秦岭商—丹构造带镁铁质、超镁铁质岩体研究及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭商-丹构造带是秦岭造山带的主缝合带,研究该带对于恢复秦岭造山带的形成及演化,以及如何理解扬子、华北两大板块的相互作用具有重要意义。本项研究选择出露于北秦岭南缘、商-丹构造带沿线三个著名的镁铁质-超镁铁质岩体,即松树沟超镁铁质岩体,拉鸡庙杂岩体和四方台镁铁质、超镁铁质杂岩体为研究对象,在野外地质调查的基础上,通过岩石学、地球化学、PGE(铂族元素)、LA-ICP-MS锆石U-Pb定年和~(40)Ar-~(39)Ar年代学等研究工作,探讨各岩体岩石成因、演化机制和年代学信息,进而为探讨秦岭造山带的构造演化以及扬子、华北两大陆块的相互作用模式提供岩石成因和年代学证据。主要取得以下主要进展:
     1.地球化学和PGE研究表明,松树沟纯橄榄岩体是形成于壳-幔过渡带的渗滤成因纯橄榄岩体,代表大洋岩石圈残片。主要证据:(1)地球化学特征显示微量元素整体上明显亏损,不相容元素(从Rb到Nb)和LREE相对HREE富集;纯橄榄岩的PGE含量明显低于方辉橄榄岩;(2)利用LA-ICP-MS方法对纯橄榄岩到方辉橄榄岩过渡带橄榄石斑晶进行稀土元素分析。分析结果显示,纯橄榄岩中橄榄石斑晶的稀土元素含量明显高于方辉橄榄岩中的橄榄石斑晶。与0man典型蛇绿岩的地幔橄榄岩对比研究,笔者认为该岩体是经过熔体渗滤过程形成的纯橄榄岩体。松树沟超镁铁质岩体是蛇绿岩套的重要组成部分。
     2.对松树沟超镁铁质岩体的接触变质带(主为榴闪岩)及围岩(主为斜长角闪岩)进行了研究,确定围岩并不属于蛇绿岩的组成部分。主要证据有:(1)接触变质带变质成因锆石定年结果为506±7.4Ma(LA-ICP-MS法),且锆石中包裹体的成分为长石,表明斜长角闪岩在岩体侵位前就存在了,已有研究证实斜长角闪岩原岩形成年龄为973Ma(Liu et al.,2004)。(2)锆石稀土元素分析表明,多数锆石稀土元素含量较低且配分模式一致,基本不具有Eu异常;仅发现一粒锆石的稀土整体上明显具有富集特征,且具有明显Eu负异常,表明这粒锆石形成于石榴子石出现之前,其它锆石则可能形成于石榴子石出现之后。说明围岩在超镁铁质岩体侵位之前就存在了。(3)松树沟超镁铁质岩体变形简单,而围岩变形复杂,其变质变形特点更接近于秦岭群变质杂岩。
     3.松树沟超镁铁质岩体接触变质带岩石地球化学研究。沿垂直接触变质带方向,对14个榴闪岩和斜长角闪岩进行了主、微量元素分析。样品主量元素含量稳定。而稀土元素含量从接触带内侧到外侧逐步升高,表明松树沟岩体在“热”侵位过程中,大洋岩石圈地幔流体对围岩进行了强烈改造,使围岩稀土部分丢失。近年来对大洋深海钻探深部所得的强变质改造的岩块研究证实,由于地幔流体对岩石的改造,稀土元素出现了明显丢失(Sparks et al.,1995;Bach et al.,1996,1998)。
     4.沿松树沟超镁铁质岩体接触变质带垂直接触带的方向,对采集的四个样品(最外侧一个是斜长角闪岩,其它均为榴闪岩)进行了角闪石~(40)Ar-~(39)Ar年代学研究,由内到外,年龄分别为:逐渐变大。其中最靠近岩体的样品约370Ma,跟侵位时代之间相差约130Ma,表明超镁铁质岩体侵位后经历了缓慢的冷却过程,有可能是岩体侵位后,并没有立即出现真正意义上的地表抬升。
     5.拉鸡庙辉长岩体具有LREE富集特征,低TiO2含量(通常小于0.5%),A/CKN值普遍大于1.1,显示拉鸡庙岩体具有下地壳岩石的特征,Nb和Nb/Ta的极度亏损也证实了这一点。拉鸡庙岩体表现出Nb、Ta、Zr、Hf、Ti相对亏损,同时Nb/Ta-Lu/Hf没有相关性,Nb/Ta-Zr/Hf具有很好的正相关性,说明在成岩过程中,没有受流体影响,而主要是受部分熔融控制的。而且拉鸡庙岩体的Nb极度亏损,Nb/Ta最大值也小于平均地壳比值,显然不存在大量壳-幔物质交换的可能。我们初步研究认为,拉鸡庙岩体是秦岭洋闭和板块碰撞以后,俯冲板片断离,扰动软流圈,引发下地壳部分熔融,导致下地壳与软流圈物质共熔,生成这种具有下地壳岩浆特征的辉长岩和苏长辉长岩。普遍的Eu的正异常,是长石结晶造成的,表明该岩体成岩过程中受到堆晶作用影响。
     6.通过对拉鸡庙辉长岩体中占主体的辉长岩中锆石进行LA-ICP-MS微区U-Pb同位素测定,结合锆石CL图像获得422±6.8Ma的成岩年龄,和973±60Ma的捕获锆石年龄。考虑到拉鸡庙岩体成因具有壳源特征,该成岩年龄代表该地区商丹洋闭合的下限。973±60Ma(9个点在898Ma-1083Ma之间)的捕获锆石年龄,指示了与Grenvillian(~1.3-1.0Ga)(Dalziel,1991;Hoffman,1991;Moores 1991;Keppie,2001)造山带时代基本一致的早期构造事件。
     7.地球化学研究表明,四方台杂岩体各种组成岩石的平均SiO_2含量在45%-54%之间,在AFM图中则显示出钙碱性系列和拉斑系列共存的特征。全岩地球化学特征与普通幔源岩相比富集REE,尤其富集LREE,具有明显的Rb、Th、Nb、P、Zr的负异常和Ba、Pb、K、Sm的正异常。辉长岩是该岩体的主体,灰黑色,中粒,地球化学特征显示其经历壳-幔物质交换。与典型岛弧辉长岩对比研究,具有Rb、Th的负异常,结合特殊的岩石组合和紧邻商-丹断裂的地质特征,认为四方台镁铁-超镁铁质杂岩体,可能是沿商-丹带发生俯冲板块断离或者山根拆沉,扰动软流圈,发生下地壳部分熔融和壳-幔物质交换形成的。普遍的Eu正异常表明成岩过程中受到斜长石堆晶作用的影响。
     8.对四方台杂岩体中辉长岩锆石进行LA-ICP-MS微区定年研究,获得岩体的成岩时代为460±29Ma.获得的32个测点可明显的分为4个时段,即:(1)400-500Ma(n=4);(2)700-900Ma(n=2);(3)1800-2600Ma(n=20);(4)2700-2918Ma(n=4)。可能分别代表了北秦岭造山带不同地质时期的构造-岩浆事件的时代信息。其中400-500Ma与北秦岭地区表现强烈的加里东运动时限一致,而700-900Ma则可能与830~740Ma中国中西部地区响应积极的造成Rodinia超大陆裂解的地幔柱(Li et al.,2003)活动有关。
     9.出露于北秦岭南缘商丹构造带内的三个镁铁质-超镁铁质岩体研究表明:(1)松树沟超镁铁质岩体代表俯冲的大洋岩石圈残片,由于该岩体长轴方向与商-丹断裂有20-30°的夹角,表明早期大洋的俯冲是北北东向的,侵位年龄为~500-510Ma;(2)拉鸡庙杂岩体成岩年龄为~422Ma,其西边的四方台杂岩体成岩时代为~460Ma,也代表了各自地区商丹洋的闭合时限。(3)近年来对出露于商丹构造带西段的天水关子镇镁铁、超镁铁质岩体定年结果发现,在“古岛弧成因的下海子辉长岩”中获得锆石SHRIMP年龄为489±10Ma(李曙光等,2006),董云鹏等(2006)在关子镇辉长岩中获得的LA-ICP-MS锆石年龄为475±4.6Ma.表明关子镇蛇绿岩代表的洋壳在早奥陶世发生俯冲作用。因此,本次研究的3个镁铁质-超镁铁质岩体,以及天水关子镇岩体,共同记录了古生代从商丹洋的俯冲到陆-陆碰撞过程。综合以上从西——东几个商丹构造带内镁铁质、超镁铁质杂岩的定年结果,显然,秦岭洋闭合导致的(华北)陆-陆(扬子)碰撞,是先在西部发生的,而在东部发生的较晚。这一点很好的解释了为什么高压-超高压变质作用,北秦岭主要集中在~400-500Ma,而苏鲁-大别则主要集中在~230Ma.
The Shang-Dan fault was suggested to be a main suture of the Qinling orogenic belt.It's of critical importance for resuming the formation and evolution of the Qinling orogenic belt and understanding the interaction between the North china and Yangtze blocks.On the basis of field investigations,three mafic ang ultramafic rocks, such as the Songshugou ultramafic massif,the Lajimiao gabbros and the Sifangtai complex,were selected for comprehensive studies on petrology,geochemistry,PGE, LA-ICP-MS zircon dating and ~(40)Ar-~(39)Ar dating.These studies play important roles in discussing petrogenesis,evolution and geochronology,moreover,speculating on evolution of the Qinling orogenic belt and interacting model of the North China and Yangtze blocks.Some achieves are as following:
     1.Characteristics of geochemistry and PGE(platinum group element)of Songhugou ultramafic massif show it forms through melt percolate flow at the crust-mantle transition zone,and is oceanic lithospheric fragment.Main evidences such as:(1)The whole rock concentrations of trace elements are depleted,and highly incompatible elements(Rb to Nb)and LREE relative to HREE are enrichment.(2) In-situ analyses for olivine grains of a transition from dunite to harzburgite in the Songshugou ultramafic massif through LA-ICPMS,show compositional variations. REE are higher in dunite than in harzburgite.In comparison with Oman ophiolite,we propose that the Songshugou dunite is a product of reaction of harzburgite with melt through porous percolation flow.Songshugou Ulatramafic massif is a part of ophiolite.
     2.Studies of contact metamorphic zone(mainly are garnet amphibolite)and rock wall(mainly are amphibolite),confirmed they are not parts of ophiolite.Zircon from garnet amphibolite yielded a metamporphic age of 506±7.4Ma(LA-ICP-MS),and inclusions in the zircon are plagioclase,these studies show the amphibolite formed earlier than the intruding of the Songshugou ultramafic massif.At the same time, analysis of REE of zircon for dating show,most zircon with lower REE and consistent REE patterns,without Eu anomaly,one zircon with higher REE and Eu negative anomaly,these indicate that the zircon formed earlier than garnet,while others formed posterior to garnet.Songshugou altramafic massif compared with rock wall is simpler in metamorphism,rock wall is similar with the Qinling group.
     3.Analysis foe major and trace elements of 14 garnet amphibolite and amphibolite across the contact metamorphic zone.Major elements are steady.REE are gradually increase from inner to outer,indicate mantle fluid lead to losses of REE during intrusions.The observations shows that significant REE depletions in heavily altered rocks in ODP(Sparks et al.,1995;Bach et al.,1996,1998).
     4.4 amphibole samples(the most outboard is amphibolite,others are garnet amphibolite)collected across the contact metamorphic zone were studied using ~(40)Ar-~(39)Ar dating.Two of the samples that were collected close to the ultramafic massif yield plateau ages of 372±15 Ma,464±12 Ma,the other two samples yield disturbed plateau ages of 474±8 Ma,781±146 Ma.There is a~130Ma gap between the most inner age(~370Ma)and the Songshugou ultramafic emplacement age(~500Ma), suggested the Songshugou ultramafic massif cooling is slow after intruding.
     5.Combining petrological and geochemical characteristics of Lajimiao gabbros, we speculated the Lajimiao gabbros forms melt of lower crust and asthenosphere.The Lajimiao gabbros were affected by plagioclase accumulation as indicated by Eu positive anomaly.Using CL and LA-ICP-MS techniques,this study obtains a magmatic age 422±6.8Ma,indicate close of the Shang-Dan fault.And early captured zircon age 973±60Ma(898Ma-1083Ma),show early tectonic event which are consistent with Grenvillian(~1.3-1.0Ga)(Dalziel,1991;Hoffman,1991;Moores 1991; Keppie,2001).
     6.The SiO_2 content of Sifangtai complex ranges from 45%-54%.These rocks belong to two series,tholeiitic and talc-alkaline series.Compared to common mantle rocks,they have high REE concentrations,especially LREE,with Rb,Th,Nb,P and Zr depletions and Ba,Pb,K and Sm enrichments.Gabbro is the main component of the complex,with gray-black colour and medium granularity.Its geochemical characteristics indicate that it is likely to be a product of crust-mantle interaction.In comparison with typical arc-related gabbros,it has Rb and Th negative anomalies. Considering that it is located near the Shang-dan zone,we propose that the formation of the Sifangtai mafic-ultramafic complex was due to break-off of subducted slabs or delamination of the mountain root along the Shang-dan fault,which disturbed the asthenosphere,resulting in partial melting of lower crust as well as mantle-crust interaction.The Sifangtai complex body was affected by plagioclase accumulation as indicated by Eu positive anomaly.Using LA-ICP-MS method,we obtain magmatic age 460±29Ma of Sifangtai mafic-ultramafic complex.All 32 data can be divided into 4 phases:(1)400-500Ma(n=4),(2)700-900Ma(n=2),(3)1800-2600Ma(n=20),(4) 2700-2918Ma(n=4).
     7.Three mafic and ultramafic rocks along the Shang-Dan suture from the North Qinling are studied.Songshugou ultramafic massif is oceanic lithospheric fragment,it intruded the Qinling group at~500-510Ma.There is a 20-30°cornu between the Shang-Dan suture and axis of Songshugou ultramafic massif,indicate that Qinling ocean diving towards NNE.Lajimiao gabbro formed~422Ma,Sifangtai complex formed~460Ma,they show the time that close of Shang-Dan ocean respectively. Recently,studies of Guanzizhen maric and ultramafic rocks which located to the west part of the Shang-Dan suture,obtained gabbro which formed island arc setting zircon magmatic age 489±10Ma(SHRIMP)(Li et al.,2006)and another gabbro zircon magmatic age 475±4.6Ma(LA-ICP-MS)(Dong et al.,2006),suggested that the Guanzizhen ocean dived in lower Ordovician.All these mafic-ultramafic rocks are formed in Paleozoic during Qinling ocean diving and later collisions of continents. Ages of mafic-ultramafic rocks from west to east along the Shang-Dan suture, indicate(North China block)continent-continent(Yangtze block)collisions leaded to by closure of the Qinling ocean,occurred earlier in the west than in the east along the Qinling-Dabie orogen.The idea explained logically why HP-UHP metamorphism is~400-500Ma in Qinling orogen,while is~230Ma in Dabie orogen.
引文
Andersen T. Correction of common lead in U-Pb analyses that do not report ~(204)Pb. Chemmical Geology, 2002, 192:59-79.
    Arculus R. J. Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics, 1981, 75:113-133.
    
    Amelin Y V, Neymark L A, Nemchin A A. Enriched Nd-Sr-Pb istopic signatures in the Dovyren layered intrusion (easterm Siberia, Russia): evidence for source contamination by ancient upper-crustal material[J]. Chem. Geol, 1996, 129:39-69.
    
    Ames L, Zhou G Z, Xiong B C, et al. Geochronology and isotopic character of ultrahigh pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 1996, 15: 472-489.
    Amdt N T and Goldstein S L. Use and abuse of continental formation ages. Geology, 1987,15: 893-895
    Asimow P. D. A model that reconciles major- and trace- element data from abyssal peridotites. Earth Planet. Sci. Lett., 1999, 169:303-319.
    
    Bach W. and Irber W. Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments. Chemical geology, 1998 (151): 309-326.
    
    Ballard J R, Palin J M & Williams, IS. et al. Two ages of porghyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 2001,29:383-386.
    Baker M. B. and Stolper E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochimica et Cosmochimica Acta,1994(58):2811~2827.
    Bird P. Continental delamination and Colorado Plateau. J. Geophys. Res., 1979, 84:7561-7571.
    Black, L. P. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 2003, 200:155-170.
    Bowring S A , Williams I S and Compston W. 3.96Ga gneisses from the Slave province, Northwest Territories, Canada. Geology. 1989,17:971-975.
    
    Bedard J. H. Disequilibrium mantle melting. Earth Planet. Sci. Lett. 1989,91:359-366.
    Bodinier J. L., Vasseur G., Vemieres J., Dupuy J., and Fabries J. Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology, 1990, 31:597-628.
    Boudier F. and Coleman R.G. Cross section through the peridotite in the Samail ophiolite, southeastern Oman mountains. Journal of Geophysics Research, 1981, 86:2573-2592.
    Bowring S A and Housh T. The Earth's early evolution. Science, 1995, 269:1535-1540.
    Bowring S A and Williams I S. Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology, 1999, 134:3-16.
    Bowtell S A, Cliff R A, Barnicoat A C. Sm-Nd isotopic evidence on the age of eclogitizationin the Zermatt-Sass ophiolite. J. Metamorphic Gcol. 1994, 12:187-196.
    
    Brown G C. The changing pattern of batholith emplacement during Earth history. In: Origin of granite batholiths. geochemical evidence, eds.by M.P.Atherton and J.Tarney. 1979. 106-115.
    
    Caby R. Precambrian coesite from northern Mali first record and implications for plate tectonics in the trans-Saharan segmennt of the Pan-African belt. Eur. Jour Mineral, 1994,6:235-244.
    Caby R, Andreopoulos-tenaud U, Pin C. Late Proterozoic arc-continent and continent-continent collision in the Pan-African trans-Saharan belt of Mali. Can Jour Earth Sci., 1989, 26: 1136-1146.
    Castro A, Rosa J D. Ferndez C. Unstable flow, magma mixing and magma rock deformation in a deepseated conduit. The Gil-M quez complex, Southwest Spain . Geologische Rundschau, 1995, 84:350-374.
    Castro A. H-type(Hybrid) granitoids: A proposed revision of the granite type classification and nomenclature. Earth Science Reviews, 1991,31:237-253
    Chen Z H, Lu S N, Li S G, et al. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia: tectonic implications for Neoproterozoic granite occurrences. JAES, 2006,28:99-115
    
    Chopin C. Coesite and pure pyropc in high-grade blucss-chists of the western Alps: a first record and some consequcnccs[J]. Contribution to Mineralogy and Petrology. 1984, 86: 107-118.
    Christensen N I and Mooney W D. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res., 1995,100:9761-9788.
    Collins W J. Evaluation of petrogenetic models for Lachlan Fold Belt granites: implications for crustal architecture and tectonic models. Australian jour.of Earth Sci, 1998, 45: 483-500.
    Condie K C. Chemical composition and evoluteon of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., 1993,104:1-37.
    Condie K C. Juvenile crust, mantle and supercontinents in the last 1.6Ga[J]. Gondwana Research, 1999,2(4):543.
    Cordani U C, Teixeira W, Tassinari C C G, Kawashita K and SatoK. The growth of the Brazilian Shield. Episodes, 1988,11:163-167.
    Defant M J and Drummond M S. Derivation.of some modern arc magmas by melting of young subducted litho-sphere. Nature, 1990, 347:662-665.
    Daines M. J. and Kohlstedt D. L. The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys. Res. Lett., 1994,21:145-148.
    
    Debari S M. Petrogenesis of the fiambala gabbroic intrusion, northwestern Argentina, a deep crustal syntectonic pluton in a continental magmatic arc[J]. Journal of Petrology, 1994, 35:679-713.
    Davies J H, Blanckenburg F. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogents[J]. Earth Planet. Sci. Lett., 1995, 129:85-102.
    Frsterhj, Tischendorfg, Trumbullrb. An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infertectonic setting of silicic igneous rock. Lithos, 1997, 40: 261-293
    Franzini M., Leoni L., and Saitta M. A simple method to valuate the martix effect in X-ray fluorescence analysis. X-ray Spectrom, 1972, 1:151-154.
    Gao S, Zhang B R, Luo T C, Li Z J, Xie Q L. Chemical composition off the continental crust in the Qinling orogenicbelt and its adjacent North Chtna and Yangtze cratons. Geochim.Cosmochim.Acta., 1992, 56:3933-3950.
    Gao Shan, Liu Xiao-ming, Yuan Hong-lin, Hattendorf B, Gunther U, Chen Liang, Hu Sheng-hong. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandard Newsletters, 2002,26(2): 181-196.
    Gilder, S.; and Courtillot, V. Timing of the north-south China collision from new middle to late Mesozoic paleomagnetic data from the north China block. Journal of Geophysical Research-Solid Earth 1997,102:17713-17727Gradstein F M, Ogg J G. Smith A G, et al. A new Geologic Time Scale, with special reference to Precarnbrian and Neogene. Episodes, 2004,27(2):83~100.
    Gregory R. T. Melt percolation beneath a spreading ridge: evidence from the Semail peridotite, Oman. Geological Society Special Publications. 1984.
    Gunther D, Frischknecht R, Heinrich C A. Capabilities of an Argon Fluoride 193 nm Excimer laser Ablation Coupled Plasma mass Spectrometry Microanalysis of Geological Materials. J. Anal.At.Spectrom., 1997, 12: 939-914.
    Godard M, Jousselin D, Bodinier J L. Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite[J]. Earth. Planet. Sci. Lett., 2000, 180:133-148.
    Hacker B R, Sharp T, Zhang R Y. et al. Determining the origin of ultra-high-pressure lherzolite. Science, 1997, 278: 702-704.
    Hacker B R, Ratschbacher L,Webb L, et al. What brought them up? Exhumation of the Dabie Shan ultrahigh-pressure rocks. Geology, 1995, 23 (8):743~746.
    Hacker B R, Ratschbacher L, Webb L. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh Pressure Qinling-Dabie Orogen, China. Earth Planet Sci Lett, 1998, 161:215-230.
    Hall A, Jarvis K E and Walsh J N . The variaion of Cesium and 37 other elements in the Sardinian granite batholith, and the significance of Cesium for granite petrogenesis. Contrib. Mineral. Petrol, 1993, 114: 160-170
    Hergt J M, Peate D W, Hawkesworth C J. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts[J]. Earth. Planet. Sci. Lett., 1991, 105: 134-148.Hoffman P F. United plates of America, the birth of acraton: early Proterozoic assembly and growth of Laurentia[J]. Ann Rev Earth Planet Sci, 1988, 16: 543-603.
    
    Hirschmann M. Melt pathways in the mantle. Nature, 1995. 375,727-734.
    Hofrnann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 385:219-229.
    Hoffman P F. Did the breakout of Laurentia turn Gondwanaland insideout? Science, 1991, 252: 1409-1412
    
    Horn I, Rudnick R L & Mc Donough W f. Precise elemental and isotope ratio determination by solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chemical geology. 2000, 167, 405-425.
    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks.Journal of Earth Science[J], 1971, 8:523 -548.
    Jackson S E, Pearson N J, Griffin W L, Belousova E A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 2004, 211:47-69.
    Jacobsen S B. Isotopic and chemical constraints on mantle-crust evolution. Geochtm. Cosmochim.Acta, 1988b, 52: 1341-1350
    Jahn B M, Zhou X H and Li J L. Formation and tectonic evolution of Southeastern China and
    Taiwan:Isotopic and geochemical constraints. Tectonophysics, 1990,183:145-160.
    Jahn R M. Geochemical and isotopic characteristics of UHP eclogites and ultra mafic rocks of the Dabie orogen: collisional tectonics, Hacker and Liou. When Continents Collide: Geodynamics and Geochemistry of Ultra-high-pressure Rocks. Kluwer Academic Publishers, 1998, 203-240.
    Jahn B M, Cornichet J, Cong B L, et al. Ultrahigh ε_(Nd) eclogites from an ultrahigh-pressure metamorphic terrane of China. Chem Geol, 1995,107: 61-79.
    Jaques A. L. and Green D. H. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 1980, 73,287~310.
    Kay R W, Kay S M. Delamination and delamination magmatism. Tectonophysics, 1993, 219:177-189.
    Kay S M. Young mafic back arc volcanic rocks as beneath the Argentine Puna plateau, central Andes, indicators of continental lithospheric delamination. J. Geophys. Res., 1994, 99:24323-24339.
    Kelemen P B, Kinzler R J, Johnson K T M, Irving A J. High field strength element depletion in arc basalts due to mantle-magma interaction. Nature, 1990, 345:521-524.
    Kelemen P. B. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calcalkaline magma series, and the formation of discordant dunite. Journal of Petrology, 1990, 31, 51-98.
    Kelemen P. B. and Bernstein S. R. H. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planetary Science Letters, 1998,164, 387-406.
    Kelemen P. B., Dick J. B., and Quick J. E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358,635-640.
    Kelemen P. B. and Ghiorse M. S. Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim Complex, Washington Cascades. Contrib. Mineral. Petrol.,1986,94, 12-28.
    Kelemen P. B., Joyce D. M., Webster J. D., Holloway J. R. Reaction between ultramafic rock and fractionating basaltic magma II. Experimental investigation of reaction betweenolivine tholeiites and harzburgite at 1150-1050 C, and 5 kar. Journal of Petrology, 1990, 31, 387-406.
    Kelemen P. B., Koga K., and Shimizu N. Geochemistry of gabbro sills in the crust-mantle trasition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett., 1997, 146,457-488.
    Kelemen P. B., Shimizu N., and Salters V. J. M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature,1995, 375(747-753).
    Kelemen P. B., Whitehead J. A., Aharonov E., and Jordhal K. A. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. 1997
    Keppie J D, Dostal J, Ortega-Gutie'rrez, F, et al. A Grenvillian arc on the margin of Amazonia: evidence from the southern Oaxacancomplex, southern Mexico. Precambrian Research, 2001,112:165-181.
    Lerch, M. Early Paleozoic tectonic evolution of the Qinling Orogenic Belt in the Heihe area, Central China., Univeristy of Mainz. 1993. p. 98.
    Lerch, M., and Kroner, A. A Late Silurian-early Devonian magmatic arc in the Qinling Mountains of central China. Journal of Geology 1995, 103:437-449.
    Li, W. X.; Li, X. H.; and Li, Z. X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research 2005, 136:51-66.
    Li, X. H.; Qi, C. S.; Liu, Y.; Liang, X. R.; Tu, X. L.; Xie, L. W.; and Yang, Y. H.. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin 2005,50:2481-2486.
    Li, X. H.; Su, L.; Chung, S. L.; Li, Z. X.; Liu, Y; Song, B.; and Liu, D. Y. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: Associated with the similar to 825 Ma south China mantle plume? Geochemistry Geophysics Geosystems 2005, 6.
    Li, Z. X.; Li, X. H.; Kinny, P. D.; and Wang, J. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 1999, 173: 171-181.
    Li, Z. X.; Li, X. H.; Kinny, P. D.; Wang, J.; Zhang, S.; and Zhou, H. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 2003,122:85-109.
    Li Shu-guang, Nie Yon-ghong, Zheng Shuang-gen, Liu De-liang. The interaction of subducted continental crust and mantle-1 : Major elements and trace elements geochemical characteristics of syn-collision mafic and ultramafic rocks in Dabie mountains. Science in China (Series D), 1997,27(6): 488-493.
    Li S G, Wang S Y, Chen Y Z, et al. Excess argon in phengite from eclogite: evidence from dating of eclogite mineraks by Sm-Nd, Rb-Sr and ~(40)Ar-~(39)Ar methods. Chem Geol, 1994, 112:343-350.
    Li S G, Xiao Y L, Liou D, et al. Collision of the North China and Yangtze Blocks and formation of coesite-eclogites: timing and processes. Chem Geol, 1993, 109: 89—111.
    
    Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwest Yangtze craton, south China: implications for amalgamation and break-up of the Rodinia supercontinent. Precambrian Research, 2003, 122: 111-40
    Liu, L.; Chen, D. L.; Zhang, A.; Zhang, C. L.; Yuan, H. L.; and Luo, J. H. Geochemical characteristics and LA-ICP-MS zircon U-Pb dating of amphibolites in the Songshugou ophiolite in the eastern Qinling. Acta Geologica Sinica-English Edition, 2004, 78:137-145.
    Liu, L., Z, D. Discovery and study of high pressure basic granulites in Songshugou area of Shangdan, East Qinling. Chinese Science Bulletin. 1994, 39:1599-1601.
    
    Munker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques[J]. Chem. Geo., 1998, 144(1-2): 23-45.
    Moores E M. Southwest U.S.-East Antarctic (SWEAT) connection: a hypothesis. Geology, 1991, 19:425-428
    Navon O. and Stolper E. Geochemical consequences of melt percolation:The upper mantle as a chromatographic column. Jpurnal of Geology, 1987,95:285-308.
    Niu Y. and Batiza R. Chemical viriation trends at fast and slow spreading ridges. J. Geophysical research, 1993,98:7887-7902.
    Niu Y. and Hekinian R. Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fastspreading ridges. Earth Planet. Sci. Lett., 1997, 146:243-258.
    Niu Y. L., Langmuir C. H., and Kinzler R. J. The origin of abyssal peridotites: a new perspective. Earth Planet. Sci. Lett., 1997, 152:251-265.
    
    Niu Y. L., Regelous M., and Wend I. J. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letter, 2002, 199:327-345.
    Kelemen P. B. Genesis of high Mg# andesites and the continental crust. Contrib.Mineral. Petrol., 1995,120:1-19.
    Knesel K M and Davidson J P. Isotopic disequilibrium during melting of granite and implication for crustal contamination of magmas. Geology, 24 (3), 1996: 243-246
    Kosler J, Fonneland H & Sylvester P, et al. U-Pb dating of detrital zircons for sediment province studies------a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology, 2002, 182:, 606-618.
    Liu DY, Nutman A P, Compston W. Remmants of >3800 Ma crust in the Chinese part of the sino-korean Craton. Geology, 1992,20:339-342.
    Liu Liang, Sun Yong, Chen dan-ling, et al. Discovery of relic majoritic garnet in felsic metamorphic rocks of Qinling complex, North Qinling orogcnic belt China[M], Alice Wain Memorial western Norway Eclogite Field Symp Selje: western Norway, 2003.
    Liu Liang, Zhang Jun-feng, Green H W, et al. UHP Ilmenite Exsolution from Iron-bearing Rutile in Eclogite from the Altyn Tagh, NW China[J].EOS, 2004, 85: T21A-0504.
    Mattauer, M., Matte, Ph., Malavieille, J., Tapponnier, P., Maluski, H., Xu, Z, Q., Tectonics of the Qinling Belt: build-up and evolution of eastern Asia. Nature, 1985, 317:496-500
    McCulloch M T and Gamble J A. Geochemical and geodynamical constaints on subduction zone magmatism. Earth Planet.Sci.Lett., 1991, 102; 358-374.
    Meng, Q. R. and Zhang, G. W. Geologic framework and tectonic evolution of the Qinling Orogen, central China. Tectonophysics, 2000,323:183-196.
    Meng, Q. R. and Zhang, G W. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 1999, 27:123-126.
    Murray R W, Buchholtz ten Brink M R, Jones D L, Gerlach D C and Russ G. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18: 268-271.
    Nelson B K and DePaolo D J. Rapid production of continental crust 1.7 to 1.9 b.y.ago: Nd isotopic evidence from the basement of the North American mid-continent. Bull.Geol. Soc. Am., 1985, 96:746-754.
    O'Nions R K, Evensen N M and Hamilton P J. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res., 1979, 84:6091-6101.
    Parkinson C D, Katayama I. Present day ultra-high-pressure conditions of coesite inclusions in zircon and garnet evidence from laser Raman microspectroscopy.Geology, 1999, 22: 979-982.
    Parkinson C D, Miyazaki K, Wakita K, et al. An overview and tectonic synthesis of the pre-Tertary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimanyan, Indonesia. The Island Arc, 1998, 7:184-200.
    Parkinson I. J. and Pearce J. A. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol., 1998, 39:577-1618.
    Paterson S R & Fowler T K Jr. Reexiamining pluton emplacement process. J. Struc. Geol, 1993, 115: 191-206.
    Pearce J A, Harris N B W, Tindle A G. Trace element iscrimination diagrams for the tectonic interpretation Of granitic rocks. J. Petrol., 1984,25:956-983.
    
    Pearce, N.; Perkins, W.; and Westgate, J. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 galss reference materials. Geostand. Newslett. 1997,21:115-144.
    Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive plate margin[C].In: Hawkesworth et al. (eds.) Continental Basalts and Mantle Xenoliths. Namwich, Shiva Press 2, 1983:30-249.
    Petfordn, Patersonb, Mccaffreyk et al. Melt infiltration and advection in microdioritic enclaves. Eur. J. Mineral, 1996, 8:405-412
    Quick J. E. The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contrib. Mineral. Petrol., 1981, 78:413-422.
    
    Ratschbacher, L.; Hacker, B. R.; Calvert, A.; Webb, L. E.; Grimmer, J. C; McWilliams, M. O.; Ireland, T.; Dong, S. W.; and Hu, J. M. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 2003, 366:1-53.
    
    Reymer A P S and Schubert G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 1984, 3:63-77.
    Reymer A P S and Schubert G. Rapid growth of some major segments of continental crust. Geology, 1986, 14: 299-302.
    Rivers T. Lithotectonic elements of the Grenville Provence: review and tectonic implication. Precambrian Research, 1997, 86:117-154
    Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent[J]. Gondwana Research, 2002,5(1):5~22..
    
    Rogers J J W. A history of continents in past three billion years. J Geol, 1996,104:91-107.
    Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon Geochronology. Earth Planet Sci Lett, 151, 191-203.
    Rudnick R L. Continental crust: Growth from below. Nature, 1990, 347:711-712.
    Rudnick R 1, Fountain D M. Nature and composition of the continental crust-a lower crustal perspective[J]. Reviews in Geophysics, 1995, 33:267-309.
    
    Rampone E, Hofmann A W, Piccardo G B, Vannucci R, Bottazzi P, Ottolini L. Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy)[J], Contrib. Mineral. Petrol., 1996, 123:61-76.Samson S D and Patchett P J. The Canadian Cordillera as a modern analogue of Petrozoic crustal growth.Austrajia. J. Earth Sci., 1991, 38: 595-611.
    
    Sano Y, Terada K, Hiroshi H, et al. Palaeoproterozoic thermal events recorded in the -4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMP U-Pb dating of apatite and zircon. Geochim. Cosmshim. Acta. 1999, 63(6): 899-905
    Sengor A MC. East Asia Tectonic college. Nature, 1985, 318.
    Shimizu H. Cerium in chert as an indication of marine environment of its formation. Nature, 1977, 266: 346 -348.
    Snow J. E. and Disk H. J. B. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta, 1995, 59:4219-4235.
    Sobolev A. V. and N. Shimizu. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature, 1993, 363:151-154.
    Song B, Nutman A P, Liu D Y, et al. 3800 to 2500Ma crustal evolution in the Anshan area of liaoning Province, northeastern China. Precambrian Research, 1996, 78: 79-94.
    Stern R A and Bleeker W. Age of the world's oldest rocks refined using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada: Geoscience Canada, 1998, 25: 27-31
    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D and Norry MJ . eds. Magmatism in the Ocean Basins. Geological Sociaty Special Publication, 1989, No. 42: 313-345.
    Su L, Song S, Song B, Zhou D, Hao J. SHRIMP zircon U-Pb ages of garnet pyroxenite and Fushui Gabbroic coplex in Songshugou region and constraints on tectonic evolution of Qinling Orogenic Belt. Chinese Science Bulletin, 2004,49:1209-1211.
    Sun, W. D., and Li, S. G Pb isotopes of granitoids suggest Devonian accretion of Yangtze (South
    China) craton to North China craton: Comment. Geology, 1998,26:859-860.
    Sun, W. D.; Li, S. G; Chen, Y. D.; and Li, Y. J. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt. Journal of Geology, 2002, 110:457-468.
    Sun, W. D.; Li, S. G; Sun, Y.; Zhang, G W.; and Li, Q. L. Mid-paleozoic collision in the north Qinling: Sm-Nd, Rb-Sr and ~(40)Ar/~(39)Ar ages and their tectonic implications. Journal of Asian Earth Sciences, 2002,21:69-76.
    Sun, W. D.; Williams, I. S.; and Li, S. G Carboniferous and triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China Blocks. Journal of Metamorphic Geology, 2002,20:873-886.
    Sun W D, Li S G, Sun Y, et al. Mid-paleozoic collision in the north Qinling:Sm-Nd, Rb-Sr and ~(40)Ar-~(39)Ar ages and their tectonic implications. J Asian Earth Sci, 2002,21: 69-76
    Sylvester P J, Campbell I H and Bowyer D A. Niobium/uranium for early formation of the continental crust. Science, 1997, 275; 521-523.
    Veizer J. and Jansen S. L. Basement and sedimentary recyling and continental evolution. J.Geology, 1979, 97:341-370.
    
    Vernieres J., Godard M., and Bodinier J. L. A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle. Journal of Geophysical Research, 1997, 102:24771-24784.
    Vigneresse J L. Should felsic magmas be considered as tectonic object, just like faults and folds? . J. Struct. Geol, 1999, 21: 1125-1130.
    Vinogradov A P. Average content of chemical elements in the chief types of igneous rocks of the crust of the Earth. Geokhimia, 1962,(7):555~571.
    
    Wan Yusheng, Yang Jingsui, Xu Zhiqin, Wu Cailai. Geochemical characteristics of the Maxianshan Complex and Xinglongshan Group in the eastern segment of the Qilian Orogenic Belt. Geol. Rev., 2000, 43(1):52~68.
    Wang, X.; Liu, J.; and Mao, H. Coesite-bearing ecologites from the Dabie Mountains in central China. Geology, 1991, 17:1085-1088.
    
    Wang H Z, Mo X X. An outline of the tectonic evolution of China. Episodes, 1995, 18(1-2): 6-16.
    Weaver B L and Tamey J. Empirical approach to estimating the composition of the continental crust. Nature, 1984, 310:575-577.
    Wedepohl K H. The compositions of the continental crust. Geochim. Cosmochim. Acta, 1995, 59: 1217-1232.
    Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature, 2001,409:175-178.
    Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8Ga: some speculations on its position within a global Paleoproterozoic supercontinent[J]. Gondwana Research, 2002, 5: 85~94.
    Winther K T. An experimentally based model for the origin of tonalitic and trondhjemitic melt. Chem.Geol., 1996, 127: 43-59.
    
    Wolde B and Gore-Gambella Geotraverse Team. Tonalite-trandhjemite-granite by partial melting of newly under-plated basaltic crust: An example from the Neoproterozoic Birbir magmatic arc, West Ethtopia. Precambrian.Res., 1996, 76: 3-14.
    Wolf M B and Wyllie P J. Dehydration-melting of amphibolite at 10kbar: The effects of temperature and time. Contrib. Mineral. Petrol., 1994,115:369-383.
    
    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth Planet. Sci. Lett., 1980, 50:11-30.
    Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 2005, 24:523-545
    
    Wu H Q, Feng Y M, Song S G. Metamorphism and deformation of blueschist belt and their tectonic implications, North Qilian Mountains. J. Metamorphic Geol, 1993, 11:523-526.
    Xia Linqi, Xia Zuchun, Zhao Jiangtian, et al. Determination of properties of Proterozoic continental flood basalt of western part from North Qilian Mountains. Science in China, 1999, 42(2): 506-514.
    Xiao X C, Li T D. Tectonic evolution and uplift of the Qinghai- Tibet plateau. Episodes, 1995, 18(1-2):31~35.
    
    Xiao Y L, Sun W D, Hoefes J, Simon K, Zhang Z J, Li S G, Hofrnann A W. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile[J]. Geochim. Cosmochim. Acta, 2006, 70:4770-4782.
    Xu Shu-tong, Okey A I, Ji S, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 1992, 256:80-82.
    
    Xue, F.; Lerch, M.; Kroner, A.; and Reischmann, T. Tectonic evlution of the east Qinling mountains, China, in the Palaeozoic: a review and new tectonic model. Tectonophysics, 1996, 253:271-284.
    Yang, J. S.; Liu, F. L.; Wu, C. L.; Xu, Z. Q.; Shi, R. D.; Chen, S. Y; Deloule, E.; and Wooden, J. L. Two ultrahigh-pressure metamorphic events recognized in the Central Orogenic Belt of China: Evidence from the U-Pb dating of coesite-bearing zircons. International Geology Review, 2005, 47:327-343.
    Yang, J. S.; Xu, Z. Q.; Dobrzhinetskaya, L. F.; Green, H. W.; Pei, X. Z.; Shi, R. D.; Wu, C. L.; Wooden, J. L.; Zhang, J. X.; Wan, Y. S.; and Li, H. B. Discovery of metamorphic diamonds in central China: an indication of a > 4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova, 2003,15:370~379.
    Yuan, H. L.; Wu, F. Y; Gao, S.; Liu, X. M.; Xu, P.; and Sun, D. Determination of U-Pb age and rare earth element concentrations of zircon from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese science Bulletin, 2003,48:1511-1520.
    Ye Kai, Cong Bo-lin, YE Da-nian. The possible subduction of continental material to depths greater than 200 km. Nature, 2000,407:734-736.
    
    Yuan H L. Wu F Y & Gao S. et al. Determination of U-Pb age and rare earth element concentration of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 2003, 48 (22): 2411-2421.
    Yuan Hong-lin, Gao Shan, Liu Xiao-ming, Li Hui-min, Gunther D, Wu Fu-yuan. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Geostandards and Geoanalytical Research.2000,28 (3):353~370.
    
    Yusheng Wan, Dunyi Liu, Biao Song, et al. Geochemical and Nd isotopic compositions of 3. 8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. JAES, 2005,24(5):563~575.
    
    Zhai Mingguo, Liu Wenjun. Palaeoproterozoic tectonic history of the North China Craton: a review. Precambrian Research, 2003,122:183-199.
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Res., 2006b, 146:16-34.
    
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remmant and episodic reworking of Archean crust in South China. Earth Planet Sci. Lett., 2006a, 252, 56-71.
    Zhang, G W., Xiang, L. W, Meng, Q. G The Qinling Orogen and Intracontinental Orogen Mechanisms. Episodes, 1995,18:36-39.
    
    Zhang, H. F.; Gao, S.; Zhang, B. R.; Luo, T. C; and Lin, W. L. Pb isotopes of granitoids suggest Devonian accretion of Yangtze (South China) craton to North China craton. Geology, 1997,25:1015-1018.
    — 1998b. Pb isotopes of granitoids suggest Devonian accretion of Yangtze (South China) craton to North China craton: a Reply. Geology 26:860-861.
    Zhang, K. J. North and South China collision along the eastern and southern North China margins. Tectonophysics, 1997,270:145-156.
    Zhang, Z. The genetic classification of Songshugou ultramafic rocks in North Qinling mountains. Contributions to Geology and Mineral Resources Research, 1993, 8:48-61.
    Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 2000, 103:55-88.
    
    Zhao G C, Cawood P A, Wilde S A, Sun M and Lu L Z. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 2000, 103: 55-88.
    Zhao G C, Sun M, Wilde S A, Li S Z. Late Archean to Paleoproterozoic evolution of the North China Croton:key issues revisited.Precambrian Research,2005,136:177-202.
    Zhu B Q.The mapping of geochemical provinces in China base on Pb isotopes.J Geochemical Exploration,1995,55:171-181.
    安三元,王档荣,胡能高.陕西商南松树沟超镁铁质岩体的地质特征及其成因.西安地质学院学报.1981,2:9-21.
    陈丹玲,刘良,孙勇,等.北秦岭松树沟高压基性麻粒岩锆石的的LA-ICP-MS U-Pb定年及其地质意义.科学通报,2004,49(18):1901-1908.
    陈丹玲,刘良,孙勇,张安达,柳小明,罗金海.北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J].科学通报,2004,49(18):1901-1908
    陈丹玲,孙勇,刘良,等.柴北缘鱼卡河榴辉岩的变质演化-石榴石成分环带及矿物反应结构的证据[J].岩石学报,2005,21(4):1039-1048.
    迟清华,鄢明才.铂族元素在地壳、岩石和沉积物中的分布.地球化学,2006,35(5):461-471.
    陈能松,韩郁菁,游振东,等.豫西东秦岭造山带核部杂岩全岩Sm-Nd、Rb-Sr和单晶锆石~(207)Pb-~(206)Pb计时及其地壳演化.地球化学,1991,(3):219-228.
    陈岳龙,杨忠芳,等.北秦岭晚古生代-中生代花岗岩类的Nd,Sr,Pb同位素地球化学特征及Nd,Sr同位素演化.地球科学,1996,21(5):481-486
    程顺有,张国伟,刁博.秦岭造山带岩石圈动力学模型--来自大地电磁测深的证据.西北大学学报,2004,34(5):591-595.
    程顺有.中央造山系及其邻区岩石圈三维结构与动力学意义.西北大学:博士学位论文,2006,1-141.
    崔智林,孙勇,王学仁.秦岭丹凤蛇绿岩带放射虫的发现及其地质意义.科学通报,1995,40(18):1686-1688.
    邓晋福,赵海玲,莫宣学,等.中国大陆根柱构造--大陆动力学的钥匙.北京:地质出版社,1996.
    丁仨平,裴先治,李勇,胡波,赵欣,郭俊锋.西秦岭天水地区“李子园群”的解体及构造环境浅析.地质通报,2004,23(12):1208-1214
    董云鹏,周鼎武,张国伟.东秦岭松树沟超镁铁岩侵位机制及其构造演化.地质科学,1997,32(2):173-180.
    董云鹏,张国伟,柳小明,赖绍聪.鄂北大洪山地区“花山群”的解体.中国区域地质,1998,16(4):371-376.
    董云鹏,张国伟,朱炳全.北秦岭构造属性与元古代构造演化.地球学报,2003,24(1):3-10.
    董云鹏,周鼎武,张国伟.东秦岭富水基性杂岩体地球化学特征及其形成环境[J].地球化学,1907,26(3):79-88.
    多吉,温春齐,郭建慈,等.西藏4.1Ga碎屑锆石年龄的发现.科学通报,2007,52(1):19-22.
    冯益民,曹宣铎,张二朋,等.西秦岭造山带结构、造山过程及动力学.西安:西安地图出版社,2002.
    冯益民,何世平.祁连山大地构造与造山作用.北京:地质出版社,1996,1-135.
    高山,张本仁,金振民.秦岭.大别造山带下地壳拆沉作用.中国科学(D辑),29<6):532-541.
    黄汲清.陈炳蔚.1987.中国及邻区特提斯海的演化.北京:地质出版社,1999,1-100.
    高山,张本仁,谢千里,等.秦岭造山带元古宙陆内裂谷作用的沉积地球化学证据.中国科学,1990,20:1494-1496.
    郭进京,张国伟,等.中祁连地块东段元古宙基底地层格架讨论.中国区域地质,1999,18(4):379-396
    郭进京,张国伟,陆松年,赵风清.中国新元古代大陆拼合与Rodinia超大陆[J].高校地质学报,1999,5(2):148-156
    郭敬辉,翟明国,许荣华.华北桑干地区大规模麻粒岩相变质作用的时代:锆石U-Pb年代学[J].中国科学(D辑),2002,32(1):10-18.
    韩松,贾秀琴.北祁连大岔大坂两类辉长岩的地质地球化学特征及其构造环境.岩石矿物学杂志,2000,19(2):106-112
    韩松.秦王山-拉鸡庙基性杂岩体的形成环境[J].岩石学报(增刊),1993,9:122-129.
    何艳红,孙勇,陈亮.李海平,袁洪林,柳小明.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.岩石学报.2005,21(1):126-134
    黄月华.松树沟阿尔卑斯型超镁铁质岩体的接触变质带.地球化学,1984,3:206-215.
    洪大卫,谢锡林,张季生.从花岗岩的Sm-Nd同位素探讨华南中下地壳的组成、性质和演化.高校地质学报,1999,5(4)
    胡波,裴先治,等.天水地区红土堡变基性岩的地球化学特征及其大地构造意义.地质通报,2004,23(12)
    胡能高,赵东林,徐柏青,王涛.北秦岭含柯石英榴辉岩的发现及其意义[J].科学通报,1994,39(21):2013
    黄瑞华,等.祁连山大地构造演化及其性质特征.大地构造与成矿学,1996,20(2)
    黄萱,孙宝山,潘均,等.东秦岭华北地台区岩浆活动的时代及地壳增生和改造.岩石学报,1995,11(2):312-319.
    姜常义,苏生瑞,等.论秦岭岩群和丹凤岩群西段之解体.中国区域地质,1996,(4):361-365
    姜常义,苏生瑞,赵太平.北秦岭侵入岩带与晋宁运动[M].北京:地质出版社,1998.
    姜春发.中央造山带主要地质构造特征.地学研究,1993,(27):107-108.
    金振民.金淑燕,高山,等.大别山超高压岩石形成深度局限于100-150km吗--针状含钛铬磁铁矿的发现及动力学意义的思考[J].科学通报,1998,43(1):767-771.
    赖绍聪 裴先治 李永飞 秦江锋 刘鑫 王娟.西秦岭-松潘构造结东部边界与东南结点形成演化、组成、结构与交结转换关系.基金结题报告,2006.
    赖绍聪,张国伟,董云鹏,等.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布.中国科学(D 辑),2003,33(12):1174-1183.
    李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,1-195
    李春昱等.亚洲大地构造的演化.中国地质科学院院报,1984,第10号.
    李惠民,王汝铮.单颗粒锆石U-Pb法判定的凤凰山花岗岩的年龄[J].前寒武纪研究进展,1997,20(3):56-61.
    李晋僧,曹宣铎,杨家禄,等.秦岭显生宙古海盆沉积和演化史.北京:地质出版社,1994,1-206
    李曙光,陈移之,张宗清,等.北秦岭拉鸡庙苏长辉长岩的痕量元素和Sr、Nd同位素地球化学.地质学报,1993,67(4):310-322.
    李曙光,Hart S R,郑双根,郭安林,刘德良,张国伟.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B),1989,19(3):312-319.
    李曙光,李王晔.西秦岭同位素年代学研究.基金结题报告,2006.
    李曙光,杨蔚.大别造山带深部地缝合线与地表地缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔源岩浆岩Sr-Nd-Pb同位素证据.科学通报,2002,47(24):1898-1905.
    李曙光.大陆俯冲化学地球动力学.地学前缘,1998,5(4):211-234.
    李曙光.陈移之,张国伟,张宗清.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块构造体制的证据.地质论评,1991,37(3):235-242.
    李松林,张先康,张成科,等.玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究.地球物理学报,2002,45(2):210-217.
    李亚林,张国伟,宋传中.东秦岭二郎坪弧后盆地双向式俯冲特征[J].高校地质学报,1998,4(3):286-293.
    林长佑,杨长福,等.天水地区地壳介质性质和地震活动的深部物理环境.地震,1998,18(SUP):27-32
    刘敦一,Nutman AP,Williams J S,等.中朝克拉通老于38亿年的残余陆壳--离子探针质谱锆石微区U-Pb 年代学证据.地球学报,1994,(1-2):4-13.
    刘祸田,徐佩芬,刘劲松,等.大陆深俯冲带的地壳速度结构-东大别造山带深地震宽角反射/折射研究[J]. 地球物理学报,2003,46(3):366-372.
    刘会彬,裴先治,丁仨平,李佐臣,孙仁奇.西秦岭天水市元龙地区新元古代花岗质片廓岩锫石LA-ICP-MS U-Pb定年及其地质意义.地质通报,2006,25(11):1315-1320
    刘良,车自成,罗金海.阿尔金山稀段榴辉岩的确定及地质意义[J].科学通报,1996,41(16):1485-1488.
    刘良,陈丹玲,张安达,等.阿尔金超高压(>7GPa)片麻状(含)钾长石榴辉石岩-石榴子石出溶单斜辉石的证据[J].中国科学,2005,35(2):105-114.
    刘良,孙勇,罗金海,等.阿尔金英格利萨依花岗质片麻岩超高压变质[J].中国科学,2003,33(12):1184-1192.
    刘良,孙勇,校培喜,等.阿尔金发现超高压(>3.8Gpa)石榴石二辉橄榄岩[J].科学通报,2002,47(9):657-662.
    刘良,周鼎武,董石鹏,等.东秦岭松树沟高压变质基性岩石及其退变质作用的PTt演化轨迹.岩石学撤.1995,11(2):127-136.
    刘良,周鼎武,王焰,等.东秦岭秦岭群中的长英质高压麻粒岩及其地质意义初探.国科学.D辑.1996b,26(增刊):56-63.
    刘良,周鼎武.东秦岭商南松树沟高压基性麻粒岩的发现及初步研究.科学通报,1994,39(17):1599-1601
    刘军锋,孙勇.东秦岭松树沟超基性岩体“热”侵位时代新知.地质论评,2005,51(2):189-192.
    刘良,周鼎武,董云鹏,张宏法,刘养杰,张泽军.东秦岭松树沟高压变质基性岩石及其退变质作用的P-T-t演化轨迹.岩石学报,1995,11(2):127-136.
    柳小明,高山,袁洪林,Hattendorf B,Gunther D,陈亮,胡圣宏.193nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报,2002,18(3):408-418.
    陆松年,李怀坤,陈志宏.塔里木与扬子新元古代热-构造事件特征、序列和时代-扬子与塔里术连接(YZ-TAR)假设.地学前缘,2003,10(4):321-326.
    陆松年,李怀昆,陈志宏,等.秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应[M].北京:地质出版社,2003,1-194
    陆松年,王惠初,李怀坤.解读国际地层委员会2004年前寒武纪地层表及2004-2008年参考方案.地层学杂志,2005,25(2):180-187.
    陆松年,杨春亮,李怀坤,等.华北古大陆与哥伦比亚超大陆[J].地学前缘,2002,9(9):225-233.
    陆松年,杨春亮,李怀昆,等.华北地台前寒武纪变质基底的Sm-Nd同位素地质信息.华北地质矿产志,1995,10(2):43-153
    陆松年,于海峰,李怀坤,陈志宏,王惠初,张传林,相振群.“中央造山带”早古生代缝合带及构造分区概述.地质通报,2006,25(12):
    陆松年,于海峰,赵风清,等.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002.1-125
    陆松年,陈志宏,李怀坤,郝国杰,周红英,相振群.秦岭造山带中-新元古代(早期)地质演化[J].地质通报,2004,23(2):107-112.
    吕古贤,陈晶,李晓波,等.构造附加静水压力研究与含柯石英榴辉岩成岩深度测算[J].科学通报,1998,43(24):2590-2602.
    马杏垣.中国岩石圈动力学地图集.北京:中国地图出版社,1989.
    欧阳建平,张本仁.北秦岭微古陆形成与演化的地球化学证据.中国科学,D辑,1996,26(增刊):42-48
    裴先治,等.西秦岭天水地区新生代酸性火山岩地球化学特征及其构造意义.岩石矿物学杂志,2004,23(3):227-235
    裴先治,丁仨平,胡波,李勇,张国伟,郭俊锋.西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义.地质通报,2004,23(12):1202-1208
    裴先治,李勇,陆松年,陈志宏,丁仨平,胡波,李佐臣,刘会彬.西秦岭天水地区关子镇中基性岩浆 杂岩体锆石U-Pb年龄及其地质意义.地质通报,2005,24(1):23-29
    裴先治,李佐臣,丁仨平,李勇,胡波,刘会彬.西秦岭天水地区岛弧型基性岩浆杂岩的地球化学特征及形成时代.中国地质,2005,32(4):529-540
    裴先治,刘会彬,丁仨平,李佐臣,胡波,孙仁奇,侯育红.西秦岭天水地区李子园群变质火山岩的地球化学特征及其地质意义.大地构造与成矿学,2006,30(2):193-205
    裴先治.秦岭商.丹带的组成与构造演化[M].西安:西安地图出版社.1997:60-75
    彭澎,翟明国,张华锋,赵太平,倪志耀.华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙地区为例.岩石学报,2004,20(3):439-456.
    邱家骧,曾广策,朱云海,苏尚国.北秦岭-南祁连早古生代裂谷造山带火山岩与小洋盆蛇绿岩套特征及纬向对比.高校地质学报,1998,4(4):393-405
    任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造--中国及邻区大地构造图简要说明书[M].北京:地质出版社,1999,1-50
    陕西省地质矿产局.陕西省区域地质志[M].北京:地质出版社,1989.
    史长义,鄢明才,刘崇民,等.中国花岗岩类化学元素丰度及特征.地球化学,2005,34(5):470-482
    苏犁,宋述光,周鼎武.秦岭造山带松树沟纯橄榄岩体成因:岩石学、地球化学和岩浆包裹体制约.中国科学(D),2005,35(1):38-47.
    宋述光,张立飞,NIU Y,等.青藏高原北缘早古生代板块构造演化和大陆深俯冲.地质通报,2004,23(9/10):918-925.
    宋志高,等.甘肃东部葫芦河群火山岩系及其与邻区的构造关系和成矿关系.地质论评,1991,(3):221-234
    宋志高,张治洮,张莓,贾群子.陕、甘边界牛头河群的分解及其构造意义.西安地质矿产研究所所刊,1991,(31):1-13
    宋志高.祁连山东段的元古宙陇山群.地球学报,1995,(2):204-209
    孙卫东,李曙光,孙勇,等.北秦岭西峡二郎坪群枕状熔岩中一个岩枕的年代学和地球化学研究.地质论评,1996,42(2):144-153
    孙卫东,李曙光,肖益林,等.北秦岭黑河丹凤群岛弧火山岩建造的发现及其构造意义.大地构造与成矿,1995,19(3):227-236.
    孙勇,陈丹玲.超高压变质作用及大陆深俯冲--地球科学前沿述评.西北大学学报(自然科学版),2006,36(1):1-9.
    孙勇,卢欣祥,韩松,张国伟,杨司祥.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学.1996,中国科学(D),26(增刊):49-65
    孙勇,于在平.涑水群的地球化学特征.地球化学,19884:319-325
    孙勇,于在平.天折了的东秦岭加里东运动.见:叶连俊,等主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,167-173.
    万天丰.中国大地构造学纲要.北京:地质出版社,2004.
    万渝生,许志琴,杨经绥,张建新.祁连造山带及邻区前寒武纪深变质基底的时代和组成.地球学报,2003,24(4):319-324
    王德耀.草滩沟群、丹凤岩群火山岩对比及其构造环境分析.西北地质,2002,35(3):59-66.
    王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化.地学前缘,2003,10(3)
    王德滋,周金城.我国花岗岩研究的回顾与展望.岩石学报,1999,15(2):161-169
    王清晨,刘景波,从柏林.构造超压能引起超高压变质作用吗?科学通报,1999,44(21):2346-2350.
    王润三,等.秦岭-大巴山地质论文集[C].二郎坪群蛇绿岩的产出环境.西安:陕西科学技术出版社,1990.
    王涛,王晓霞,李伍平.试论花岗岩体的复合定位机制及其定位空间问题.地质论评,1999,45(2):142-150.
    王涛,张国伟,王晓霞,李伍平.花岗岩体生长方式及构造运动学、动力学意义--以东秦岭造山带核部 花岗岩体为例.地质科学,1999,34(3):326-335
    王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报,2000,16(2):161-168
    王涛,胡能高,裴先治,杨家喜,李伍平.秦岭杂岩的组成、构造格局及演化[J].地球学报,1997,18(4):345-351.
    王学仁,华洪,孙勇.河南西峡湾潭地区二郎坪群微体化石研究.西北大学学报(自然科学版),1995,25(4):353-358.
    王焰,钱青,刘良,等.不同构造环境中双峰式火山岩的主要特征.岩石学报,2000,16(2):169-173
    王鸿祯,徐成彦,周正国.东秦岭古海域两侧大陆边缘区的构造发展.地质学报,1982,(3):270-279.
    王希斌,杨经绥,史仁灯,陈松永.秦岭松树沟岩体--一个遭受角闪岩相变质作用的超镁铁堆晶岩的实例.地质学报,2005,79(1):174-189.
    温春齐,多吉,范小平,等.西藏普兰石英岩中发现41亿年碎屑锆石.地质学报,2006,80(9):1249-1251.
    吴福元,杨进辉,柳小明,等.冀东3.8 Ga锆石Hf同位索特征与华北克拉通早期地壳时代.科学通报.2005,50(18):1996-2003
    吴汉泉.东秦岭和北祁连山的蓝闪片岩.地质学报,1980,54(3).
    夏林圻,夏祖春,任有祥,等.北祁连西段构造-火山岩浆-成矿动力学.中国大地出版社,2001,1-296
    夏林圻,夏祖春,等.北祁连山奥陶纪弧后盆地火山岩浆成因.中国地质,2003,30(1):48-60.
    肖庆辉,等.当代地质科学前沿.武汉:中国地质大学出版社,1993.
    肖庆辉,邢作云,张昱,伍光英,童劲松.当代花岗岩研究的几个重要前沿.地学前缘,2003,10(3).
    肖思云,张维吉,宋子季,等.北秦岭变质地层[M].西安:西安交通大学出版社,1988,1-320.
    校培喜,张俊雅,王洪亮,雷鸿晏.北秦岭太白岩体岩石谱系单位划分及侵位时代确定.西北地质科学,2000,21(2):37-45.
    胥颐,刘福田,刘建华,等.中国西北大陆碰撞带的深部特征及其动力学意义.地球物理学报,2001,44(1):40-47.
    徐佩芬,刘福田,王清晨,等.大别-苏鲁碰撞造山带的地震层析成像研究--岩石圈三维速度结构[J].地球物理学报,2000,43(3):377-385.
    徐佩芬,孙若昧,刘福田,等.扬子板块俯冲、断离的地震层析成像证据[J].科学通报,1999.44(15):1658-1661.
    许效松、刘宝君、徐强、潘桂棠等.中国西部大型盆地分析及地球动力学.北京:地质出版社,1997,
    许志琴,崔军文.大陆山链变形构造动力学.北京:冶金工业出版社,1996,185-198.
    许志琴,卢一伦,汤耀庆,等.东秦岭复合山链的形成--变形、演化及板块动力学.北京:中国环境科学出版社,1988,1-185.
    许志琴.中国主要大陆山链韧性剪切带及动力学.北京:地质出版社,1997
    许志琴,牛宝贵,刘志刚,等.秦岭-大别″碰撞-陆内″型复合山链的构造体制及陆内板块动力学机制.见:叶连俊,钱祥麟,张国伟.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991.139-147.
    鄢明才,迟清华,顾铁新,王春书.中国火成岩化学元素的丰度与分布.地球化学,1996,25(5):409-424.
    闫全人,王宗起,陈隽璐,闫臻,王涛,李秋根,姜春发,张宗清.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义.地质学报,2007,81(4):488-503..
    杨经绥,刘福来,吴才来,等.中央造山带中两期超高压变质作用:来自含柯石英锆石的定年证据[J].地质学报,2003,77(4):463-477.
    杨经绥,宋述光,许志琴,等.柴达木盆地北缘早古生代高压-超高压变质带发现典型超高压矿物--柯石英.地质学报,2001,75(2):175-179.
    杨经绥,许志琴,李海兵,等.我国西部柴北缘发现榴辉岩[J].科学通报,1998,43:1544-1548.
    杨经绥,许志琴,裴先治,等.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生 代两期深俯冲作用的识别[J].地质学报,2002,76(4):484-495.
    杨钊,董云鹏,柳小明,张津海.西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MS U-Pb定年.地质通报,2006,25(11):1321-1325.
    叶凯,平岛崇男,石渡明,等.青岛仰口榴辉岩中粒间柯石英的发现及其意义[J].科学通报,1996,41(15):1407-1408.
    殷鸿祸.中央造山带的演化及其特点[J].地球科学--中国地质大学学报,1998,23(5):438-442
    于福生.王春英.北祁连山东段新元古代火山岩的年代学证据.中国地质,2002,29(4):360-363
    于津海,O'Reilly Y S,王丽娟,等.华夏陆块古老物质的发现和前寒武纪地壳的形成.科学通报,2007,52(1):11-18.
    袁洪林,吴福元,高山,柳小明,徐平,孙德有.东北地区新生代侵入体的错石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,2003,48(14):1511-1520.
    袁学诚,徐明才,唐文榜等.东秦岭地壳反射地震剖面.地球物理学报,1994,37(6):749-758.
    翟明国,卞爱国.华北克拉通新太古代末超大陆拼合及古元古代末--中元古代裂解[J].中国科学,2000,30(增刊):129-137).
    张安达,刘良,王焰,等.北秦岭榴辉岩地球化学特征及形成环境[J].西北大学学报(自然科学版),2003,33(2):191-195.
    张本仁,张宏飞,赵志丹,凌文黎.东秦岭及邻区壳、幔地球化学分区和演化及大地构造意义[J].中国科学(D辑),1996,26(3):201-208
    张本仁、高山、张宏飞,等.秦岭造山带地球化学[M].北京:科学出版社,2002,1-187.
    张本仁.秦巴岩石圈构造及成矿规律地球化学研究.武汉:中国地质大学出版社,1994,1-446.
    张本仁,韩吟文,许继锋,欧阳建平.北秦岭新元古代前属扬子板块的地球化学征据[J].高校地质学报,1998,4(4)369-382.
    张成立,刘良,张国伟,王涛,陈丹玲,袁洪林,柳小明,晏云翔.北秦岭新元古代后碰撞花岗岩的确定及其构造意义[J].地学前缘,2004,11(3):33-42
    张二朋,牛道韫,霍有光,等.秦巴及邻区地质-构造特征概论[M].北京:地质出版社,1993,1-291
    张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带.中国科学(D辑),2003,33(12):1121-1135.
    张稳胜,安三元.陕西商县秦王山镁铁质岩体的特征及成因[J].岩石学报,1990,11(4):48-56.
    张国伟,郭安林,姚安平.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32
    张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造.中国科学(B辑),1995,25(9):994-1003.
    张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996,26(3):193-200.
    张国伟,张本仁,袁学诚,肖庆辉,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,1-855
    张国伟,张宗清,董云鹏,等.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报1995b,11(2):101-114.
    张宏飞,高山,张利,钟增球,张本仁.桐柏北部二朗坪蛇绿岩片中花岗岩地球化学、成因及对地壳深部物质的指示.地质科学,2000
    张宏飞,骆庭川,张本仁.北秦岭漂池岩体的源区特征及其形成的构造环境.地质论评,1996,42(3):209-214.
    张宏飞,张本仁,凌文黎,骆庭川,许继峰.北秦岭古洋壳物质再循环:岛弧花岗质岩石源区同位素示踪证据.科学通报,1995,40(21):1987-1989
    张宏飞,张本仁,赵志丹,骆庭川.东秦岭商丹构造带陆壳俯冲碰撞:花岗质岩浆源区同位素示踪证据[J].中国科学(D辑),1996,26(3):231-236
    张宏飞,赵志丹,等.从岩石Sm-Nd同位素模式年龄特征论北秦岭地壳增生和深部性质.岩石学报,1995,11(2):160-170.
    张建新,许志琴.北祁连中段加里东俯冲-增生杂岩/火山弧带及其变形特征.地球学报,1995,16(2):153-63.
    张建新,杨经绥,许志琴,等.阿尔金榴辉岩中超高压变质作用证据.科学通报,2002,47(3):231-234.
    张利,王林森,周炼.北秦岭弧后盆地俯冲消减与陆壳物质再循环-桃园岩体和黄岗杂岩体的地球化学证据[J].地球科学-中国地质大学学报,2001,26(1):18-24.
    张旗,孙晓猛.北祁连蛇绿岩特征的特征、形成环境及其构造意义.地球科学进展,1997,12(4):366-393
    张旗,张宗清,孙勇,等.陕西商县-丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学.岩石学报,1995,11:43-54.
    张旗,周国庆.中国蛇绿岩.北京:科学出版社,2001
    张雪亭,吕惠庆,陈正兴,等.柴北缘造山带沙柳河地区榴辉岩相高压变质岩石的发现及初步研究[J].青海地质,1999,28(2):1-12.
    张有学,尹安.地球的结构、演化和动力学.北京:高等教育出版社,2002
    张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994,1-161
    张宗清,张国伟,付国民,唐索寒,宋彪.秦岭变质地层年龄及其构造意义[J].中国科学(D),1996,26(3):216-222
    张宗清,张国伟,刘敦一,王宗起,唐索寒,王进辉.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学.北京:地质出版社,2006,1-348.
    张宗清,张旗.北秦岭晚元古代宽坪蛇绿岩的地球化学特征.岩石学报,1995,11(增刊):165-177.
    张泽军,安三元.松树沟超镁铁岩成因的地球化学证据.地球化学,1992,2:175-181.
    赵国春,孙敏,S.A.Wilde.华北克拉通基底构造单元特征及早元古代拼合[J].中国科学(D辑),2003,46(1):23-38
    郑永飞,张少兵.华南前寒武纪大陆地壳的形成和演化.科学通报,2007,52(1):1-10.
    周鼎武,张成立,刘良,王居里,王焰,刘金平.秦岭造山带及相邻地块元古代基性岩墙群研究综述及相关问题探讨[J].岩石学报,2000,16(1):22-28.
    周鼎武,赵重远,李银德,等.鄂尔多斯盆地西南缘地质特征及其与秦岭造山带的关系.北京:地质出版社,1994,97-163
    朱炳泉,常向阳,邱华宁,等.地球化学急变带的元古界基底特征及其超大型矿床产出的关系.中国科学,D辑,1998,28(增刊):63-70.
    朱炳泉.壳幔地球化学不均一性与块体地球化学边界研究.地学前缘,1998,5(1-2):72-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700