:135~148.
    [42]潘桂棠,莫宣学.冈底斯造山带的时空结构及演化[J].岩石学报,2006.22 (3) :521~533
    [43]王立全,朱弟成,潘桂棠.青藏高原1:25万区域地质调查主要成果和进展综述(南区)[J].地质通报, 2004.23 (5-6):413~420.
    [44]熊清华,左祖发.西藏冈底斯岩带中段南缘韧性剪切带特征[J].中国区域地质,1999.18.
    [45]郑有业,许荣科,何来信,龚全胜,茨邓.西藏狮泉河蛇绿混杂带:一个新的多岛弧盆系统的厘定及意义[J].沉积与特提斯地质,2004.24(1):13~20.
    [46]周详,曹佑功.西藏板块构造—建造图及说明书.北京地质出版社[M],1984.1~20.
    [47]陈文寄,李齐,周新华等.西藏高原南部两次快速冷却事件的构造意义,地震地质[J],1996,18:109~115.
    [48]耿全如,潘桂棠,刘宇平,等.雅鲁藏布大峡谷地区蛇绿混杂岩带初步研究[J].沉积与特提斯地质,2000,20(1):28~43.
    [49]赫杰,柴育成,李继亮.雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化[J].地质科学.1999,34(l):l~9.
    [50]中国科学院贵阳地球化学所同位素地质研究室:中国西藏南部珠穆朗玛峰地区变质岩系同位素地质年龄的测定[J],中国科,1973,(3),280~288.
    [51]李廷栋,郑英龙.青藏高原早期地质调查研究史略,见:王鸿祯主编:中国地质学科发展的回顾-孙云铸教授百年诞辰纪念文集[M],中国地质大学出版社.1995,209~215.
    [52]莫宣学.三江特提斯火山作用与成矿[M].地质出版社,1993.
    [53]涂光炽,张玉泉.西藏南部花岗岩类地球化学[M].科学出版社,1982.
    [54]鲍佩声,王希斌.从雅鲁藏布江蛇绿岩带中的两套火山岩探讨中生代特提斯洋壳的演化[J].中国科学(B辑),1986(5):531~541.
    [55]陈智梁,刘宇平.藏南拆离系[J].特提斯地质,1996.(20):31-51.
    [56]董申保.中国变质作用及其与地壳演化关系[M].地质专报(4)号.地质出版社.1976.
    [57]陆松年.从罗迪尼亚到冈瓦纳超大陆—对新元古代超大陆研究几个问题的思考[J].地学前缘,2001.8(4):441~448.
    [58]许志琴,杨经绥,梁凤华,等.喜马拉雅地体的泛非—早古生代造山事件年龄记录[J].岩石学报,2005.21(1):1~12.
    [59]张惠民.超大陆和超大陆旋回、冈瓦纳组成及特提斯演化[J].国外前寒武纪地质,1994.(4):61~70.
    [60]王玉净,王建平,刘彦明等.西藏丁青蛇绿岩特征、时代及其地质意义[J].微体古生物学报,2002.19(4):417~420.
    [61]陈智梁,刘宇平.藏南拆离系[J].特提斯地质,20: 31-51.1996.
    [62]应思怀,中国西藏南部珠穆朗玛峰地区岩浆岩、变质岩和混合岩[J],地质科学,2期,1973.
    [63]张旗、李邵华,西藏岩浆活动和变质作用[J],科学出版社,1981.
    [64]张振利,田立富等.藏南吉龙沟地层与萨嘎段雅鲁藏布江蛇绿岩混杂岩带特征研究[M].北京:学苑出版社,2003.
    [65]刘国惠,金成伟,王富宝,等.西藏变质岩及火成岩[J].矿物岩石地球化学,(11):1~320.1990.
    [66]刘国惠.西藏的喜马拉雅变质带与高喜马拉雅隆起-喜马拉雅地质(Ⅱ)[M].北京:地质出版社.1984.
    [67]西藏自治区地质矿产局.西藏自治区岩石地层[M].武汉:中国地质大学出版社.1997.
    [68]夏立峰,夏斌,周国庆,等.藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年[J],地质论评. 2006. 25(2),224~229.
    [69]李天福,杨经绥,李兆丽,等.青藏高原拉萨地块松多榴辉岩的岩相学特征和变质演化过程[J],地质论评,2007.26(10),1310~1326.
    [70]白文吉,杨经绥,P.Robinson,等.西藏罗布莎铬铁矿中金刚石的研究[J].地质学报, 2001. 75(3),404~409.
    [71]杨经绥,白文吉,方青松,等.西藏罗布沙铬铁矿中的超高压矿物和新矿物(综述)[J].地球学报, 2008. 29(3),263~274.
    [72]郑来林,金振民,潘桂棠,等.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化[J].地质学报, 2004. 78(6),745-749.
    [73]丁林,钟大赉.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J].中国科学, 2004. 29(5),386~389.
    [74]廖群安,李德威,袁晏民,等.西藏高喜马拉雅定结和北喜马拉雅拉轨岗日古元古花岗质片麻岩的年代学及其意义[J].地球科学, 2007. 37(12),1579~1587.
    [75]肖序常,李廷栋,李光岑,等.喜马拉雅岩石圈构造演化总论[M].地质专报(7).北京:地质出版社, 1988.88-118.
    [76]周肃,莫宣学,John Mahoney,等.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征[J].科学通报, 2001.46(16):1387~1389.
    [77]季建清,钟大赉,张连生.青藏高原东南部新生代挤出块体西边界[J].科学通报, 2007.45(2):128~133.
    [78]刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化[M].北京:地质出版社,1990. 7-50.
    [79]朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报, 2008.27(9):1535~1550.
    [80]Beck R A,Burbank D W, Sercombe W J,Riley G 9V, Barndt J K, Shafique N A,Lawrence R D and Khan M A. Stratigraphicevidence for an early collision between northwestIndia and Asia[J].Nature,1995.373:55~58.
    [81]DeCelles P G, Gehrels G E,Najiman Y, Martin A,Carter A and Garzanti E.Detritalgeochronology and geochemistry of Cre-taceous-early Miocene strata of Nepal:Implications for timing and diachroneity of initial Himalayan orogenies [J].Earth Panlet .Sci. Lett.,2004.227:313~330.
    [82] Gaetani M and Gaetani E. Multicyclic history of the north (northwestern Himalaya)[J].Am. Assoc. Pet .Geol. Bull.Indiacontinental margin,1991.75:1427~1446.
    [83] Rowley D B. Age of initiation of collision between India and Asia: A review of stratigraphic data[J].Earth Planet .Sci. Let,1996.145:1~13.
    [84] Yin A and Harrison T M. 2000. Geologic Annu. Rev. Earth Planet .Sci二28 evolution of the Himalayan-Tibetan orogen [J] 2000.28:211~280.
    [85] EnkinR J, Z Y Yang, Y Chen, et al. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to present[M]. J Geophxs Res, 1992, 97: 13953~13989.
    [86] England P Houseman G A. Finite strain calculations of continental deformation. II application to the India-Asia plate collilion [J]. J. Geophys. Res, 1986, 91: 366. 1~3616.
    [87] Peltzer q Tapponnier P. Formation and evolution of strike-slip faults, rifts and basins during t he India-Asia collision An experimental approach [J]. J. Geophy. Res.,1988,93:15085~15117.
    [88] Alleare et a1., Structure and evolution of the Himalava-Tibet oroeenic belt [J], Nature, 1984,307:17~22.
    [89] Coleman M E, Hodges K. Evidence for Tibet plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J].Nature, 1995 ,374:49~52.
    [90] Hacker-Bradley-R, Gnos-Edwin. The conundrum of Samaih explaining the metamorphic history [J].Tectonophysics,l997, 279(1-4):215~226.
    [91] Chen Zhiliang,Liu Yuping,Hodges K V,et al.The Kang mar dome:A metamorphic corecomplex in southern Xizang(Tibet) [J].Science,1990.250:1552~1556.
    [92] Hoffman P F. Did the breakup of Laurentia turn gonwana inside out? [J].Science,1991.252:1409~1412.
    [93] Lee Jeffrey,William S D,Wang Y et al.Geology of Kangmar Dome,Southern Tibet.Geological Society of America Map and Chart Series MCH090,2002.1~8.
    [94] Pecher A.The metamorphism in the central Himalaya[J]. Journal of Metamorphic Geology,1989.7(1):31~41.
    [95] Pognante U,Castelli D,Benna P,et al. The crystalline units of the High Himalayas in the Lahul-Zanskar region(Northwest India):metamorphic-tectonic history and geochronology of the collided and imbricated Indian Plate[J].Geological Magazide,1990.127(2):101~116.
    [96] Urs Scharer, Rong-Hua Xu and Claude J.Allegere, U-Pb geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze region[J],Tibet Earth and Planetary Science Letters, 1984,69:311~320.
    [97] Weinberg-R-F. Dunlap-W-J,Whitehouse-M, New field, structural and geochronological data from the Shyok and N ubra valleys, northern Ladakh; linking Kohistan to Tibet[J]. Geological Society Special Publications,2000,170:253~275.
    [98] Willems Ii.Zhou Z, Zhang B.,Grafe K-U., Stratigraphv of the Upper Cretaceous and lower Tertiary strata in the lethyan Himalayas of Tibet(Tingri area,China) [J]. Geol. Rundsch. 1996.81:723~54.
    [99] Ruddiman.W. Early uplift in Tibet[J]? Nature,l998,394:723~725.
    [100] Norin,E.,1946,Geological Explorations in western Tibet, the sino-swedish Expendition publication 29,Ⅶ,Geol.7.
    [101] Hayden,H.H.,1912;The Geology of the province of Tsang and Uin central Tibet,Men,Geol.surv.India. 36(2).
    [102] Schreyer, w,1973., whiteschist : A high-pressure and its geological significance[J].jour Geol.81,735~739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700