矿区复垦土壤压实特征及蘑菇料施用改良效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山东省济宁矿区是我国的主要煤矿区之一,邹城市是济宁矿区的主战场,兖矿集团的主要矿井分布在该市。自上世纪50年代开始采煤至今,已经形成了5653hm2(8.48万亩)的塌陷地,造成矿区生态环境的破坏。自1980a开始该市加强了采煤塌陷地的治理工作,生态环境逐步得到改善。但由于煤炭产量的增加,每年塌陷地大约以200hm2/年的速度增加。在采煤塌陷和复垦的过程中,由于对土壤的严重干扰,致使复垦土壤质量发生了大的变化。其中土壤压实是复垦土壤最关键的因素之一,是关系到复垦质量高低和复垦是否成功的关键。该研究以邹城市矿区复垦土壤为研究对象,选择了5个复垦年度对其压实特征进行了详细分析,揭示了复垦土壤压实度的变异规律。同时对复垦土壤的理化性状和综合土壤质量进行了评价,探明了复垦土壤质量的变异规律。针对复垦土壤存在的问题,本研究应用蘑菇料对复垦土壤进行了改良研究,探讨蘑菇料对复垦土壤质量的改良效果。
     通过分析发现:人为因素的干扰造成地块2、9(复垦后为耕地)表层土壤紧实度远小于未破坏地块(413.40kpa),对作物的生长不利;其余复垦地块紧实度远大于地块1(未破坏地块)。复垦时间对土壤紧实度有一定的影响,复垦时间越长,土壤紧实度越小。在土壤垂直剖面上,随着深度的增加,土壤紧实度增加。充填物质不同,对土壤紧实度具有一定的影响,煤矸石比粉煤灰有利于改善土壤压实度,地块8(充填粉煤灰)通体紧实度都很大,严重影响作物的生长。在土层1-4层,地块9(02年复垦为耕地)紧实度小于地块3(02年复垦为林地),由于人为因素和农作物根系的影响,同时说明在土层表层,农作物比林木对土壤紧实度的影响大;而随着深度的增加,地块9紧实度大于地块3。刚施完蘑菇废料表层土壤的紧实度较低,由于蘑菇废料中有机质的胶结作用,随着施用废料时间的加长,土壤表层的紧实度逐步增加,更加有利于作物的生长。刚施用蘑菇料地块6(07年施用蘑菇料)和复垦后用于耕地的地块变化趋势相近。但所有地块的紧实度在第4—5层基本达到最大,之后变化不大。土壤的紧实度与土壤物理、化学、生物特性相互联系,其中土壤的生物特性与土壤紧实度之间的相关性最大,显著水平P均为0,与真菌数量的相关系数达到了-0.73599;土壤紧实度与土壤中粘粒的含量相关性最小为-0.02889,显著水平P是0.83573。
     蘑菇料的施用对复垦土壤理化性状、微生物数量和土壤质量具有一定的影响。
     刚施用蘑菇废料地块表层土壤的紧实度较低(438.30kpa),随着施用废料时间的加长,土壤表层的紧实度逐步增加(826.80kpa)。不同的处理方式,在土壤垂直剖面的2-3层发生不同的变化,未破坏地块和复垦后用于耕地的地块紧实度下降,出现最小值(68.90kpa),随着深度增加而增加;刚施用蘑菇料地块6和复垦后用于耕地的地块变化趋势相近,而施用蘑菇料时间较长的地块则在表层次出现峰值(1378.00kpa),之下下降或不变。但所有地块的紧实度在第4—5层基本达到最大,之后变化不大。施用蘑菇废料较早和较晚的地块表层容重均比未破坏地块大,而04和05年使用蘑菇废料的地块表层容重比未破坏大。蘑菇废料具有很好的保水性能,随着施用蘑菇废料时间延伸,表层土壤的含水量逐步增加,并且远大于没有施用蘑菇料的地块;同时在垂直剖面上,由于蘑菇料和土壤混为一体,增加了水分向地下渗透的阻力,使含水量比较高,有利于土壤含蓄水源。施用蘑菇废料地块中粘粒的含量要比未破坏地块高,其中地块5的含量最高(14.40%),地块7表层含有粉粒的量最大(94.06%),随着施用废料年限的增加,粉粒的含量逐渐减少,但比未使用蘑菇料的地块3的含量高,这说明通过施用蘑菇料可以很好的改良土壤的通透性,有利于耕作。
     蘑菇料的使用增加了土壤表层有机质的含量,但比未破坏地块的有机质含量低,随着施用蘑菇料时间的增加,表层有机质含量降低,且随着土壤深度的增加,有机质含量减少。刚施用蘑菇料地块表层碱解氮含量比较高(27.33mg/kg),随着时间增加,含量减少。在土壤垂直剖面,施用蘑菇料地块在第2-3层含量增加,随着深度再增加,含量减少,但施用蘑菇料地块通体含量相对于未破坏地比较稳定,未破坏地块(地块1)碱解氮含量随着深度增加会迅速下降。蘑菇料的施用对于土壤表层速效磷的含量有较大的影响,未施用蘑菇料地块表层含量很低(0.98mg/kg),严重影响作物的生长。蘑菇料施用时间与土壤速效磷的含量相关性较小,但施用蘑菇料地块垂直剖面含量变化较小。蘑菇料的施用对于提高表层土壤中有效钾的含量有很大作用,同时随着时间增加,含量降低,地块4(05年施用蘑菇料)表层含量只有40 mg/kg。复垦土壤表层碱性很大(pH>8.3),通过施用蘑菇料可以有效中和土壤的碱性;在土壤垂直剖面上,施用蘑菇料的地块4、5、6、7通体pH值较稳定,并且随着施用蘑菇料时间的增加,土壤碱性减弱,至蘑菇料施用3年的地块5(04年施用蘑菇料)通体碱性最弱(pH=7.92)。施用蘑菇料的地块随着时间的增加土壤表层电导率的降低,且随着深度的增加而增加,在第5层出现峰值。
     土壤中微生物的数量随着深度的增加,数量明显的减少,在表层数量一般是最大。蘑菇料的施用对复垦土壤微生物影响较大。施用蘑菇料1年后的地块7土壤中细菌、真菌、放线菌的数量较多,分别为324*105、103*103和26*104个/g·土,明显高于未施用地块(83*105、56*103和12*104个/g·土),低于复垦后用于耕地的地块9(1520*105、240*103和57*104个/g·土),但高于未破坏的地块(293*105、80*103和29*104个/g·土)。蘑菇料施用以后,对土壤中的不同微生物产生不同的影响,施用蘑菇料的地块细菌和真菌明显提高,放线菌增加较少。
     施用蘑菇料后复垦土壤综合质量有明显变化。复垦后用于耕地的土壤由于人为因素影响其土壤质量较高,平均土壤质量指数达到0.53和0.51,其表层土壤质量达到0.64和0.69,大大高于其他土壤。复垦后种树的土壤由于人为干扰较少其质量较低,平均土壤质量指数在0.40左右。蘑菇料的施用对于复垦土壤具有一定的改良作用,但主要集中在上层土壤,对下层土壤影响不大。对土壤质量的影响主要集中在施用后的前2年,2年后随着蘑菇料的分解殆尽,对土壤影响较小,土壤质量指数趋于和未施用蘑菇料的土壤一致。所有复垦土壤上层土壤质量高于下层,特别是施用蘑菇料的土壤质量在15cm左右出现峰值。复垦后用于耕地的土壤质量变异较大,变异系数达到24.74%,施用蘑菇料可以减少土壤质量的分异程度,特别是施用时间越长,土壤质量分异越小,施用第3年变异系数降至3.59%。
The major mines of Yanzhou Coal Mining Group locate in Zoucheng City, Jining, Shandong Province. Since 1950s, there has been 5653hm2 (8.48×104 acres) of subsided land, which caused the environmental damage. From 1980s on, the city began to strengthen the management of mining subsidence and gradually improved the ecological environment. However, because of the coal production is growing, subsidence land increases at the speed of 200hm2/year. Mining collapse and reclamation seriously disturbed the soil, resulting in great changes of reclaimed soil quality. Soil compaction is the most critical factor to judge the quality level and success of reclamation. The study selected the reclaimed soil in Zoucheng City as the object, analyzed compaction characteristics during five years of reclamation, and revealed compaction variation of reclaimed soil. Meanwhile, through the evaluation for the physical and chemical properties and synthetic quality of reclaimed soil, the quality variation of reclaimed soil was verified. Mushroom was applied to improve the reclaimed soil quality.
     The analysis shows:the soil compactness of land surface in block 2 and 9 which interference by human in much smaller than undamaged block (413.40kpa), which is disadvantage to crop growth; remaining reclaimed land compactness is much larger than block 1. Reclamation time have affect to the soil compaction, the longer the reclamation, the smaller the soil compaction.In soil vertical profile, as the depth increases, soil compaction increased. Different filling materials have some influence to soil compaction, Gangue can help to improve soil compaction than coal fly ash,the compaction of block 8 is big in the whole body, which seriously affecting crop growth. In the soil layers 1-4, the compation of block 9 is less than block 3,which due to human factors and the impact of root crops. At the same time which tell that crops have larger impact in soil compation than trees;but as the depth increases, block 9 have biger compation than block 3. The compaction of surface soil in block which was just finished mushroom is small,due to cementation of organic matter in mushrooms, and with longer time by using mushroom, the compaction of soil surface gradually increased, which is better to crop growth. Block 6 which was just using mushroom have the same change trend with the block which was cultivated land after reclamation. However, the compaction of all plots reach the maximum in level 4-5, then have litter change. Soil compaction have interconnect withsoil physical, chemical and biological properties, the biological characteristics of soil and soil compaction have the biggest correlation, the largest significance level P is 0, the correlation coefficient with the fungi reached-0.73599; soil compaction and soil clay content have the minimum correlation coefficient which reach-0.02889, significance level P is 0.83573.
     The application of mushroom took some effects on the physical and chemical properties, microbial quantity and soil quality of reclaimed soil.
     The compaction degree of surface soil was low (438.30kpa) when mushroom waste was just used, A few days later, compaction degree of surface soil gradually increased (826.80kpa). Different approaches caused compaction difference in the second and third layers of the vertical profile. In the undamaged plot and cultivated land after reclamation, the compaction decreased to the minimum-68.90kpa, and then increased. Plot 6 with mushroom application and the cultivated plot after reclamation had the similar compaction status. The highest compaction value (1378.00kpa) occurred in the plot with long-time use of mushroom, and then decreased or stayed unchanged. However, all the plots had the maximum compaction value in the fourth and fifth layers, little compaction change took place below the two layers. Whenever the mushroom waste was applied, surface soil bulk density was higher than that of undamaged land. The application in 2004 and 2005 was the example. Mushroom waste can maintenance water very well; soil moisture content with the application of mushroom gradually increased, much higher than that in the plots without mushroom. In the vertical profiles, due to the mixture of mushroom and soil, the resistance of water infiltration to the underground increased, which gave high water content and help soil maintenance water. The plot with mushroom application owned a larger clay fraction than the undamaged land, and the highest content appeared in plot 5 (14.40%). The surface soil of block 7 contained the maximum amount of silt particles (94.06%), which gradually decreased, but still higher than the plot 3 without mushrooms. It showed that the application of mushroom could improve soil permeability, good for farming.
     Mushroom scrap application increased the content of organic matter in the surface soil, which was still lower than that of undamaged soil. Later, soil organic matter content fell lower; with the increase of soil depth, it became less. The content of available N was high-27.33mg/kg, but later it decreased. In the second and third layer of vertical profiles, the available N content with mushroom increased, but decreased with soil depth. However, the plot without mushroom (land block 1) had a higher decreasing speed with soil depth. The influence of mushroom scrap application was significant on soil available phosphorus content. Without application of mushroom scrap, the content in the surface soil was very low (0.98mg/kg), seriously hindering crop growth. The time of mushroom scrap use related little to the content of available phosphorus, and there was little difference of available P content in the vertical profile between with and without mushroom scrap. Mushroom scrap's application is great for increasing soil available K content, but later, it reduced a lot. For example, the content of surface soil in block 4 (in 2005; mushroom application) was only 40 mg/kg. The surface reclaimed soil had great alkalinity (pH>8.3). By applying mushroom scrap, the alkalinity could be effectively improved. In the vertical profile, plots of 4,5,6,7 had stable pH value and with the time passed, alkalinity was reduced by using mushroom scrap. From plot 5, pH value fell down to 7.92 with 3-year use of mushroom scrap (since 2004). The conductivity of land after mushroom scrap disposal decreased over time, but increased with soil depth; the peak occurred in the 5th layer.
     With the increase of soil depth, the number of microbes decreased; generally, the surface had the biggest number. Plot 7, with 1-year mushroom scrap application, had more bacteria, fungi and actinomycetes, the number was namely 324 * 105,103 * 103 and 26 * 104, significantly higher than the plot without mushroom (83 * 105,56 * 103 and 12 * 104), less than plot 9-the reclaimed land for cultivation (1520 * 105,240 * 103 and 57 * 104), higher than the undamaged plot (293 * 105,80 * 103 and 29 * 104). Mushroom scrap application impacted on different soil microbes, the number bacteria and fungi increased more significantly than actinomycetes.
     The comprehensive quality of reclaimed soil was obviously different after using mushroom. scrap Because of human cultivation and fertilization, cultivated soil after reclamation owned high comprehensive quality, with average index of 0.52-0.54. The index of surface soil got to 0.64 and 0.73, much higher than other soils. Due to little human measurements, the quality of reclaimed soil for planting trees was low, with the average of 0.40. The effects of mushroom scrap mainly focused on the top soil other than subsoil. The time of its influence was mainly the first 2 years after application, later with the decomposition of mushroom scrap, soil quality index tended to the value without mushroom scrap. The quality of top soil was higher than that of subsoil, especially in application of mushroom scrap, soil quality reached a peak at about 15cm-depth. Cultivated soil after reclamation had great soil quality variance, with the coefficient of 24.74%. Mushroom scrap application could reduce this kind of variation, particularly with the longer-time use; the variance coefficient fell down to 3.59% after 3-year application.
引文
1.卞正富,张国良.矿山复垦土壤生产力指数的修正模型[J].土壤学报,2000,37(1):124~130.
    2.卞正富.矿区开采沉陷农用地土地质量空间变化研究[J].中国矿业大学学报,2004,33(2):23~218.
    3.卞正富.矿区土地复垦界面要素的演替规律及其调控研究[J].中国土地科学,1999,13(2):6~11.
    4.陈龙乾,邓喀中,徐黎华,等.矿区复垦土壤质量评价方法[J].中国矿业大学学报,1999,28(5):449~452.
    5.陈龙乾,邓客中,赵志海,等.开采沉陷堆耕地土壤物理特性影响的空间变化规律[J].煤炭学报,1999,24(6):586~590.
    6.迟仁立,左淑珍,夏萍,等.不同程度压实对土壤理化性状及作物生育产量的影响[J].农业工程学报,2001,17(6):39~43
    7.戴前伟,吕绍林,肖彬.地质雷达的应用条件探讨[J].物探与化探,2000,4:157~160
    8.方广有,张忠治,汪文秉.无载频脉冲探地雷达性能分析及其FD-TD法数值模拟计算[J].电波科学学报,1997,12(1):44~50
    9.冯启言,刘桂建.兖州煤田矸石中的微量有害元素及其对土壤环境的影响[J].中国矿业,2002,11(1):67~69.
    10.顾和和,胡振琪,秦延春,等.泥浆泵复垦土壤生产力的评价及其土壤重构[J].资源科学,2000,22(5):37~40.
    11.郭旭东,邱扬,连纲,等.基于框架的土地质量指标体系研究进展与展望[J].地理科学进展,2003,22(5):479~490.
    12.洪坚平,谢英荷,孔令节,等.矿山复垦区土壤微生物及其生化特性研究[J].生态学报,2000,20(4):669~672.
    13.胡红梅,徐刚,盛安连.快速测量路基紧实度的技术研究[J].江苏大学学报(自然科学版),2003,24(3):84~87
    14.胡振琪,陈宝政,王树东,陈星彤.应用探地雷达测定复垦土壤的水分含量[J].河北建筑科技学院学院,2005,22(1):1~3
    15.胡振琪,陈宝政,王树东,陈星彤.应用探地雷达检测复垦土壤的分层结构[J].中国矿业,2005,3:73~75
    16.胡振琪,戚家忠,司继涛.不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J].农业工程学报,2003,19(2):214~218.
    17.胡振琪,戚家忠,司继涛.粉煤灰充填复垦土壤理化性状研究[J].煤炭学报,2002,27(6):639~643.
    18.胡振琪,魏忠义,秦萍.塌陷地粉煤灰充填复垦土壤的污染性分析[J].中国环境科学,2004.24(3):311~315.
    19.胡振琪,赵艳玲,姜晶,等.土地整理复垦项目验收方案研究[J].农业工程学报,2005,21(6):60-63.
    20.胡振琪.矿山复垦土壤物理特性及其在深耕措施下的改良[D].中国矿业大学,1991
    21.胡振琪.复垦土壤耕作效果的定量评价[J].土壤侵蚀与水土保持学报,1996,2(2):86~93.
    22.胡振琪.矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,22(6):617~622.
    23.胡振琪等.深耕对复垦土壤物理特性的改良[J].土壤通报,1999,30(6):248~250,264
    24.黄昌勇.土壤学[M].中国农业出版社.2005,5:66-129
    25.李清芳,马成仓,周秀杰,等.煤矿塌陷区不同复垦方法及年限的土壤修复效果研究[J].淮北煤炭师范学院学报,2005,26(1):49~51.
    26.李汝莘,高焕文,苏元升.小四轮拖拉机播前压地对土壤物理特性及作物生长的影响[J].中国农业大学学报,1998,3(2):65~68
    27.李汝莘,林成厚,高焕文.农业机器引起土壤压实的方差分析[J].农机化研究,2001(3):84~87
    28.李汝莘,林成厚,高焕文等.小四轮拖拉机土壤压实的研究[J].农业机械学报,2002,33(1):126~129
    29.李汝萃,史岩.机械轮胎引起的土壤压实及其耕作能量消耗[J].农业机械学报,1999,30(2):12~16
    30.李新举,胡振琪,李晶,等.采煤塌陷地复垦土壤质量研究进展[J].农业工程学报,2007,23(6):276~280.
    31.李雪梅.测量土壤松紧度的一种新工具-土壤松紧度计[J].湖南林业科技,2004,31(2):56~57
    32.廖植樨.农业机械行走系统对土壤物理性质的影响[J].农业机械学报,1982,12:
    33.刘红侠,王小英,韩宝平.兖州矿业集团鲍店矿区土壤重金属污染评价[J].能源环境保护,2004,18(2):56~58.
    34.刘吉,马道坤,曾庆猛,孙宇瑞.车载行进式农田土壤紧实度实时测量系统[J].中 国农业大学学报2007,12(6):71~74
    35.刘占锋,傅伯杰,刘国华,朱永官.土壤质量与土壤质量指标及其评价.生态学报,2006,26(3):901~912
    36.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:638.
    37.马道坤.车载式农田土壤水分、电导率!坚实度符合测量方法研究[D].北京:中国农业大学,2006
    38.买永彬,顾方乔.农业环境学[M].北京:中国农业出版社,1994.1~94
    39.秦俊梅,白中科,李俊杰,等.矿区复垦土壤环境质量剖面变化特征研究-以平朔露天矿区为例[J].山西农业大学学报,2006,26(1):101~105.
    40.盛安连,顾炳其.路基紧实度快速测定瞬态冲击法[J].土木工程学报,1998,31(1):67~71
    41.孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118~128.
    42.孙洪星,李凤明.探地雷达高频电磁波传播衰减机理与应用实例[J].岩石力学与工程学报,2002,21(3):413~417
    43.孙洪星.有耗介质高频脉冲电磁波传播衰减理论与应用的实践研究[J].煤炭学报,2001,26(6):567~572
    44.孙继增,范韧,陶惠珍,奚美芳.堆石坝压实密度快速无损检侧新技术[J].水利水电技术,1996,1:22~27
    45.孙泰森,师学义,杨玉敏,等.五阳矿区采煤塌陷地复垦土壤质量变化研究[J].水土保持学报,2003,17(4):35~37,89.
    46.孙一源等.农业土壤力学[M].北京:农业出版社,1985
    47.孙忠英,李宝筏.农业机器行走装置对土壤压实作用的研究田.农业机械学报[J].1998(3):172~174
    48.田钢,石战结,Don.W.Steeples,Jiang hai XIA.多道面波分析方法在测量土壤紧实度方面的应用研究[J].地球物理学进展,2003,18(3):450~454
    49.王娟,胡斌,李东艳,等.焦作市中马村矿土壤重金属污染调查评价[J].环境监测管理与技术,2004,17(2):24~27.
    50.王建锋.基于概念设计的土壤压实测量装置研究[D],昆明理工大学,2007
    51.王晓燕,高焕文,李玉霞,等.拖拉机轮胎压实对土壤水分入渗与地表径流的影响[J].干旱地区农业研究,2000,18(4):57~60
    52.王晓燕,高焕文,李玉霞等.拖拉机轮胎压实对土壤水分入渗与地表径流的影响[J].干旱地区农业研究,2000,18(4):57~60
    53.王煜琴.煤矿区复垦土壤压实时空变异特征[J].农业工程学报,2009,(5):223~226.
    54.王云平,师学义,金志南,等.煤矿塌陷区不同复垦方法及年土壤肥力变化研究[J].山西农业科学,1999,27(1):64~67.
    55.卫雪莉,孙祖望,武雅莉.压实控制技术的现状与展望[J].筑路机械与施工机械化,1992.9(1):4~11
    56.魏忠义,胡振琪,司继涛,等.采煤沉陷地粉煤灰充填复垦土壤元素淋溶特性实验研究[J].农业环境保护,2002,21(1):13~15.
    57.魏忠义,胡振琪,司继涛,等.采煤沉陷地粉煤灰充填复垦土壤元素淋溶特性实验研究[J].农业环境保护,2002,21(1):13~15.
    58.吴敬贵.土壤颗粒的功能研究进展[J].吉林农业大学学报,2008,30,(4):529~537.
    59.武胜林,刘文锴,张合兵,等.焦作市煤矿塌陷地生物复垦技术研究[J].北京工业职业技术学院学报,2002,1(1):23~27.
    60.徐白山,田钢,曾昭发,等.白城地区盐碱地土壤性质与地质雷达信息应用研究[J].水土保持通报,2002,4,9~12
    61.徐白山,田钢,曾昭发等.白城地区盐碱地分层划界的地质雷达方法研究[J].长春科技大学学报,2001,10,408~411
    62.徐刚,盛安连,胡红梅,等.新颖路基(土壤)紧实度的测定方法的研究[J].农业机械学报,2001,32(3):20~23.
    63.杨静.矿区生态环境评价和预警的指标体系及方法的研究[A].2004.05.
    64.姚贤良.程云生等编著.土壤物理学[M].北京:农业出版社,1986:227~244.
    65.尹喜林.RMT5102型深层核子密度含水量仪的研究[J].中国公路学报,1996,9(4):51~56
    66.丁君宝,王金达,刘景双,等.矿山复垦土壤营养元素时空变化研究[J].土壤学报,2002,39(5):750~753.
    67.张发旺,候新伟,韩占涛,等.采煤塌陷堆土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,19(3):67~70.
    68.张家励等.土壤压实特性及其在农业生产中的应用[J].农业工程学报,1995,11(2):17~20
    69.张心昱,陈立顶.土壤质量评价指标体系与评价方法研究进展与展望[J].水土保持研究,2006,13(3):30~33.
    70.张兴义,隋跃宇,孟凯.农田黑土机械压实及其对作物产量的影响[J].农机化研究,2002(4):64~67
    71.张兴义,隋跃宇,土壤压实对农作物影响概述[[J],农业机械学报,2005,36(10):161~164
    72.张兴义,隋跃宇.农m黑土机械压实及其对作物产量的影响田[J].农机化研究,2002(4):64~67
    73.张兴义,隋跃宇.土壤机械压实研究进展[[J].农业机械学报,2005,36(6):122~125
    74.张学礼,胡振琪,初士力.矿山复垦土壤压实问题分析[J].能源环境保护,2004,18(3):1~4.
    75.郑昭佩,刘作新.土壤质量及其评价.应用生态学报,2003,14(1):131-134[4]刘世梁,傅伯.G我国土壤质量及其评价研究的进展.土壤通报,2006,37(1):137~143.
    76.周粤秋,黄东胜.土壤压实的新技术与压实性能(J].筑路机械与施工机械化,1993,10(6):20~22.
    77. A ragon A. Maximun compactbility of Argentine soils from the proctor test. Soil & Tillage Res.2000,56(3-4):197~204
    78. Akala V A, Lal R. Soil organic carbon pools and sequestration rates in reclaimed mine soils in Ohio [J]. J Environ Qual,2001,30:2098~2104.
    79. Akker, J. J. H., Canarache, A.,2001. Two European concerted action son subsoil compaction. Landnutzung and Landentwicklung 42,15~22
    80. Alakukku, L., Elonen, P.,1995. Long-term effects of a single compaction by heavy field traffic on yield and nitrogen uptake of annual crops. Soil Till. Res.36,141—152
    81. Alberty C A, Pellet H M, Taylor D H. Characterization of soilcompaction at construction sites and woody plant response[J]. Journal of Environmental Horticulture,1984,2:48~53.
    82. Aleksandar Popovic, Dragana Djordjevi, Predrag Polic. Trace and major element pollution originating from coal ash suspension and transport processes [J]. Environment International,2001,26:251~255.
    83. Atwell B J. The effect of soil compaction on wheat during early tillering. I. growth, development and root structure. New phytologist,1990,115(1):29-35
    84. B. Friedli, S. Tobias, M. Fritsch.1998. Quality assessment of restored soils:combination of classical soil science methods with ground penetrating radar and near infrared aerial photography? Soil & Tillage Research 46 (1998) 103~115
    85. Bakken L R, Borresen T, Njos A. Effect of soil compaction by tractor traffic on soil structure, denitrification, and yield of wheat. Journal of Soil Science, UK,1987,38(3):541~552
    86. Bell, James C.; Cunningham, Robert L.; Anthony, Craig T,Morphological characteristics of reconstructed prime farmland soils in western Pennsylvania. Journal of Environmental Quality v 23 n 3 May-Jun 1994 p 515~520
    87. Beres, M. and Haeni, F. P.,1991. Application of ground-penetrating radar methods in hydrogeologic studies. Ground Water,29(3):375~386.
    88. Berry E C. Influence of soil compaction on carbon and nitrogen mineralization of soil orgnic matter and crop residues. Biology and Fertility of soils,2000,30(5/6):544~549
    89. Bristow, C.,1994. A new look at the Lower Greensand using ground-penetrating radar. Geol. Today,24~27.
    90. Carder, J., Grasby, J.,1986. A framework for regional soil conservation treatments in the medium and low rainfall agricultural district. Department of Agriculture, Western Australia, Research Report 1/86, pp. 120
    91. Chamen, W C. T., Audsley, E.,1993. A study of the comparative economics of Conventional and zero traffic systems for arable crops. Soil Till. Res. 25,399~409
    92. Chong, S. K and Cowsert, P.T. Infiltration in reclaimed mined land ameliorated with deep tillage treatment, Soil & Tillage Research, 44(1997):255~264
    93. Doolittle, J., Fletcher, P. and Turenne, J.,1990a. Estimating the thickness and volume of organic materials in cranberry bogs. Soil Surv. Horiz.,31(3):73~78.
    94. Doolittle, J. A. and Asmussen, L. E.,1992. Ten years of applications of ground-penetrating radar by the United States Department of Agriculture. In:P. Hanninen and S. Autio (Editors),4th Int. Conf. Ground Penetrating Radar, June 8-13,1992, Rovaniemi. Geol. Surv. Finl. Spec. Pap.,16:139~ 147.
    95. Dunker, R. E., I. J. Jansen and S. L. VAnce.1989. Corn response to deep tillage on surface-mined prime farmland. American Society for Surface Mining and Reclamation (ASSMR) and Canadian Land Reclamation Association (CLRA) Symposium:Reclamation, A Global Perspective. August 28-31,1989. Calgary, Alberta.
    96. Farrish, K. W., Doolittle, J.A. and Gamble, E.E.,1990. Loamy sub-strata and forest productivity of sandy glacial drift soils in Mich-igan. Can. J. Soil Sci.,70:181~187.
    97. Flower, M., LaI, R.,1998. Axle load and tillage effect on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio. Soil Tillage Res.48,21~35
    98. Gang Tian, Don W. Steeples, et al. Multichannel analysis of surface wave method with the autojuggie[J]. Soil Dynamics and Earthquake Engineering, 2003,23:243-247.
    99. Gupta J P Influence of soil compaction on growth, nutrient uptake and yield of two varieties of rice. Riso,1974,23(4):373-380
    100.Haigh, Martin J.; Sansom, Ben.Soil compaction, runoff and erosion on reclaimed coal-lands (UK) International Journal of Surface Mining, Reclamation and Environment 13 4 1999 p 135-146
    101. Hall H E, Raper R L. Development and concept evaluation of an on-the-go soil strength measurement system [J]. Transactions of the ASAE,2005, 48(2):469~477
    102. Harris,R.F. and D.F. Society of America, Inc.. Madison, Wisconsin. Soil Quality for a Sustainable Environment[J].Soil Science,1994,23-35.
    103.Hetzler, R. T and G. G. Darmody.1992. Coal mine subsidence mitigation: effects on soil and crop yields, in the proceedings of 1992 National Symposium on Prime Farmland Reclamation,129-135, Auguest 10-14,1992 St. Louis, Missouri, Dept. of Agronomy of USA.
    104. Hinojosa M Bele'n, Carreira Jose'A, Roberto Garcl'a Rul'z. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils[J]. Soil Biology &Biochemistry, 2004,36:1559~-1568.
    105. Indorante, S. J.1981. Soil variability on surface-mined land and undisturbed land in southern Illinois. Soil Sci. Soc. Am. J
    106. J. A. Huisman, C. Sperl, J. M. Verstrsten.2001. Soil water content measurements at different scales accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology 245,48~58.
    107. J. Boll, R. P. G. van Ri jn, K. W. Weiler, J. A. Ewen, J. Daliparthy, S.J.Herbert, T. S.Steenhuis.1996. Using ground-penetrating radar to detect layers in a sandy field soil. Geoderma 70(1996),117~132.
    108.James C F.,1993 Soil compaction:the silent thief. Minnesota Extension Service, pp.221~230
    109.Jim C Y.Soil compaction as a constraint to tree growth in tropical & subtropical urban habitates[J]. Environmental Conservation,1993, 20(1):35-49.
    110. Johns, L. S, R. E. Rowberg, S. E. Plotkin,1985. Reclaiming Prime Farmland and Other High Quality Croplands After Surface Coal Mining., OTA (Office of Technology Assessment, Congress of the United States) Energy and Materials Program.
    111.Kahnt G Effect of homogeneous and heterogeneous soil compaction on shoot and root growth of field bean and soybean. Journal of Agronomy and Crop ience,1996,157(2):105~113
    112. Kaiser E A, Heisler C, Walenzik Gset al. The effect of mechanical soil compaction on microbial biomass development, Collembolan fauna, denitrification and mineralization in an agricultural location. Einflusse von mechanischen Bodenbelastungen auf mikrobielle Biomasseentwicklung, Collembolenfauna, Denitrifikation und,199,66(1):531~534
    113.Landefeld, L.S., Brandhuber, R.,1999. Measurement of soil compaction caused by heavy machinery under actual field conditions. In:Proceedings of the 13th International Conference of the ISTVS, Munich, Germany, pp. 47-54
    114. Lipiec J, Szustak A, Bennicelli R, et al. The influence of soil compaction on water use and growth of spring barley. eszyty Problem owe Postepow Nauk Rolniczych,1991,397:40~44
    115. M. A. Hamza, WK. Anderson, Soil compaction in cropping systems A view of the nature,causes and possible solutions,Soil&Tillage Res.82 (2005) 121~145
    116. Maeder, V.; Weisskopf, P.; Gysi, Michael, Pressure distribution underneath tires of agricultural vehicles, Source:Transactions of the American Society of Agricultural Engineers v 44 n 6 2001 American Society of Agricultural Engineers p 1385~1389
    117. McCormack, D. E.1984. Legislating soil reconstruction on surface-mined land in the United States. Minerals and the Environment. Vol.6.154-157. (The author participated with a team in writing the Surface Mining Control and Reclamation Act, USA)
    118. McCormack, D. E. and C. L. Carlson.1986. Formulation of soil reconstruction and productivity standards. in Innovative Approaches to Mined land Reclamation. Carlson and Sarisher ed.19-30. Southern Illinois University Press.
    119.McGarry, D.,2001.Tillage and soil compaction. In:Garcia-Tomes, L., Benites, J., Martinez-Vilela, A. (Eds.), First World Congress on Conservation Agriculture,1-5 October 2001, Madrid, Spain, Natural Resource Sciences, pp.281-291
    120. McGarry, D., Sharp, G,2001. A rapid, immediate, farmer-usable method of assessing soil structure condition to support conservation. In: Garcia-Tomes, L., Benites, J., Martinez-Vilela, A. (Eds.), First World Congress on Conservation Agriculture, 1-50ctober 2001, Madrid, Spain, Natural Resource Sciences, pp.209-214
    121.Mokma, D. L., Schaetzl, R. J., Doolittle, J.A. and Johnson, E. P.,1990a. Ground-penetrating radar study of ortstein continuity in some Michigan Haplaquods. Soil Sci. Soc. Am. J.,54:936~938.
    122. Nathan H, Smith S E, Alston A M, et al, The effect of soil compaction on growth and P uptake by Trifolium subterrtanum:interactions with mycorhizal colonization. Plant and soil,1996,182(1):39~49
    123. National Resources Council.1981. Surface Mining:Soil, Coal and Society. National Acdemy Press, USA.246pp.
    124. Neve S de, Hogman G Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biology and Fertility of soils,2000,30(5-6); 544~552
    125. Nidal H. Abu—Hamdeh. Soil compaction and root distribution for okra as affected by tillage and vehicle parameters[J]. Soil & Tillage Research, 2003,74:25~35.
    126. Norland, M. R and D. L. Veith,1991. Soil Characterization and Soil Amendment Use on Coal Surface Mine Lands:An Annotated Biliography, USDI Bureau of Minines, Information Circular.392pp
    127. Paterson DG Laker MC, Using ground penetrating radar to investigate spoil layers in rehabilitated minesoils, South African Journal of Plant and soil Vol.16, No.3,1999 p.131~134
    128. Paulo Roberto Antunes Aranha, Cristina Helena Ribeiro Rocha Augustin, Frederico Garcia Sobreira.2002. The use of GPR for characterizing underground weathered profiles in the sub-humid tropics. Journal of Applied Geophysics 49 (2002) 195~210.
    129. Potter K N, Carter F S, Doll E C. Physical properties of constructed and unconstructed soils[J]. Soil ScienceSociety of America Journal, 1988,52:1435~1438.
    130. Punyawardena B V R, Yapa L G G Effect of soil compaction on potassium uptake, growth and yield of corn. Sri-Lankan Journal of Agricultural Sciences,1991,28:1~10
    131.Scholz, A., Hennings, H. H.,1995. Bearing capacity for grazing in connection with the rewetting of fens. Zeitschrift fur Kulturtechnik and Landentwicklung 36,62-16
    132. Shih, S. F. and Doolittle, J.A.1984. Using radar to investigate organic soil thickness in the Florida Everglades. Soil Sci. Soc. Am. J.,48: 651-656.
    133. Shukla M K, Lal R, Underwood J, et al. Physical and Hydrological Characteristics of Reclaimed Minesoils in Southeastern Ohio[J]. Soil Science Society of America Journal,2004,68(4):1352.
    134. Sin G Studies in the influence of soil compaction on soil properties and wheat, maize, sunflower and sugar beet yields. Plante Tehnice, Fundulea, 988,56:285~297
    135. Sochtig W Larink 0. Effect of soil compaction on activity and biomass of endogeic lumbricids in arable soils. Soil Bio-Biochem. Exeter:Pergamon Press,1992,24(12):1595~1599
    136. Sommer, C., Zach, M.,1992. Managing traffic-induced soil compaction by using conservation tillage. Soil Till. Res.24,319~336
    137. Sun Yurui,Ma Daokun, Schulze Lammers, etal. On-the-go measurement of soil water content and mechanical resistance by a combined horizontal penetrometer [J]. Soil&Tillage Research,2006,86:209~217
    138. SunYu rui, Lammers P S, Ma Dao kun. Evaluation of a combined penetrometer for simultaneous measurement of penetration resistance and soil water content [J]. Plant Nutr Soil Sci,2004,167:745751
    139. SunYu rui, Lammers P S, Ma Dao kun. Evaluation of a combined penetrometer for simultaneous measurement of penetration resistance and soil water content [J]. Plant Nutr Soil Sci,2004,167:745~751
    140. Tobias S, Estimating soil resilience to compaction 场 measuring changes in surface and subsurface levels. Soil use manage, Oxon, UK, CABI International,2001,17(4):229-234
    141. Tollner E W, Simonton W. A cone penetrometer system for measuring cone index and stress relaxation [J]. Transaction of ASAE,1989,32(1):5863
    142. Tollner E W, Simonton W. A cone penetrometer system for measuring cone index and stress relaxation [J]. Transaction of ASAE,1989,32(1):58-63
    143. Viacheslav A I. The philosophy of on the go soil sensing (technology up date)[J]. First Asian Conference on Precision Agriculture, Japan,2005,47~59.
    144. Voorhees W B,1977, Soil compaction — our newest natural resources. [[effect of wheel] traffic on erosion]. Corp-soils,29(5),12~15
    145. Xia J, Miller R D, Park C B, et al. Comparing shear-wave velocity profile from MASW with borehole measurements in unconsolidated sediments [J]. Journal of Environmental and Engineering Geophysics,2000, 5(3):1~13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700