双馈电动机的控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以绕线型感应电机的双馈控制技术(或称双馈电机的控制技术)为研究对象,对双馈电机的数学模型、控制策略、三相高频PWM 整流控制器和矩阵变换器等进行了深入研究。
    首先利用电机学基本原理,建立M -T坐标系下电机的数学模型,以及在定子磁链定向的矢量控制策略下,电机定、转子电流的关系表达式。通过绕组折算和频率折算,导出双馈电机的等效电路。根据等效电路,导出双馈电机稳态下定、转子侧的功率关系表达式,并分析了双馈电机在各种不同运行状态下的功率流程。为双馈电机的磁场定向矢量控制提供理论基础。明确指出,正是由于频率折算的等效“放大”作用,使得双馈电机能够通过控制转子侧较小的无功功率,达到控制定子侧较大的无功功率,从而实现经济地调节电机功率因数的目的。
    采用AC/DC/AC 的拓扑结构,构建了双馈电机控制用变换器,变换器整体结构可分为两大模块:AC/DC 整流模块和DC/AC 逆变模块,两部分通过具有直流储能环节的直流母线相联接,使得对两个模块可分别采取不同的控制策略实施控制,且互不干扰,具有整体硬件结构简单,改变DSP 软件编程即可方便的改换成不同的控制策略的优点。其中,整流模块采用三相高频PWM 整流矢量控制技术进行控制,提出了开关频率固定的直接电流滞环控制法,在实现能量双向流动的同时始终保持在接近于1 的高功率因数下工作,充分利用双馈电机能量双向流动的特性,使得能量可回馈利用,提高效率的同时,又由于有效的改善了AC/DC 变换器的电流波形而减少对系统的谐波污染。实验研究证明了该控制策略的可行性,并为实施双馈控制控制提供基础。对DC/AC 模块,采取以定子磁链定向的矢量控制策略,将M -T坐标系的M 轴与定子磁链ψ1重合,使得电机的有功分量与无功分量可分别得以控制。按照定子磁链定向矢量控制策略,采取双闭环控制的结构,以双馈电机的转速以及定子侧的无功功率为控制目标构成控制外环,以双馈电机转子三相电流的滞环跟踪控制为电流控制内环,通过控制转子侧电流达到控制电机定子侧的无功功率和转速的目的。双闭环控制保证了双馈电机的快速响应,实验验证了双馈控制策略的正确性。
    AC/DC/AC 双馈控制器的硬件结构采取以DSP 为核心的全数字控制系统,简要介绍
The double-fed control strategy for wound-rotor induction machine is investigated in this paper. The double-fed machine's mathematical model and matrix converter as well as three-phase high frequency PWM converter are also studied.
    Firstly, according to the basic principle of electrical machine, the double-fed machine’s mathematical model under M ? T coordinate system is deduced, stator flux oriented vector control strategy as well as relational expression between stator current and rotor current are also investigated. At the same time, active power and reactive power seen from stator side are also been studied. All the researches provided theoretic base to carry out more research for double-fed control strategy.
    Secondly, double-fed machine's equivalence circuit is deduced through winding convert and frequency convert. According to the equivalence circuit and from the point of view of the law of energy conservative, the relational expression of the active power between stator side and rotor side under steady state is analyzed. Moreover, the energy flow direction and distribute process is also studied. Point out definitely that just due to the effect of frequency convert, double-fed control system can regulate power factor at stator side economically by means of control lesser reactive power at rotor side.
    In this paper, the AC/DC/AC main circuit topological structure is adopted to the control of double-fed machine. So, this kind of converter can be bifurcated as AC/DC converter block and DC/AC inverter block. This converter has two back-to-back 3-arm bridges with DC bus linked electrolytic capacitor, thus the AC/DC module and the DC/AC module can be controlled respectively. The control strategy can be change conveniently as needed by write different DSP program well and the whole hardware maintenance the same. The whole hardware structure can be designed very compactly. The AC/DC converter block is controlled by three-phase high frequency PWM vector control strategy with direct current hysteretic loop control method. Under this control strategy, the converter maintains a high power factor while the energy flows into or out of the converter. The slip energy can be regenerated thus increased the hole system efficiency and reduced harmonic pollution. Experiment results show that the control strategy is feasible The DC/AC module is controlled by stator-flux oriented vector control strategy. When M axis is attached to the stator flux, the active power and reactive
    power can be controlled respectively. According to stator flux oriented vector control strategy, dual close loop control structure is adopted. The rotor speed and the reactive power of stator side are defined as object function of outer loop. The current of the rotor is defined as object function of inner loop. The rotor speed and reactive power is controlled by the rotor current. In addition, the principle and structure of the stator flux observer is also introduced. This dual close loop strategy ensures the quick-response ability of system. It is concluded that the double-fed control strategy works well. It can be designed very compactly. The AC/DC/AC double-fed controller uses DSP as the key device thus make up the all-digital control system. The other elements are also introduced. The detailed power device hardware structure and control block structure is introduced too. The whole simulation module is made up by simulink blocks in Matlab environment. Dynamic simulations and experiment results show that the whole control strategy is effective and advantaged. Proposed a method of switches acting on current zero-crossing point in matrix converter to control double-fed machine in open loop and carried out experimental study. The bi-direction switch unit formation and main circuit hardware constitution of the matrix convert has introduced. The circuit structures which are using for created control signal and course are also analyzed. Switching element's current transformation course under every possible work mode and potential problems are analyzed in detail. Further more, corresponding improvement strategy is proposed. According to this strategy, a sample device is made to carry out experiment study. The experiment results show that this control method is correct and feasible. All of these provided useful experience to carry out open-loop control of double-fed machine in future.
引文
[1] R.J Hamilton. DC motor brush life. Industry Applications Conference, Thirty-Third IAS Annual Meeting , St Louis Missouri, The 1998 IEEE, 12-15 Oct, 1998, Vol3,Page(s): 2217~2224
    [2] M. Takaoka, K. Sawa. An influence of commutation arc in gasoline on brush wear and commutator. Electrical Contacts, 2000. Proceedings of the Forty-Sixth IEEE Holm Conference on 25-27 Sept, Chicago, Illinois, 2000, Page:211~215
    [3] 马小亮. 大功率风机、泵节能调速发展方向探讨. 电器传动, 1999, 29(1)
    [4] Yuefeng Liao. Development of Brushless Doubly-Fed Motor Drivers For Adjustable Speed Applications. Hangzhou China, CICEM’95, Page: 880~885
    [5] 秦小平, 王克成著. 感应电动机的双馈调速和串级调速. (第一版).北京:机械工业出版社, 1990
    [6] 邱陪基等. 双馈调速同步感应电动机的分析及控制. 电工技术学报, 1994, 9(3)
    [7] 宁玉泉. 双馈变速同步电机的工作特性及在蓄能机组的应用.大电机技术, 1994(5)
    [8] 刘宗富. 第五届中国交流电机调速传动学术会议论文集.机械工业出版社. 1997, Page:1~5
    [9] 辜承林, 陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2001(第1 版), 263
    [10] 吴爱卿等. 双馈电机在风力发电中的应用. 电工技术. 1998(1)
    [11] J.W. Park, K.W. Lee, H.J. Lee. Control of active power in a doubly-fed induction generator taking into account the rotor side apparent power. Power Electronics Specialists Conference, 2004. Aachen, Germany, PESC 04. 2004 IEEE 35th Annual , Vol:3, 20-25 June 2004 Page:2060~2064
    [12] L.Xu, Y.Tang. A Novel Wind-Power Generating System Using Field Orientation Controlled Doubly Excited Brushless Reluctance Machine. IEEE IAS Annual Meeting, Lake Buena Vista, Oct 08-12, 1992
    [13] Fukuo Shibata,et al. A self-Cascaded Induction Generator Combined With A Separately Controlled Inverter and A Synchronous Condenser. IEEE Transaction on Industry Applications, 1992, 28(4):797~807
    [14] J.Stein, et al. Application of adjustable speed doubly-fed machines in pumped storage and conventional hydro electric plants. Proc.of the American Power Conference, 1994, Page:513~521
    [15] Fengxiang Wang, Fengge Zhang, Longya Xu. Parameter and performance comparison of doubly fed brushless machine with cage and reluctance rotors. Industry Applications, IEEE Transactions on, Sept.-Oct. 2002, Vol38(5):1237~1243
    [16] (俄)O.TH 夏卡梁著, 徐绳均等译. 异步化同步电机.北京:中国电力出版社,1997
    [17] G.A. Smith. Static Scherbius System of Induction Motor Speed Control. Proceedings of IEE, 1997,Vol.124(6): 557~560
    [18] Zhu Zutong, Hong Dingguo, Chen Yusheng. A new PWM type GTO Scherbius industrial device with high power factor. Industry Applications Society Annual Meeting, 1989, Conference Record of the 1989 IEEE, 1~5 Oct. 1989, Vol.1, Page(s): 843~847
    [19] Dongsheng zhou. Experimental Evaluation of A Rotor Flux Oriented Control Algorithm for Brushless Doubly-Fed Machines. IEEE Transactions on Power Electronics, 1997, Vol.12(1)
    [20] 马小亮. 大功率交-交变频调速及矢量控制技术. 机械工业出版社,1996:178
    [21] 高景德. 交流电机及其系统的分析. 北京:清华大学出版社, 1993:618
    [22] M. Depenbrock. Direct Self control(DSC) of Inverter-Fed Induction Machines. IEEE Transactions on Power Electronics, 1998,Vol.3(3):420~429
    [23] I. Ludtke, M.G. Jayne. Vector control and Direct Torque control of induction motors. IEE colloquium on 27 Oct,1995:6/1-6/6
    [24] Ludtke, M.G. Jayne. A new direct torque control strategy,Advances in control systems for electric drives, IEE Colloquium on 24 May,1995:5/1-5/4.
    [25] Chen-Ming Lee. Speed Sensorless Vector Control of Induction Motor Using Kalman-Filter-Assisted Adaptive observer, IEEE Transaction on Industrial Electronics, 1998, Vol.45(2): 359~381
    [26] M. Jayne, I. Ludtke, Liang Yiqiang, et al. Evaluation of vector and direct torque controlled strategies for cage rotor induction motor drives. Power Electronics and Motion Control Conference,2000.Proceedings.PIEMC 2000,The Third International, Tsinghua Univ, Beijing, Peoples R China,Aug,2000,Vol.1,15-18:452-457
    [27] Lixin Tang, M.F. Rahman. A new direct torque control strategy for flux and torque ripple reduction for induction motors drive by using space vector modulation. Power Electronics Specialists Conference,2001,PESC 2001,IEEE 32nd Annual, Vancouver: Canada, June2001,Vol.3,17-21:1440~1445
    [28] Lixin Tang, M.F. Rahman.A new direct torque control strategy for flux and torque ripple reduction for induction motors drive-a Matlab/Simulink model. Electric Machines and Drives Conference, 2001. IEMDC 2001. IEEE International 2001, Cambridge, Massachusetts, Jun 17-20, 2001, Page(s):884~890
    [29] E. Bogalecka. Dynamics of the power control of a double fed induction generator connected to the soft power grid,Industrial Electronics. 1993. Conference Proceedings, ISIE'93 -Budapest, IEEE International Symposium on1-3 June 1993: 509~513
    [30] Yifan Tang, Xu Longya. A flexible active and reactive power control strategy for a variable speed constant frequency generating system Power Electronics, IEEE Transactions on July 1995,Vol.10(4): 472~478
    [31] B. Chen, Y. Ruan, Y. Xu, et al. Nonlinear decoupling control strategy for variable frequency induction motor system fed by hysteresis-band current-controlled PWM inverter. Power Electronics and Applications, 1993., Fifth European Conference on 13-16 Sep 1993, Vol.4 Page(s):98~101
    [32] Y. Kuroe, H. Asada, T. Maruhashi. Design of robust position servo of synchronous motors using sliding mode control. Power Electronics and Variable-Speed Drives. Third International Conference on 13-15 Jul 1988 Page(s):332~335
    [33] H. De Battista, P.F. Puleston, R.J. Mantz, et al. Sliding mode control of wind energy systems with DOIG-power efficiency and torsional dynamics optimization. Power Systems, IEEE Transactions on Volume 15, Issue 2, May 2000,Vol.15(2):728~734
    [34] A. Ackva, H.Reinold, R.Olesinski. A simple and self-adapting high-performance current control scheme for three phase voltage source inverters.Power Electronics Specialists Conference, 1992. PESC '92 Record., 23rd Annual IEEE 29 June-3 July 1992,Vol.1, Page(s):435~442
    [35] I. Bellini, G.Figalli. An adaptive control for induction motor drives based on a fully linearized model. Power Electronics and Applications, 1993., Fifth European Conference on 13-16 Sep 1993,Vol.4, Page(s):196~201
    [36] T.K. Boukas, T.G. Habetler. High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback. Power Electronics, IEEE Transactions on Volume 19, Issue 4, July 2004, Vol.19(4): 1022~ 1028
    [37] A. Kaddouri, O. Akhrif, Hoang Le-Huy, et al. Nonlinear feedback control of a permanent magnet synchronous motors. Electrical and Computer Engineering, 1994. Conference Proceedings. 1994 Canadian Conference on 25-28 Sept. 1994,Vol.1, Page(s): 77~80
    [38] G. Luckjiff, I. Wallace, D.Divan. Feedback linearization of current regulated induction motors.Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, Vancouver, Canada, 17-21 June 2001,Vol.2,Page(s):1173~1178
    [39] Yifan Tang, Longya Xu. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation,Energy Conversion. IEEE Transactions on,Dec. 1995,Vol.10(4):661~668
    [40] Eel-Hwan Kim, Jae-Hong Kim, Gil-Su Lee. Power factor control of a doubly fed induction machine using fuzzy logic. Electrical Machines and Systems, 2001. ICEMS 2001. Proceedings of the Fifth International Conference on, Shenyang, Peoples R China, 18-20 Aug. 2001,Vol.2, Page(s):747~750
    [41] 张道林. 首先采用GTO 的世界最大容量的调速储能机组. 电工技术杂志, 1995,Vol.5(3):43
    [42] 中村泰造. 可变速抽水储能发电系统的实用化. 国外大电机, Vol.23(1). 1989: 27~32
    [43] R. Li, A. Wallace,R. Spee. Dynamic simulation of brushless doubly-fed machines. Energy Conversion, IEEE Transactions on, Sept 1991,Vol.6(3):445~452
    [44] R. Marino, S. Peresada, P. Valigi. Adaptive input-output linearizing control of induction motors. Automatic Control, IEEE Transactions on, Feb. 1993,Vol.38(2): 208~221
    [45] 徐忠元. 复合型双馈调速系统. 大电机技术, 1995, Vol.26(2):19~24
    [46] E. Bogalecka, Dynamics of the power control of a double fed induction generator connected to the soft power grid. Industrial Electronics, 1993. Conference Proceedings, ISIE'93 -Budapest., IEEE International Symposium on,1-3 June 1993 Page(s):509~513
    [47] Ruqi Li, A. Wallace, R. Spee. Determination of converter control algorithms for brushless doubly-fed induction motor drives using Floquet and Lyapunov techniques. Power Electronics, IEEE Transactions on, Jan. 1995, Vol.10(1):78~85
    [48] L.J.Hunt. The cascade Induction Motor. IEE,Vol.52:1914
    [49] F.Creed. Some Developments in Mult-Speed Cascade Induction Motors. IEE,Vol.59: 1921
    [50] A.R.W.Broadway, G. Thomas. Single-Unit PWM Induction Frequency Converters. Proc. IEE, 1967, 114(7):958~964
    [51] A.R.W.Broadway, L.Burbridge. Self-Cascade Machine:A Low-speed Motor or High-Frequency Brushless Alternator. Proc.IEE, 1970,117(7):1277-1290
    [52] C.J.Heyne, A.M.Ei-Antably. Reluctance and Doubly-Excited Reluctance Motors.ORNL/Sub/81-95013/1,November,1984
    [53] Ahmed Ei-Antably,et al. The Design and Steady-State Performance of A High-Efficiency Reluctance Motor. IEEE IAS Annual Meeting, 1985
    [54] M.G. Jovanovic, R.E. Betz, Jian Yu. The use of doubly fed reluctance machines for large pumps and wind turbines. Industry Applications, IEEE Transactions on, Nov.-Dec.2002,Vol.38(6):1508~1516
    [55] Longya Xu, Fengxiang Wang. Comparative study of magnetic coupling for a doubly fed brushless machine with reluctance and cage rotors. Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS '97., Conference Record of the 1997 IEEE, New Orleans, La,Volume 1, 5-9 Oct. 1997,vol.1 Page(s):326~332
    [56] L.J Hunt. A new type of induction motor. Journal Institute of Electrical Engineers, 1907, 39:648~667
    [57] 王兆安, 黄俊. 电力电子技术(第四版), 北京:机械工业出版社, 2000
    [58] 赵良炳. 现代电力电子技术基础, 北京:清华大学出版社, 1995
    [59] S.J. Dodroe, D.T.Radmer, R. Montgomery, et al. Harmonic compensation of commercial and industrial power systems. Transmission and Distribution Conference, 1994., Proceedings of the 1994 IEEE Power Engineering Society 10-15 April 1994 Page(s):97~102
    [60] Y. Hayashi, N. Sato,K. Takahashi. A novel control of a current-source active filter for AC power system harmonic compensation. Industry Applications, IEEE Transactions on, March-April 1991,Vol.27(2):380~385
    [61] S.R.Silva, R.O.C. Lyra. PWM converter for excitation of induction generators. Power Electronics and Applications, 1993., Fifth European Conference on, Brighton Conference Centre:UK, 13-16 Sep 1993,Vol.8:174~178
    [62] T.Kagotani, K.Kuroki, J.Shinohara, et al. A novel UPS using high-frequency switch-mode rectifier and high-frequency PWM inverter. Power Electronics Specialists Conference, 1989. PESC '89 Record., Milwaukee:WI, 20th Annual IEEE 26-29 June 1989,Vol.1:53~57
    [63] T.Yokoyama, M.Horiuchi, S.Shimogata. Instantaneous deadbeat control for PWM inverter using FPGA based hardware controller. Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, Roanoke:VA, 2-6 Nov. 2003, Vol1:180~185
    [64] Malinowiski, M Sc Mariusz. Sensorless Control Strategies for Three-Phase PWM Rectifiers, Warsaw:Warsaw University of Technology, 2001
    [65] I. Dufour, J.Belanger. A real-time simulator for doubly fed induction generator based wind turbine applications. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, Aachen:Germany, 20-25 June 2004, Vol.5:3597~3603
    [66] Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. Electric Power Applications, IEE Proceedings, 1996, 143(3):231~241
    [67] Wu R, Dewan S.B, Slemon G.R. Analysis of an AC-to-Dc Voltage Source Converter Using PWM with Phase and Amplitude Control. IEEE Trans, On IA, 1991, 27: 355~363
    [68] Wernekinck E, Kawamura A, Hoft R.A. High Frequency AC-DC Converter with Unity Power and Minimum Harmonic Distortion. IEEE Power Electronics Specialist Conference,1987:264~270
    [69] D ixon J W, Ooi B T. Indirect Current Control of a Unity Power Factor Sinusoidal Current Boost Type Three-Phase Rectifier. IEEE Trans, on Ind, Elec., 1988, Vol.35(4): 508~515
    [70] V.Oleschuk, F.Blaabjerg. Synchronized scheme of continuous space-vector PWM with the real-time control algorithms. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, Aachen:Germany, 20-25 June 2004, Vol.2:1207~1213
    [71] 浦志勇,黄立培,吴学智.三相PWM 整流器空间矢量控制简化算法的研究.电工电能新技术,2002.4 21(2):56~60
    [72] 张兴等. PWM 可逆变流器空间电压矢量控制技术的研究. 中国电机工程学报, 2001.10
    [73] 熊健, 张凯, 裴雪军等. 一种改进的PWM 整流器间接电流控制方案仿真. 电工技术学报, 2003.2 , 18(1):57~63
    [74] 鞠儒生, 陈宝贤, 陈燕. 一种新型PWM 整流器. 电工技术学报, 2002.12, 17(6)
    [75] 张纯江, 顾和荣, 王宝成等. 基于新型相位幅值控制的三相PWM 整流器数学模型.中国电机工程学报, 2003.7,23(7)
    [76] Osman. A Novel Current-control Method for Three-phase PWM AC/DC Voltage-source Converters. IEE, 1999,46(3):544~553
    [77] Pan C T, Chen T C. Modelling and analysis of a three phase PWM AC-DC Converter without current sensor. IEE Proceeding-B, 1993,140 (3):201~208
    [78] Diego R., Veas,Juan W., Dixon. A novel current control method for a leading power factor Voltage Sourre PWM rectifier. IEEE Trans. On Power Electronics, March, 1994,9(2):153~159
    [79] Blasko Vladimir, Kaura Vikram. A new mathematical model and control of a three-phase ac-dc voltage source converter. IEEE Trans. on Power Electron., 1997,12(1): 116~122
    [80] Choi J W, Sui S K. Fast current control in three-phase AC/ DC boost converter using d-q axis cross coupling. IEEE Trans. On Power Electron. 1998,13 (1):179~185
    [81] Green A W, Boys J T, Gates G F. Hystersis current forced three phase voltage source reversible rectifier. Proc. IEE , 1989, 136 part B (3): 362~370
    [82] D ixon J W, KulkarniA B, NishimotoM ,et al. Chracteristics of a Controlled-Current PWM Rectifier Link. In Proc. IEEE Ind. App.l Soc. Ann. Meeting. Oct. 1986: 685~691
    [83] Draou A, Sato Y, Kataoka T. A new state feedback based transient control of PWM AC to DC voltage type converters. IEEE Trans .on Power Electron. , 1995, 10(6): 716~724
    [84] Wu R , Dewan S B , Selmon GR. Analysis of a PWM ac to dc voltage source converter under predicted current control with a fixed switch switching frequency. IEEE Trans. on Ind. Applicat. , 1991 , 27(4): 756-764
    [85] Guo Y, Wang X, Lee H C, et al. Pole-placement control of voltage-regulated PWM rectifiers through real-time multiprocessing. IEEE Trans. on Ind. Electron. , 1994, 41(2): 224~230.
    [86] Fukuda S. LQ control of sinusoidal current PWM rectifiers. IEE Proc-Electr. Power Appl., 1997, 144(2):95~100
    [87] Komurcugil H, Kukrer Osman. Lyapunov-Based control for three-phase PWM AC/ DC voltage-source Converters. IEEE Trans. on Power Electron., 1998, 13(5): 801~813
    [88] Rioual P, Pouliquen H. Nonlinear control of PWM rectifier by state feedback linearization and exact PWM control. Conf .Rec. IEEE PESC’94 , 1994:1095~1102
    [89] Lee D C. Advanced nonlinear control of three-phase PWM rectifier. IEE Proc-Electr. Power Appl., 2000, 147(5): 361~366
    [90] Lee W C, Hyun D S, Lee T K. A novel control method for three-phase PWM rectifiers using a single current sensor.IEEE Trans. on Power Electron., 2000, 15(5): 861~870
    [91] Bhowmik S, Zyl A V, et al. Sensorless current contro for active rectifiers. IEEE Trans. on Ind. Applicat., 1997, 33(3): 765~773
    [92] 符曦. 感应电机的矢量控制. 北京:机械工业出版社,1986
    [93] Texas Instruments. TMS320C24×DSP Controllers Reference Set Vol.1~2,1997
    [94] A. Alesina, M.G.B Venturini. Solid-state power conversion: a Fourier analysis approach to generalized transformer synthesis. IEEE Transactions on Circuits and System, 1981, 8(4):319~330
    [95] Alesina,M.G.B Venturini. Analysis and design of optimum-amplitude nine switch direct AC-AC converters. IEEE Transactions on Power Electronics, 1989,4(1): 101~112
    [96] H. Nomura, K. Fujiwara, H. Kawakami. A power factor compensator using a force-commutated cycloconverter. Industry Applications, IEEE Transactions on , July-Aug. 1990,Vol26(4):769~776
    [97] S. Madangopal, J.J. Cathey. Suppression of converter introduced harmonic currents using a forced-commutated cycloconverter. Energy Conversion, IEEE Transactions on , Dec. 1990,Vol5(4):643~649
    [98] Shin D.-H, Cho G.-H., Park S.-B. Improved PWM method of forced commutated cycloconvertors. Electric Power Applications, IEE Proceedings B [see also IEE Proceedings-Electric Power Applications], May 1989 Vol136(3):121~126
    [99] A. Ishiguro, T. Furuhashi, S. Okuma. A novel control method for forced commutated cycloconverter using instantaneous values of input line-to-line voltages. IEEE Transactions and Electron,1991, 38(3):166~172
    [100] Watle,M.O, Sobczyk,T.J. Application of PWM techniques for control of a matrix converter. The 5th Int Conf Power Electron and Variable Speed Drivers. London: PEVSD, 1994,Page:325~330
    [101] Pinto J.O.P, Bose B.K, Da Silva L.E.B. A neural network based space vector PWM controller for voltage-fed inverter induction motion driver. IEEE Trans Ind Application, 2000, 36(6):1628-1636
    [102] Huber L, Borojevic D, Burany N. Analysis design and implementation of the space vector modulator for forced commutated cycloconverters. IEEE Proceedings-B, 1992, 139(2): 103~112
    [103] Christian.K, BOLDEA ION. A new modulator for matrix converters with input current ripple reduction.
    [104] Chekhet E.M, Mordatch V.P. The microprocessor based modified space vector control of the matrix converter. ISIE’96 Proceedings of the IEEE Inter Sympo on Ind Elect, Warsaw:Poland, 1996:466~469
    [105] Watthanasarn, L. Zhang, DTW Liang. Analysis and DSP-based Implementation of Modulation Algorithms for AC-AC Matrix Converters. Pesc 96 Record -27th Annual Ieee Power Electronics Specialists Conference, Baveno: Italy, 1996,Vols I And Ii: 1053~1058
    [106] W. Lixang, T.A. Lipo, H. Chan. Matrix converter topologies with reduced number of switches. IEEE 33rd Annual Power Electronics Specialists Conference, Cairns: Australia, PESC02:57~63
    [107] N.Burany, Safe control of four-quadrant switchs. Conference Record IEEE IAS’89, California:IAS, 1989:1190~1194
    [108] Muroya M, Shinohara K, Limori K, et al. Four-step commutation strategy of PWM rectifier of converter without DC link components for induction motor driver. IEEE International Electric Machines and Drivers Conference, USA:IEMDC, 2001: 770~772
    [109] LászlóHuber. Space Vector Modulated Three-Phase to Three-Phase Matrix Converter with Input Power Factor Correction. IEEE Trans on industry appl, Vol31(6),Nov/Dec, 1995:1234~1245
    [110] Peter Nielsen, Frede Blaabjerg,John K. Pedersen. New Protection Issues of a Matrix Converter: Design Considerations for Adjustable-Speed Drives. Transactions On Industry Applications,Vol.35,No. 5, September/October 1999:1150~1161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700