系列毒害气体传感器的研制及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用三种不同的沉淀法制备了P型NiO材料,通过XRD对所制备材料的晶体结构、晶粒尺寸进行表征。分别以不同方法制备的NiO为基体材料,Cr2O3、WO3为掺杂剂,制作了P型半导体厚膜NO2气体传感器,得到了选择性较好的NO2传感器,并对敏感机理进行了分析。
     利用溶胶-凝胶法制备了NASICON材料,通过XRD、SEM对所制备材料进行表征,分析材料的晶体结构、晶粒尺寸及表面形貌。并以其为导电层材料,不同的单一氧化物或复合氧化物为敏感电极,如:ZnSnO3、Sm2O3、NiWO4、NiO-TiO2、Y2O3,制作了多种固体电解质电位型气体传感器。结果显示,上述传感器分别表现出良好的SO2、C7H8、NO、H2S、CO气敏性能。并且分别以Y2O3和ZnO-TiO2为敏感电极设计并制作了固体电解质双功能CO-C7H8气体传感器,可同时检测CO和C7H8两种气体。上述传感器的敏感机理都符合混成电位的理论。
     利用固相反应法制备了NASICON材料,并通过XRD对其进行了表征,分析材料的晶体结构。并以其为基体导电层材料,Au、Au+NaNO2+MCO3 (M为金属)、Au分别为敏感电极、对电极、参考电极,制作了电流型NO2气体传感器,初步研究了其对NO2气体的敏感特性。结果表明,这种传感器对低浓度NO2表现出较好的气敏性能,在200 oC工作温度下对NO2的最低检测浓度可达到10 ppb。
Along with the advancement of modern society and development of science, more and more poisonous and harmful gases release from the industrial production, automobile exhaust or interior decoration. These gases could form great threat to the people’s physical fitness and the safety of life and their properties. The principal pollutant of the atmosphere and indoor pollution includes NO2, H2S, CO, SO2, C7H8, and so on. It is very important to develop the sensors for detecting and controlling these toxic and harmful gases. This paper develops series of poisonous and harmful gas sensors in allusion to these gases.
     The current research of this paper is carried out from two kinds of gas sensors: metal oxides semiconductor type and solid electrolyte type. Starting from the synthesis and characterization of the sensing materials, several types of gas sensors have been studied, for example, semiconductor NO2 sensors; solid electrolyte potentiometric SO2, C7H8, NO, H2S, CO sensors; solid electrolyte double function CO-C7H8 sensor; solid electrolyte amperometric NO2 sensor. The gas sensing properties of the fabricated sensors have been measured and studied. The effects of sensing materials selection, materials preparation method, materials and devices sintering temperature, dopants selection, doping ratio, operating temperature etc on the sensing characteristics have been investigated.
     1. Thick film NO2 gas sensors have been fabricated with NiO synthesized by ammonia precipitation, homogeneous precipitation and citric acid precipitation process respectively. The results exhibit that the best sensing properties to NO2 occur for the sensor with NiO synthesized by homogeneous precipitation process sintered at 600°C as the basis material and 3 wt. % WO3 as the adultant. At 180°C, the sensitivity to 100 ppm NO2 is 15.8. The response time of the sensor to 100 ppm NO2 is 15 s.
     2. The NASICON solid electrolyte is prepared by sol-gel and solid reaction processes, respectively. With the help of XRD and SEM, the synthesized materials are analyzed and characterized. The results show that monocline structure has been seen for the NASICON prepared by sol-gel process at 1000°C. The mean crystalline size of NASICON synthesized by sol-gel process is about 10-22 nm. The NASICON prepared by solid reaction process at 1125°C exhibits the monocline structure also. The mean crystalline size of NASICON synthesized by solid reaction process is about 7-8 nm. 3. Solid electrolyte potentiometric SO2, toluene, NO, H2S, CO sensors and double function CO-C7H8 sensor have been fabricated with NASICON prepared by sol-gel process and different metal oxides or composite oxides sensing electrodes.
     (1) At 375°C, the sensitivity of the sensor with ZnSnO3 as the sensing electrode to SO2 is 255 mV/decade. Well response-recovery characteristics have been observed for the sensor to SO2. The response and recovery time to 5, 10, 20, 50 ppm SO2 is 18, 10, 8, 5 s and 27, 99, 184, 243 s, respectively. Also, the sensor exhibits well selectivity and water resistance performances to SO2. ZnSnO3 sintered at different temperatures have the single quadrilateral structure.
     (2) At 430°C, the sensitivity of the sensor with Sm2O3 as the sensing electrode to toluene is -75 mV/decade. The response and recovery time to 5, 10, 20, 50 ppm toluene is 45, 42, 38, 35 s and 8, 32, 50, 60 s. Also, well selectivity and stability have been observed for the sensor. The variation for the sensitivity of the sensor to 50 ppm toluene is less than 5 mV between 30 days.
     (3) At 350°C, the variation of EMF value for the sensor with NiWO4 as the sensing electrode to 5-500 ppm NO is 126 mV. This type of sensor shows well response-recovery properties to NO. The response and recovery time to NO with different concentrations is all less than 30 s. Also the sensor exhibits well selectivity and stability to NO. The variation for the sensitivity of the sensor to 5 or 500 ppm NO is less than 5 mV between 50 days. NiWO4, ZnWO4, CoWO4, CuWO4, MgWO4 prepared by solid reaction process all belong to scheelite structure.
     (4) At 350°C, the sensitivity of the sensor with Nb2O5 as the sensing electrode to NO is 68 mV/decade. Fast response-recovery rates to NO have been observed for the sensor. The response and recovery time to 5, 10, 20, 50 ppm NO is 20, 18, 14, 10 s and 10, 22, 33, 43 s. Also this kind of sensor shows well selectivity to NO.
     (5) At 320°C, the variation of EMF value for the sensor with Ni-Ti oxides (mole ratio for Ni and Ti is 1: 3) as the sensing electrode is -132 mV. The response and recovery time to 5, 20, 50 ppm H2S is 10, 8, 4 s and 20, 28, 40 s. Also the sensor exhibits well selectivity and water resistance properties to H2S. Rutile structure has been observed for Ni-Ti composite oxide synthesized by sol-gel process.
     (6) At 400°C, the sensitivity of the sensor with Y2O3 as the sensing electrode to CO is -45 mV/decade. The response and recovery time of the sensor to 5, 10, 20, 50 ppm CO is 25, 22, 20, 18 s and 16, 22, 25, 39 s. This type of sensor shows well selectivity and stability to CO. The variation for the sensitivity of the sensor to CO is less than 3 mV between 30 days.
     (7) The optimal operating temperature of the single sensor for the device with Y2O3 and ZnO-TiO2 as the sensing electrodes is all 400°C. The change direction of EMF for the two sensors to CO and toluene is opposite. At 400°C, the sensitivities for sensor A and B to CO and toluene occurs and are -45, 64 mV /decade, respectively. The device exhibits well selectivity to CO and toluene, too. The device can be considered to be the assemble device of single CO and toluene sensor. The heater and Au reference electrode are public for the two sensors. This structure increases the heating efficiency of the heater.
     (8) The sensing mechanisms of the above solid electrolyte potentiometric gas sensors can be explained by the mixed potential theory.
     4. A solid electrolyte amperometric NO2 sensor has been fabricated with NASICON prepared by solid reaction process as the ionic conduction layer and Au, Au, Au+carbonates+NaNO2 as the sensing, reference, counter electrodes, respectively. The results show that the variation ofΔI for the sensor with 9 wt. %SrCO3 as the adultant is 3.7×103 nA at 200 oC. The sensitivity of the sensor to 10 ppb NO2 is 300 nA. The tested range for the sensor to NO2 is 10-100 ppb. The sensing mechanism for the sensor could be explained by the synthesis and decomposition reactions of NaNO2 at the sensing and counter electrodes.
引文
[1]王君等。传感器原理及检测技术[M]。长春:吉林大学出版社,2003.
    [2]孙丽萍等。传感器原理与应用[M]。哈尔滨:东北林业大学出版社,2003.
    [3]李科杰等。现代传感器技术[M]。北京:电子工业出版社,2005.
    [4]易惠中,气敏功能材料的开发和应用[J],功能材料,1991,22(5):287.
    [5]全宝富等。电子功能材料及元器件[M],长春:吉林大学出版社,2001.
    [6] K wang Soo Yoo, Sang Hyoun Park, Ju Hyun Kang, Nano-grained thin-film indium tin oxide gas sensors for H2 detection, Sensors and Actuators B: Chemical[J], 2005, 108: 159-164.
    [7] U.-Sung Choi, Go Sakai, Kengo Shimanoe et al., Sensing properties of SnO2-Co3O4 composites to CO and H2, Sensors and Actuators B: Chemical[J], 2004, 98: 166-173.
    [8] Seymen Aygun, David Cann, Hydrogen sensitivity of doped CuO/ZnO hetercontact sensors, Sensors and Actuators B: Chemical [J], 2005, 106: 837-842.
    [9] Hiroyuki Yamaura, Teruyuki Jinkawa, Jun Tamaki et al., Indium oxide-based gas sensor for selective detection of CO, Sensors and Actuators B: Chemical [J], 1996, 35-36: 325-332.
    [10] A. Salehi, A highly sensitive self heated SnO2 carbon monoxide sensor, Sensors and Actuators B: Chemical [J], 2003, 96: 88-93.
    [11] P. P. Tsai, I-Cherng Chen, M. H. Tzeng, Tin oxide (SnOx) carbon monoxide sensor fabricated by thick-film methods, Sensors and Actuators B: Chemical [J], 1995, 24-25: 537-539.
    [12] G. Mangamma, V. Jayaraman, T. Gnanasekaran et al., Effects of silica additions on H2S sensing properties of CuO-SnO2, Sensors and Actuators B: Chemical [J], 1998, 53: 133-139.
    [13] Sergiu T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, Sensing characteristics of tin-diped ZnO thin films as NO2 gas sensor, Sensors and Actuators B: Chemical [J], 2005, 107: 379-386.
    [14] R. Ferro, The effect of the material morphology on the response of the NO2 sensor based on ZnO thin film, Sensors and Actuators B: Chemical [J], 2009, 143: 99-102.
    [15] Fang-Tso Liu, Shiang-Fu Gao, Shao-Kai Pei et al., ZnO nanorod gas sensor for NO2 detection, Journal of the Taiwan Institute of Chemical Engineers [J], 2009, 40: 528-532.
    [16] Ki-Won Kim, Pyeong-Seok Cho, Sun-Jung Kim et al., the selective detection of: 318-324. 207-210. C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition, Sensors and Actuators B: Chemical [J], 2007, 123
    [17] I. Hafaiedh, S. Helali, K. Cherif et al., Characterization of tin dioxide film for chemical vapors sensor, Materials Science and Engineering C [J], 2008, 28: 584-587.
    [18] B. Bhooloka Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Materials Chemistry and Physics [J], 2000, 64: 62-65.
    [19] Changzhi Gu, Liangyan Sun, Tong Zhang et al., High-sensitiviti phthalocyanine LB film gas sensor based on field effect transistors, Thin Solid Films [J], 1998, 327-329: 383-386.
    [20] Liangyan Sun, Fabin Qiu, Baofu Quan, Investigation of a new catalytic combustion-type CH4 gas sensor with low powder consumption, Sensors and Actuators B: Chemical [J], 2000, 66: 289-292.
    [21] Xingqin Liu, Zhengliang Xu, Yafei Liu et al., A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials, Sensors and Actuators B: Chemical [J], 1998, 52: 270-273.
    [22] Zhang Tianshu, Luo Hongmei, Zeng Huanxing et al., Synthesis and gas-sensing characteristics of high thermostabilityγ-Fe2O3 powder, Sensors and Actuators B: Chemical [J], 1996, 32: 181-184.
    [23] Xiuli He, Jianping Li, Xiaoguang Gao, Effect of V2O5 coating on NO2 sensing properties of WO3 thin films, 2005, 108:
    [24] Yang Zhang, Xiuli He, Jianping Li et al., Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers, Sensors and Actuators B: Chemical [J], 2008, 132: 67-73.
    [25] Yang Zhang, Xiuli He, Jianping Li et al., Gas-sensing properties of hollow and hierarchical copper oxide microspheres, Sensors and Actuators B: Chemical [J], 2007, 128: 293-298.
    [26] Wang Yude, Wu Xinghui, Li Yanfeng et al., The n+n combined structure gas sensor based on burnable gases, Solid-State Electronics [J], 2001, 45: 1809-1813.
    [27] Zhaoting Liu, Tongxiang Fan, Di Zhang et al., Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates, Sensors and Actuators B: Chemical [J], 2009, 136: 499-509.
    [28] Zili Zhan, Jianwei Lu, Wenhui Song et al., Highly selective ethanol In2O3-based gas sesor, Materials Research Bulletin [J], 2007, 42: 228-235.
    [29] Jinhuai Liu, Xingjiu Huang, Gang Ye et al., H2S detection sensing characteristic of CuO/SnO2 sensor, Sensors [J], 2003, 3: 110-118.
    [30] Chu Xiangfeng, Cheng Zhiming, High sensitivity chlorine gas sensors using CdSnO3 thick film prepared by co-precipitation method, Sensors and Actuators B: Chemical [J], 2004, 98: 215-217.
    [31] Shurong Wang, Yingqiang Zhao, Jing Huang et al., Low-temperature carbon monoxide gas sensors based gold/tin dioxide, Solid-State Electronics [J], 2006, 50: 1728-1731.
    [32] Tianshu Zhang, Yusheng Shen, Ruifang Zhang et al., Ammonia-sensing characteristics of Pt-doped CdSnO3 semiconducting ceramic sensor, Materials Letters [J], 1996, 27: 161-164.
    [33] Yong Jiang, Wulin Song, Changsheng Xie et al., Electrical conductivity and gas sensitivity to VOCs of V-doped ZnFe2O4 nanoparticles, Materials Letters [J], 2006, 60: 1374-1378.
    [34] Jing Wang, Peng Zhang, Jin-Qing Qi et al., Silicon-based micro-gas sensors for detecting formaddehyde, Sensors and Actuators B: Chemical [J], 2009, 136: 399-404.
    [35] Lie-yi Sheng, Zhenan Tang, Jian Wu et al., A low-powder CMOS compatible integrated gas sensor using maskless tin oxide sputtering, Sensors and Actuators B: Chemical [J], 1998, 49: 81-87.
    [36] Ping Sun, Yadong Jiang, Guangzhong Xie et al., A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor, Sensors and Actuators B: Chemical [J], 2009, 141: 104-108.
    [37] J. Zhang, J. Hu, Z. Q. Zhu et al., Quartz crystal microbalance coated with sol-gel-derived indium-tin oxide thin films as gas sensor for NO detection, Colloids and Surfaces A: Physicochem. Eng. Aspects [J], 2004, 236: 23-30.
    [38] Changzhi Gu, Liangyan Sun, Tong Zhang et al., The design and characteristics of a porphyrin LB film ChemFET, Thin Solid Films [J], 1996, 284-285: 863-865.
    [39] H.W.Cheong, J.J.Choi, H.P.Kim et al., The role of additives in tin dioxide based gas sensors, Sensors and Actuators B: Chemical [J], 1992, 9: 227-231.
    [40] J.S.Chen, H.L.Li, J.L.Huang, Structure and CO Sensing Characteristics of Ti-added SnO2 Thin Films, Applied Suface Science [J], 2002, 187: 305-312.
    [41] M.S. Dutraive, R.Lalauze, C.Pijolat, Sintering, Catalytic effects and defect chemistry in polycrystalline tin dioxide, Sensors and Actuators B: Chemical [J], 1995, 26-27: 38-44.
    [42] Yasutaka.Ozaki, Effects of Thiourea Treatment on the Sensing Properties and Stability ofSnO2-based CO gas sensors, J.the Electrochemical Society [J], 2000, 147: 1589-1591.
    [43] Jong Hyun Park, Kwang Ho.Kim, Improvement of long-term stability in SnO2-based CO sensors for monitoring offensive odor, Sensors and Actuators B: Chemical [J] 1999, 56: 50-58.
    [44] G.Zhang, M.L.Liu, Effect of particle size and dopanton properties of SnO2-based gas sensors, Sensors and Actuators B: Chemical [J], 2000, 69: 144-152.
    [45] Won Jae Moon, Ji Haeng Yu, Gyeong Man Choi, Selective CO gas detection of SnO2-Zn2SnO4 composite gas sensor, Sensors and Actuators B: Chemical [J], 2001, 80: 21-27.
    [46] Won Jae Moon, Ji Haeng Yu, Gyeong Man Choi, The CO and H2 gas selectivity of CuO-doped SnO2-ZnO composite gas sensor, Sensors and Actuators B: Chemical [J], 2002, 87: 464-470.
    [47] Ji Haeng Yu, Gyeong Man Choi, Electrical and CO gas sensing properties of ZnO-SnO2 composite, Sensors and Actuators B: Chemical [J], 1998, 52: 251-256.
    [48] Shunji Abe, U-Sung Choi, Kengo Shimanoe et al., Influences of ball-milling time on gas-sensing properties of Co3O4-SnO2 composites, Sensors and Actuators B: Chemical [J], 2005, 107: 516-522.
    [49] U.–Sung Choi, Go Sakai, Kengo Shimanoe et al., Sensing properties of SnO2-Co3O4 composite to CO and H2, Sensors and Actuators B: Chemical [J], 2004, 98: 166-173.
    [50] U.–Sung Choi, Go Sakai, Kengo Shimanoe et al., Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2, Sensors and Actuators B: Chemical [J], 2005, 107: 397-401.
    [51] Dang Hyok Yoon, Ji Haeng Yu, Gyeong Man Choi, CO gas sensing properties of ZnO-CuO composite, Sensors and Actuators B: Chemical [J], 1998, 46: 15-23.
    [52] Chen Aifan, Huang Xiaodong, Tong Zhangfa et al., Preparation, characterization and gas–sensing properties of SnO2-In2O3 nanocomposite oxides, Sensors and Actuators B: Chemical [J], 2006, 115: 316-321.
    [53] P. Keller, H. Ferkel, K. Zweiacker et al., The application of nanocrystalline BaTiO3-composite films as CO2-sensing layers, Sensors and Actuators B: Chemical [J], 1999, 57: 39-46.
    [54] Huixiang Tang, Mi Yan, Hui Zhang et al., A selective NH3 gas sensor based on Fe2O3-ZnO nanocomposites at room temperature, Sensors and Actuators B: Chemical [J], 2006, 114: 910-91
    [55] D. Kotsikau, M. Ivanovskaya, D. Orlik et al., Gas-sensitive properties of thin and thick film sensors based Fe2O3-SnO2 nanocomposites, Sensors and Actuators B: Chemical [J], 2004, 101: 199-206.
    [56] M. Ivanovskaya, D. Kotsikau, G. Faglia, Gas-sensitive properties of thin film heterojunction structures based on Fe2O3-In2O3 nanocomposite, Sensors and Actuators B: Chemical [J], 2003, 93: 422-43
    [57] Seymen Aygun, David Cann, Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors, Sensors and Actuators B: Chemical [J], 2005, 106: 837-842.
    [58] Chen Aifan, Bai Shouli, Shi Bingjie et al., Methane gas-sensing and catalytic oxidation activity of SnO2-In2O3 nanocomposites incorporating TiO2, Sensors and Actuators B: Chemical [J], 2008, 135: 7-12.
    [59] II Jin Kim, Sang Do Han, Ishwar Singh et al., Sensitivity enhancement for CO gas detection using a SnO2-CeO2-PdOx system, Sensors and Actuators B: Chemical [J], 2005, 107: 825
    [60] Kee Bae Park, Sang-Do Han, I1 Jin Kim et al., Sensitivity enhancement for H2 gas detection using a SnO2-Ag2O-PdOx nanocrystalline system, Materials Science and Engineering B [J], 2006, 130; 158-162.
    [61] Yoshiteru Itagaki, Masami Mori, Yuuki Hosoya et al., O3 and NO2 sensing properties of SmFe1-xCoxO3 perovskite oxides, Sensors and Actuators B: Chemical [J], 2007, 122: 315-320.
    [62] Ling Zhang, Jifan Hu, Peng Song et al., Electrical properties and ethanol-sensing characteristics of perovskite La1-xPbxFeO3, Sensors and Actuators B: Chemical [J], 2006, 114: 836-840.
    [63] Ling-bing Kong, Yu-sheng Shen, Gas-sensing property and mechanism of CaxLa1-xFeO3 ceramics, Sensors and Actuators B: Chemical [J], 1996, 30: 217-221.
    [64]文晓艳,改性碳纳米管气体传感器,化学进展[J],2008,20(2-3):260-264.
    [65] Bee-Yu Wei, Ming-Chih Hsu, Pi-Guey Su et al., A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature, Sensors and Actuators B: Chemical [J], 2004, 101: 81-89.
    [66] Junya Suehiro, Guangbin Zhou, Hiroshi Imakiire et al., Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement, Sensors and Actuators B: Chemical [J], 2005, 108: 398-403.
    [67] Junya Suehiro, Hiroshi Imakiire, Shin-ichiro Hidaka et al., Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sensors and Actuators B: Chemical [J], 2006, 114: 943-949.
    [68] Nguyen Duc Hoa, Nguyen Van Guy, Yousuk Cho et al., An ammonia gas sensor based on non-catalytically synthesized carbon nanotubes on an anodic aluminum oxide template, Sensors and Actuators B: Chemical [J], 2007, 127: 447-454.
    [69] S. G. Wang, Qing Zhang, D. J. Yang et al., Multi-walled carbon nanotube-based gas sensor for NH3 detection, Diamond and Related Materials [J], 2004, 13: 1327-1332.
    [70] S. Sivaramakrishnan, R. Rajamani, C. S. Smith et al., Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing, Sensors and Actuators B: Chemical [J], 2008, 132: 296-304.
    [71] R. Mota, Solange B. Fagan, A. Fazzio, First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide molecules, Surface Science [J], 2007, 601: 4102-4104.
    [72] Youngmin Park, Ki-Young Dong, Jinwoo Lee et al., Development of an ozone gas sensor using single-walled carbon nanotubes, Sensors and Actuators B: Chemical [J], 2009, 140: 407-411.
    [73] M. Krishna Kumar, A. Leela Mohana Reddy, S. Ramaprobhu, Exfoliated single-walled carbon nanotube-based hydrogen sensor, Sensors and Actuators B: Chemical [J], 2008, 130: 653-660.
    [74] Chia-Te Hu, Chun-Kuo Liu, Meng-Wen Huang et al., Plasma-enhanced chemical vapor deposition carbon nanotubes for ethanol gas sensors, Diamond and Related Materials [J], 2009, 18: 472-477.
    [75] Shiyou Xu, Yong Shi, Low temperature high sensor response nano sensor using ITO nanofibers, Sensors and Actuators B: Chemical [J], 2009, 143: 71-75.
    [76] Yi Zeng, Tong Zhang, Mingxie Yuan et al., Growth and selective acetone detection based on ZnO nanorod arrays, Sensors and Actuators B: Chemical [J], 2009, 143: 93-98.
    [77] Yi Zeng, Tong Zhang, Lijie Wang et al., Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures, Sensors and Actuators B: Chemical [J], 2009, 140: 7
    [78] Qi Qi, Tong Zhang, Li Liu et al., Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery, Sensors and Actuators B: Chemical [J], 2008, 134: 166-170.
    [79] Qi Qi, Tong Zhang, Li Liu et al., Synthesis and toluene sensing properties of SnO2 nanofibers, Sensors and Actuators B: Chemical [J], 2009, 137: 471-475.
    [80] Qun Xiang, Guifang Meng, Yuan Zhang et al., Ag nanoparticle embedded-ZnO nanorods synthesized via photochemical method and its gas-sensing properties, Sensors and Actuators B: Chemical [J], 2010, 143: 635-640.
    [81] Caihong Wang, Xiangfeng Chu, Mingmei Wu, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B: Chemical [J], 2006, 113: 320-323.
    [82] Xiaofeng Song, Dejiang Zhang, Meng Fan, A novel toluene sensor based on ZnO-SnO2 nanofiber web, Applied Surface Science [J], 2009, 255: 7343-7347.
    [83] Chunqiao Ge, Zikui Bai, Mulin Hu et al., Preparation and gas-sensing property of ZnO nanorod-bundle thin films, Materials Letters [J], 2008, 62: 2307-2310.
    [84] Chu Xiangfeng, Jiang Dongli, Zheng Chenmou, The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods, Sensors and Actuators B: Chemical [J], 2007, 123: 793-797.
    [85] M. Di Giulio, G. Micocci, A. Serra et al., SnO2 thin films for gas sensor prepared by r.f. reactive sputtering, Sensors and Actuators B: Chemical [J], 1995, 24-25: 465-468.
    [86] Matteo Ferroni, Vincenzo Guidi, Giuliano Martinelli et al., Characterization of a molybdenum oxide sputtered thin film as a gas sensor, Thin Solid films [J], 1997, 307: 148-151.
    [87] H. Meixner, J. Gerblinger, U. Lampe et al., Thin-film gas sensors based on semiconducting metal oxides, Sensors and Actuators B: Chemical[J], 1995, 23: 119-125.
    [88] Chia-Yen Lee, Che-Ming Chiang, Yu-Hsiang Wang et al., A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection, Sensors and Actuators B: Chemical [J], 2007, 122: 503-510.
    [89] Shiyong Zhao, Peihai Wei, Shenhao Chen, Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium, Sensors and Actuators B: Chemical [J], 2000, 62: 117-120.
    [90] C. Imawan, F. Solzbacher, H. Steffes et al., Gas-sensing characteristics of modified-MoO3 thin films using Ti-overlayers for NH3 gas sensors, Sensors and Actuators B: Chemical [J], 2000, 64: 193-197.
    [91] Toshihiro Miyata, Seiji Kawaguchi, Makoto Ishii et al., High sensitivity chlorine gas sensors using Cu-phthalocyanine thin films, Thin Solid Films [J], 2003, 425: 255-259.
    [92] V. S. Vaishnav, P. D. Patel, N. G. Patel, Indium Tin Oxide thin film gas sensors for detection of ethanol vapours, Thin Solid Films [J], 2005, 490: 94-100.
    [93] Kwang Soo Yoo, Sang Hyoun Park, Ju Hyun Kang, Nano-grained thin-film indium tin oxide gas sensor for H2 detection, Sensors and Actuators B: Chemical [J], 2005, 108: 159-164.
    [94] Toshihiro Miyata, Tomohiro Hikosaka, Tadatsugu Minami, Ozone gas sensors with high sensitivity using Zn2In2O5-MgIn2O4 multicomponent oxide thin films, Surface andCoatings Technology [J], 2000, 126: 219-224.
    [95] I1 Jin Kim, Sang Do Han, Chi Hwan Han et al., Development of micro hydrogen gas sensor with SnO2-Ag2O-PtOx composite using MEMS process, Sensors and Actuators B: Chemical [J], 2007, 127: 441-446.
    [96] Frank DiMeo Jr., Ing-Shin Chen, Philip Chen et al., MEMS-based hydrogen gas sensors, Sensors and Actuators B: Chemical [J], 2006, 117: 10-16.
    [97] Yeung-I1 Bang, Kap-Duk Song, Byung-Su Joo et al., Thin film micro carbon dioxide sensor using MEMS process, Sensors and Actuators B: Chemical [J], 2004, 102: 20-26.
    [98] Rajnish K. Sharma, Philip C. H. Chan, Zhenan Tang et al., Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices, Sensors and Actuators B: Chemical [J], 2001, 81: 9-16.
    [99] Kraig D. Mitzner, Jason Sternhagen, David W. Galipeau, Development of a micromachined hazardous gas sensor array, Sensors and Actuators B: Chemical [J], 2003, 93: 92-99.
    [100] Yun-Su Lee, Kap-Duk Song, Jeung-Soo Huh et al., Fabrication of clinical gas sensor using MEMS process, Sensors and Actuators B: Chemical [J], 2005, 108: 292-297.
    [101] L. Zhu, D. Meier, Z. Boger et al., Integrated microfluidic gas sensor for detection of valatile organic compounds in water, Sensors and Actuators B: Chemical [J], 2007, 121: 679-688.
    [102] Q. Fang, D. G. Chetwynd, J. A. Covington et al., Micro-gas-sensor with conducting polymers, Sensors and Actuators B: Chemical [J], 2002, 84: 66-71.
    [103] Jun-Wei Huang, Kevin Chih-Cheng Lu, Yon-Sheng Huang et al., Novel fabrication process using nanoporous anodic aluminum oxidation and MEMS technologies for gas detection, Procedia Chemistry [J], 2009, 1: 56-59.
    [104] Chih-Cheng Lu, Kuan-Hsun Liao, Microfabrication and chemoresistive characteristics of SBA-15-templated mesoporous carbon gas sensors with CMOS compatibility, Sensors and Actuators B: Chemical [J], 2009, in press.
    [105] Jianwei Gong, Quanfang Chen, Ming-Ren Lian et al., Micromachined nanocrystalline silver doped SnO2 H2S sensor, Sensors and Actuators B: Chemical [J], 2006, 114: 32-39.
    [106] Wei-Han Tao, Ching-Hsiang Tsai, H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining, Sensors and Actuators B: Chemical [J], 2002, 81: 237-247.
    [107] Jun Tamaki, Jun Niimi, Shunsuke Ogura et al., Effect of micro-gap electrode on sensing properties to dilute chlorine gas of indium oxide thin film microsensors, Sensors andActuators B: Chemical [J], 2006, 117: 353-358.
    [108] N. Yamaguchi, M. Yang, Development and evaluation of a micro chemical gas sensor with an inner-circulation diffuser pump, Sensors and Actuators B: Chemical [J], 2004, 103; 369-374.
    [109] S. Vallejos, V. Khatko, J. Calderer et al., Micro-machined WO3-based sensors selective to oxidizing gases, Sensors and Actuators B: Chemical [J], 2008, 132: 209-215.
    [110] Xiuli He, Jianping Li, Xiaoguang Gao et al., NO2 sensing characteristics of WO3 thin film micro gas sensor, Sensors and Actuators B: Chemical [J], 2003, 93: 463-467.
    [111] P. Bhattacharyya, P. K. Basu, B. Mondal et al., A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing mechane, Microelectronics Reliability [J], 2008, 48: 1772-1779.
    [112] Takuya Suzuki, Kenji Kunihara, Mitsuo Kobayashi et al., A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and thin film heater Part 1: CH4 sensing, Sensors and Actuators B: Chemical [J], 2005, 109: 185-189.
    [113] Frank Liao, Christopher Chen, Vivek Subramanian, Organic TFTs as gas sensors for electronic nose applications, Sensors and Actuators B: Chemical [J], 2005, 107: 849-855.
    [114] S. Capone, S. Mongelli, R. Rella et al., Gas Sensitivity Measurements on NO2 Sensors Based on Copper(II) Tetrakis (n-butylaminocarbonyl) phthalocyanine LB Films, Langmuir [J], 1999, 15: 1748-1753.
    [115] Haifen Xie, Qiudong Yang, Xiaoxiang Sun et al., Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration, Sensors and Actuators B: Chemical [J], 2006, 113: 887-891.
    [116] Frank Zee, Jack W. Judy, Micromachined polymer-based chemical gas sensor array, Sensors and Actuators B: Chemical [J], 2001, 72: 120-128.
    [117]曹婉真等。电解质[M]。西安:西安交通大学出版社[M],1991.
    [118]王常珍。固体电解质和化学传感器[M]。北京:冶金工业出版社[M],2000.
    [119]史美伦。固体电解质[M]。重庆:科学技术出版社重庆分社[M],1982.
    [120] Norio Miura, Geyu Lu, Noboru Yamazoe, High-temperature potentiometric /amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode, Sensors and Actuators B: Chemical [J], 1998, 52: 169-178.
    [121] Norio Miura, Serge Zhuiykov, Takashi Ono et al., Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature, Sensors and Actuators B: Chemical [J], 2002, 83: 222-229.
    [122] Norio Miura, Mitsunobu Nakatou, Serge Zhuiykov, Impedancemetric gas sensor basedon zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature, Sensors and Actuators B: Chemical [J], 2003, 93: 221-228.
    [123] Norio Miura, Takahisa Raisen, Geyu Lu et al., Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes, Sensors and Actuators B: Chemical [J], 1998, 47: 84-91.
    [124] Norio Miura, Geyu Lu, Noboru Yamazoe, Progress in mixed-potential type devices based on solid electrolyte for sensing redox gased, Solid State Ionics [J], 2000, 136-137: 533-542.
    [125] R. K. Usmen, E. M. Logothetic, M. Shelef, Measurement of Pt electrode surface area of automotive ZrO2 oxygen sensors, Sensors and Actuators B: Chemical [J], 1995, 28: 139-142.
    [126] Nafiseh Rajabbeigi, Bahman Slyassi, Abbas Ali Khodadadi et al., Oxygen sensor with solid-state CeO2-ZrO2-TiO2 reference, Sensors and Actuators B: Chemical [J], 2005, 108; 341-345.
    [127] A. Lari, A. Khodadadi, Y. Mortazavi, Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors, Sensors and Actuators B: Chemical [J], 2009, 139: 361-368.
    [128] Kenji Obata, Kengo Shimanoe, Norio Miura et al., Influences of water vapor on NASICON-based CO2 sensor operative at room temperature, Sensors and Actuators B: Chemical [J], 2003, 93: 243-249.
    [129] Tetsuya Kida, Hideki Kawate, Kengo Shimanoe et al., Interfacial structure of NASICON-based sensor attached with Li2CO3-CaCO3 auxiliary phase for detection of CO2, Solid State Ionics [J], 2000, 136-137: 647-653.
    [130] Ji-Sun Lee, Jong-Heun Lee, Seong-Hyeon Hong, NASICON-based amperometric CO2 sensor using Na2CO3-BaCO3 auxiliary phase, Sensors and Actuators B: Chemical [J], 2003, 96: 663-668.
    [131] Bong-Ki Min, Soon-Don Choi, SO2-sensing characteristics of Nasicon sensors with Na2SO4-BaSO4 auxiliary electrolytes, Sensors and Actuators B: Chemical [J], 2003, 93: 209-213.
    [132] N. Miura, S. Yao, Y. Shimizu et al., Development of high performance solid-electrolyte sensors for NO and NO2, Sensors and Actuators B: Chemical [J], 1993, 13-14: 387.
    [133] Fabin Qiu, Qifeng Zhu, Xiaotian Yang et al., Investigation of CO2 sensor based on NASICON synthesized by a new sol-gel process, Sensors and Actuators B: Chemical [J], 2003, 93: 237-242.
    [134] Fabin Qiu, Qifeng Zhu, Xiaotian Yangk et al., Preparation of planar CO2 sensor basedon solid-electrolyte NASICON synthesized by sol-gel process, Materials Chemistry and Physics [J], 2004, 83: 193-198.
    [135] Qifeng Zhu, Fabin Qiu, Yujun Quan et al., Solid-electrolyte NASICON thick film CO2 sensor prepared on small-volume ceramic tube substrate, Materials Chemistry and Physics [J], 2005, 91: 338-342.
    [136] Yuehua He, Baofu Quan, Biao Wang et al., Fabrication and Characterization of NASICON-Based CO2 Gas Sensor, Rare Metal Materials and Engineering [J], 2006, 35(12): 132-135.
    [137] Norio Miura, Yongtie Yan, Geyu Lu et al., Sensing characteristics and mechanisms of hydrogen sulfide sensor using stabilized zirconia and oxide sensing electrode, Sensors and Actuators B: Chemical [J], 1996, 34: 367-372.
    [138] William J. Fleming, Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor, Journal of The Electrochemical Society [J], 1977, 124(1): 21-28.
    [139] M. Miyamoto, T. Mikouchi, Platinum catalytic effect on oxygen fugity of CO2-H2 gas mixtures measured with ZrO2 oxygen sensor at 105 Pa from 1300 to 700 oC, Geochimica et Cosmochimica Acta [J], 1996, 60(15): 2917-2920.
    [140] Pavel Shuk, Ed Bailey, Ulrich Guth, Zirconia Oxygen Sensor for the Process Application: State-of-the-Art, Sensors and Transducers Journal [J], 2008, 90: 174-184.
    [141] D. J. M. Burkhard, B. Hanson, G. C. Ulmer, ZrO2 oxygen sensors: An evaluation of behavior at temperatures as low as 300 oC, Solid State Ionics [J], 1991, 47(1-2): 169-175.
    [142] G. Baier, V. Schule, A. Vogel, Non-Nernstian Zirconia Sensor for Combustion Contro., Applied Physics [J], 1993, 57: 51-56.
    [143] Maria Luisa Grilli, Laure Chevallier, Maria Luisa Di Vona, Plana electrochemical sensors based on YSZ with WO3 electrode prepared by different chemical routes, Sensors and Actuators B: Chemical [J], 2005, 111-112: 91-95.
    [144] Laure Chevallier, Elisabetta Di Bartolomeo, Maria Luisa Grilli et al., Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode, Sensors and Actuators B: Chemical [J], 2008, 129: 591-598.
    [145] Jong Won Yoon, Maria Luisa Grilli, Elisabetta Di Bartolomeo et al., The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes, Sensors and Actuators B: Chemical [J], 2001, 76: 483-488.
    [146] Weizhen Xiong, Girish M. Kale, Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode, Sensors and Actuators B: Chemical [J], 2006, 114: 101-108.
    [147] Weizhen Xiong, Girish M. Kale, High-selectivity mixed-potential NO2 sensorincorporating Au and CuO+CuCr2O4 electrode couple, Sensors and Actuators B: Chemical [J], 2006, 119: 409-414.
    [148] Norio Miura, Jian Wang, Mitsunobu Nakatou et al., High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode, Sensors and Actuators B: Chemical[J], 2006, 114: 903-909.
    [149] Vladimir V. Plashnitsa, Taro Ueda, Perumal Elumalai et al., NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode, Sensors and Actuators B: Chemical [J], 2008, 130: 231-239.
    [150] Perumal Elumalai, Norio Miura, Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature, Solid State Ionics [J], 2005, 176: 2517-2522.
    [151] Eiichi Kanazawa, Masahiro Kugishima, Kengo Shimanoe et al., Mixed-potential type N2O sensor using stabilized zirconia- and SnO2-based sensing electrode, Sensors and Actuators B: Chemical [J], 2001, 75: 121-124.
    [152] Ryotaro Wama, Masahiro Utiyama, Vladimir et al., Highly sensitive impedance-based propene sensor using stabilized zirconia and zinc oxide sensing-electrode, Electrochemistry Communications [J], 2007, 9: 2774-2777.
    [153] Taro Ueda, Vladimir V. Plashnitsa, Mitsunobu Nakatou et al., Zirconia-based amperometric sensor using ZnO sensing-electrode for selective detection of propene, Electrochemistry Communications [J], 2007, 9: 197-200.
    [154] Youichi Shimizu, Nami Yamashita, Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode, Sensors and Actuators B: Chemical [J], 2000, 64: 102-106.
    [155] Youichi Shimizu, Hiromi Nishi, Hiroyuki Suzuki et al., Solid-state NOx sensor combined with NASICON and Pb-Ru-based pyrochlore-type oxide electrode, Sensors and Actuators B: Chemical [J], 2000, 65: 141-143.
    [156] Youichi Shimizu, Koji Maeda, Solid electrolyte NOx sensor using pyrochlore-type oxide electrode, Sensors and Actuators B: Chemical [J], 1998, 52: 84-89.
    [157] Kenji Obata, Shizuko Kumazawa, Kengo Shimanoe et al., Potentiometric sensor based on NASICON and In2O3 for detection of CO2 at room temperature-modification with foreign substances, Sensors and Actuators B: Chemical [J], 2001, 76: 639-643.
    [158] Elisabetta Di Bartolomeo, Enrico Traversa, Manuela Baroncini et al., Solid state ceramic gas sensors based on interfacing ionic conductors with semiconducting oxides, Journal of the European Ceramic Society [J], 2000, 20: 2691-2699.
    [159] Xishuang Liang, Tiegang Zhong, Baofu Quan et al., Solid-state potentiometric SO2sensor combining NASICON with V2O5-doped TiO2 electrode, Sensors and Actuators B: Chemical [J], 2008, 134: 25-30.
    [160] Xishuang Liang, Fengmin Liu, Tiegang Zhong et al., Chlorine sensor combining NASICON and CaMg3(SiO3)4-doped CdS electrode, Solid State Ionics [J], 2008, 179: 1636-1640.
    [161] Xishuang Liang, Tiegang Zhong, Hesong Guan et al., Ammonia sensor based on NASICON and Cr2O3 electrode, Sensors and Actuators B: Chemical [J], 2009, 136: 479-483.
    [162] Xishuang Liang, Yuehua He, Fengmin Liu et al., Solid-state potentiometric H2S sensor combining NASICON with Pr6O11-doped SnO2 electrode, Sensors and Actuators B: Chemical [J], 2007, 125: 544-549.
    [163] Norio Miura, Masaki Ono, Shimanoe et al., A compact solid-state amperometric sensor for detection of NO2 in ppb range, Sensors and Actuators B: Chemical [J], 1998, 49: 101-109.
    [164] Norio Miura, Motoaki Iio, Geyu Lu et al., Solid-state amperometric NO2 sensor using a sodium ion conductor, Sensors and Actuators B: Chemical [J], 1996, 35-36: 124-129.
    [165] Masaki Ono, Kengo Shimanoe, Norio Miura et al., Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry, Sensors and Actuators B: Chemical [J], 2001, 77: 78-83.
    [166] Masaki Ono, Kengo Shimanoe, Norio Miura et al., Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment, Solid State Ionics [J], 2000, 136-137: 583-588.
    [167] Ji-Sun Lee, Jong-Heun Lee, Seong-Hyeon Hong, NASICON-based amperometric CO2 sensor using Na2CO3-BaCO3 auxiliary phase, Sensors and Actuators B: Chemical [J], 2003, 96: 663-668.
    [168] Ji-Sun Lee, Jong-Heun Lee, Seong-Hyeon Hong, Solid-state amperometric CO2 sensor using a sodium ion conductor, Journal of the European Ceramic Society [J], 2004, 24: 1431-1434.
    [169] Yinbao Yang, Chung-Chiun Liu, Development of a NASICON-based amperometric carbon dioxide sensor, Sensors and Actuators B: Chemical [J], 2000, 62: 30-34.
    [170] Norio Miura, Geyu Lu, Masaki Ono et al., Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode, Solid State Ionics [J], 1999, 117: 283-290.
    [171] A. Fort, C. Lotti, M. Mugnaini et al., A two electrode C-NiO Nafion amperometric sensor for NO2 detection, Microelectronics Journal [J], 2009, 40: 1308-1312.
    [172] P. Schmidt-Zhang, W. Zhang, F. Gerlach et al., Electrochemical investigations on multi-metallic electrodes for amperometric NO gas sensors, Sensors and Actuators B: Chemical [J], 2005, 108: 797-802.
    [173] Jiun-Chan Yang, Prabir K. Dutta, High temperature amperometric total NOx sensors with platinum-loaded zeolite Y electrodes, Sensors and Actuators B: Chemical [J], 2007, 123: 929-936.
    [174] Veronique Coillard, Helene Debeda, Claude Lucat et al., Nitrogen monoxide detection with a planar spinel coated amperometric sensor, Sensors and Actuators B: Chemical [J], 2001, 78: 113-118.
    [175] Tadashi Nakamura, Yoshiyuki Sakamoto, Keiichi Saji et al., NOx decomposition mechanism on the electrodes of a zirconia-based amperometric NOx sensor, Sensors and Actuators B: Chemical [J], 2003, 93: 214-220.
    [176] Taro Ueda, Takayuki Nagano, Hajime Okawa et al., Zirconia-based amperometric sensor using La-Sr-based perovskite-type oxide sensing electrode for detection of NO2, Electrochemistry Communications [J], 2009, 11: 1654-1656.
    [177] Zuoyan Peng, Meilin Liu, Ed. Balko, A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane, Sensors and Actuators B: Chemical [J], 2001, 72: 35-40.
    [178] Shubin Yu, Qinghai Wu, Massood Tabib-Azar et al., Development of a silicon-based yttria-stabilized-zirconia(YSZ), amperometric oxygen sensor, Sensors and Actuators B: Chemical [J], 2002, 85: 212-218.
    [179] Taro Ueda, Vladimir V. Plashnitsa, Mitsunobu Nakatou et al., Zirconia-based amperometric sensor using ZnO sensing-electrode for selective detection of propene, electrochemistry Communications [J], 2007, 9: 197-200.
    [180] Y. Tan, T. C. Tan, Modelling and Sensing Characteristics of An Amperometric Hydrocarbon Sensor, Chemical Engineering Science [J], 1996, 51: 4001-4011.
    [181] Ji-Sun Lee, Jong-Heun Lee, Seong-Hyeon Hong, Solid-state amperometric CO2 sensor using a lithium-ion conductor, Sensors and Actuators B: Chemical [J], 2003, 89: 311-314.
    [182] N. Maffei, A. K. Kuriakose, A hydrogen sensor based on a hydrogen ion conducting solid electrolyte, Sensors and Actuators B: Chemical [J], 1999, 56: 243-246.
    [183] Atanu Dutta, Tatsumi Ishihara, Amperometric NOx sensor based on oxygen pumping current by using LaGaO3-based solid electrolyte for monitoring exhaust gas, Sensors and Actuators B: Chemical [J], 2005, 108: 309-313.
    [184] Atanu Dutta, Hiroyasu Nishiguchi, Yusaku Takita et al., Amperometric hydrocarbonsensor using La(Sr)Ga(Fe)O3 solid electrolyte for monitoring in exhaust gas, Sensors and Actuators B: Chemical [J], 2005, 108: 368-373.
    [185] Zhonghe Bi, Hiroshige Matsumoto, Tatsumi Ishihara, Solid-state amperometric CH4 sensor using, LaGaO3-based electrolyte, Solid State Ionics [J], 2008, 179: 1641-1644.
    [186] Xianbo Lu, Shouguo Wu, Li Wang et al., Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell, Sensors and Actuators B: Chemical [J], 2005, 107: 812-817.
    [187] Chiou-Yen Chiou, Tse-Chuan Chou, Amperometric SO2 gas sensors based on solid polymer electrolytes, Sensors and Actuators B: Chemical[J], 2002, 87: 1-7.
    [188] G. Alberti, F. Cherubini, R. Palombari, Amperometric solid-state sensor for NO and NO2 based on protonic conduction, Sensors and Actuators B: Chemical [J], 1996, 37: 131-134.
    [189] G. Alberti, F. Cherubini, R. Palombari, Potentiometric and amperometric gas sensors based on the protonic conduction of layered zirconium phosphates and phosphonates, Sensors and Actuators B: Chemical [J], 1995, 24-25: 270-272.
    [190] G. Alberti, A. Carbone, R. Palombari, Oxygen potentiometric sensors based on thermally stable solid state proton conductors: a preliminary investigation in the temperature range 150-200°C, Sensors and Actuators B: Chemical [J], 2002, 86: 150-154.
    [191]陈艾,敏感材料与传感器[M]。北京:化学工业出版社,2004.
    [192]马成前,潘胜,城市公路隧道二氧化氮浓度控制及通风方案研究,公路交通技术[J],2009,2(1):116-118.
    [193]夏志清,李辉,环境污染对植物叶的危害,化学教育[J],2007,2:1-4.
    [194] DARIUSZ K, ANDRAEJ K, A Method of Nitrogen Dioxide and Sulphur Dioxide Determination in Ambient Air by Use of Passive Samplers and Ion Chromatography, Atmospheric Environment [J], 1997, 31(20): 3473-3479.
    [195] COLLINS G E, ROSE-PEHRSSON S L, Chemiluminescent Chemical Sensors for Oxygen and Nitrogen Dioxide, Anal Chem [J], 1995, 67(13): 2224-2230.
    [196] MING-MING M, JIAN T, GANG L, A New Mothod to Analyzing NOx and SO2 in the air by HPLC. Journal of Shaanxi Instiute of Technology [J], 2000, 16(2): 38-43.
    [197] Namrata Dewan, S. P. Singh, K. Sreenivas et al., Influence of temperature stability on the sensing properties of SAW NOx sensor, Sensors and Actuators B: Chemical [J], 2007, 124: 329-335.
    [198] F. Baldini, A. Capobianchi, A. Falai et al., Reversible and selective detection of NO2 by means of optical fibres, Sensors and Actuators B: Chemical [J], 2001, 74: 12-17.
    [199] Serge Zhuiykov, Takashi Nakano, Akira Kunimoto et al., Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures, Electrochemistry Communications [J], 2001, 3: 97-101.
    [200] Norio Miura, Motoaki Iio, Geyu Lu et al., Solid-state amperometric NO2 sensor using a sodium ion conductor, Sensors and Actuators B: Chemical [J], 1996, 35-36: 124-129.
    [201] L. G. Teoh, Y. M. Hon, J. Shieh et al., Sensing properties of a novel NO2 gas sensor based on mesoporous WO3 thin film, Sensors and Actuators B: Chemical [J], 2003, 96: 219-225.
    [202] T.SaKo, A.Ohmi, H.Yumoto et al., ITO-film gas sensor for measuring photodecomposition of NO2 gas, Surface and Coatings Technology [J], 2001, 142-144: 781-785.
    [203] C. Baratto, G. Sberveglieri, A.Onischuk et al., Low temperature selective NO2 sensors by nanostructured fibres of ZnO, Sensors and Actuators B: Chemical [J], 2004, 100: 261-265.
    [204] Chia-Yu Lin, Yueh-Yuan Fang, Chii-Wann Lin et al., Fabrication of NOx gas sensors using In2O3-ZnO composite films, Sensors and Actuators B: Chemical [J], 2010, In Press.
    [205] L.G.Teoh, Y.M.Hon, J.Shieh et al., Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film, Sensors and Actuators B: Chemical [J], 2003, 96: 219-225.
    [206] Jin Hyung Jun, Junggwon Yun, Kyoungah Cho et al., Necked ZnO nanoparticle-based NO2 sensors with high and fast response, Sensors and Actuators B: Chemical [J], 2009, 140: 412-417.
    [207] Sergiu T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor, Sensors and Actuators B: Chemical [J], 2005, 107: 379-386.
    [208] Huijuan Xia, Yan Wang, Fanhong Kong et al., Au-doped WO3-based sensor for NO2 detection at low operating temperature, Sensors and Actuators B: Chemical [J], 2008, 134: 133-139.
    [209] Xiuli He, Jianping Li, Xiaoguang Gao et al., NO2 sensing characteristics of WO3 thin film microgas sensor, Sensors and Actuators B: Chemical [J], 2003, 93: 463-467.
    [210]宋秀琴,马建峰,无机快离子导体材料的制备方法[J],材料导报,1996,(2):43-45.
    [211]韩慧芳,快离子导体陶瓷的制备与应用[J],陶瓷学报,2004,25(1):64-67.
    [212]王海增,庞文琴,水热晶化法在材料制备中的应用[J],功能材料,1993,24(4):289-296.
    [213]王小丹,纳米粉体的化学沉淀法及溶胶凝胶法制备研究进展[J],广州化工,2004,32(4):5-8.
    [214]梁喜双,吉林大学博士学位论文,2009。
    [215]刘玉香,SO2的危害及其流行病学与毒理学研究,生态毒理学报[J],2007,2:225-230.
    [216]杨飏。二氧化硫减排技术与烟气脱硫工程[M]。北京:冶金工业出版社,2003。
    [217] Anton Leidl, Ralf Hartinger, Mathias Roth et al., A new SO2 sensor system with SAW and IDC elements, Sensors and Actuators B: Chemical [J], 1996, 34: 339-342.
    [218] Chiou-Yen Chiou, Tse-Chuan Chou, Amperometric SO2 gas sensors based on solid polymer electrolytes, Sensors and Actuators B: Chemical [J], 2002, 87: 1-7.
    [219] Yasuhiro Shimizu, Naoki Matsunaga, Takeo Hyodo et al., Improvement of SO2 sensing properties of WO3 by noble metal loading, Sensors and Actuators B: Chemical [J], 2001, 77: 35-40.
    [220] Shuji Qin, Zhongjie Wu, Zhongyue Tang et al., The sensitivity to SO2 of the SAW gas sensor with triethanolamine modified with boric acid, Sensors and Actuators B: Chemical [J], 2000, 66: 240-242.
    [221] Hui Li, Qingjiang Wang, Jiming Xu et al., A novel nano-Au-assembled amperometric SO2 gas sensor: preparation, characterization and sensing behavior, Sensors and Actuators B: Chemical [J], 2002, 87: 18-24.
    [222] Min-Hyun Seo, Masayoshi Yuasa, Tetsuya Kida et al., Detection of organic gases using TiO2 nanotube-based gas sensors, Procedia Chemistry [J], 2009, 1: 192-195.
    [223] Masanobu Matsuguchi, Toshiyuki Uno, Takashi Aoki et al., Chemically modified copolymer coatings for mass-sensitive toluene vapor sensors, Sensors and Actuators B: Chemical [J], 2008, 131: 652-659.
    [224] Yasar Gurbuz, Weng P. Kang, Jimmy L. Davidson et al., Diamond microelectronic gas sensor for detection of benzene and toluene, Sensors and Actuators B: Chemical [J], 2004, 99: 207-215.
    [225] Xiuming Xu, Huaiwen Cang, Changzhi Li et al., Quartz crystal microbalance sensor array for the detection of volatile organic compounds, Talanta [J], 2009, 78: 711-716.
    [226] M. L. Palmerr, A. G. Ferrige, S. Moncada, Nitric oxide released accounts for the biological activity of endothelium-derived relaxing factor, Nature [J], 1987, 327: 524.
    [227] A. A. Tomchenko, I. L. Emelianov, V. V. Khatko, Tungsten trioxide-based thick-film NO sensor: design and investigation, Sensors and Actuators B: Chemical [J], 1999, 57: 166-170.
    [228] S. Barazzouk, R. P. Tandon, S. Hotchandani, MoO3-based sensor for NO, NO2 and CH4 detection, Sensors and Actuators B: Chemical [J], 2006, 119: 691-6
    [229] J. Zhang, J. Q. Hu, F. R. Zhu et al., ITO thin films coated quartz crystal microbalance as gas sensor sor NO detection, Sensors and Actuators B: Chemical[J], 2002, 87: 159-167.
    [230] Tadashi Mochida, Kei Kikuchi, Takehiko Kondo et al., Highly sensitive and selective H2S gas sensor from r.f. sputtered SnO2 thin film, Sensors and Actuators B: Chemical [J], 1995, 24-25: 433-437.
    [231] Jeong-Min Lee, Byeong-Ui Moon, Chang-Hyun Shim et al., H2S microgas sensor fabricated by thermal oxidation of Cu/Sn double layer, Sensors and Actuators B: Chemical [J], 2005, 108: 84-88.
    [232] M. S. Wagh, L. A. Patil, Tanay Seth et al., Surface cupricated SnO2-ZnO thick films as a H2S gas sensor, Materials Chemistry and Physics[J], 2004, 84: 228-233.
    [233] F. Vandecruys, R. Stephen, F. De Schutter et al., A H2S sensor based on Na-β-alumina as solid electrolyte and Na2S as auxiliary electrode, Sensors and Actuators B: Chemical [J], 1997, 43: 230-234.
    [234] Wei Zheng, Xiaofeng Lu, Wei Wang et al., Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection, Journal of Colloid and Interface Science [J], 2009, 338: 366-370.
    [235] Caihong Wang, Xiangfeng Chu, Mingmei Wu, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B: Chemical [J], 2006, 113: 320-323.
    [236] Xianghua Kong, Yadong Li, High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature, Sensors and Actuators B: Chemical [J], 2005, 105: 449-453.
    [237]杨新兴,一氧化碳对人体的危害[J],养生大世界B[J],2005,(1):46.
    [238]孙维生,一氧化碳的危害及防治[J],现代职业安全,2002,(5):40-41.
    [239] Tong Zhang, Li Liu, Qi Qi et al., Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection, Sensors and Actuators B: Chemical [J], 2009, 139: 287-291.
    [240] J. Yu, Z. A. Tang, G. Z. Yan et al., An experimental study on micro-gas sensors with strip shape tin oxide thin films, Sensors and Actuators B: Chemical [J], 2009, 139: 346-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700