双柱[5]芳烃初步合成研究探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杯芳烃是一类由取代苯酚和甲醛缩合而成的大环化合物,它具有独特的空腔结构和丰富的反应点,可制备具有各种官能团、构象确定、π空腔大小可调的衍生物,在分子识别、模拟酶催化、物质的检测和分离等方面都显示出其作为超分子化学中的一类重要的受体化合物的特殊价值,引起了人们的关注,被誉为继冠醚和环糊精之后的第三代超分子主体化合物。
     传统杯芳烃中连接苯环亚甲基在同一苯环中互为间位,T. Ogoshi等首次报道用BF3·Et2O催化下1,4-二甲氧基苯和多聚甲醛反应得到环状五聚体,命名为1,4-甲氧基柱[5]芳烃,脱甲基得到柱[5]芳烃。我们课题组用1,4-二烷氧基-2,5-二(烷氧基甲基)苯46在对甲苯磺酸催化下反应,得到1,4-甲氧基柱[5]芳烃43,产率最高可达90%以上。近来对柱[5]芳烃的研究主要集中在分子识别,发光性质,1,4-烷氧基不对称柱[5]芳烃的合成及其构象分析等。
     本论文采用我们课题组的合成方法,以对羟基苯甲醚为原料,通过不同基团连接得到二聚体,经历氯甲基化、甲氧基化,得到具有四个甲氧基甲基的化合物,并探讨在对甲苯磺酸催化下一步法合成双柱[5]芳烃的合成,实验未能获得双柱[5]芳烃,而是得到一聚合物。
     此外,1,4-烷氧基柱[5]芳烃与NBS反应,经历开环反应,ipso取代反应,得到二-(4-溴-2,5-二烷氧基苯基)甲烷44,其与硝酸反应得到二-(4-硝基-2,5-二甲氧基苯基)甲烷47。该反应方法操作简单,反应条件温和,选择性好,产率中等,为制备二-(4-溴-2,5-二烷氧基苯基)甲烷衍生物提供了一条新途径。
Calixarenes are macrocyclic compounds which are generally formed by condensation of aldehydes and substituted phenols. Because calixarenes have a calix-shape, hydrophobic cavity and several reactable positions, they have attracted considerable attentions. They are broadly used as building blocks to construct well preorganized host molecules which have widely potential applications in the field of molecular recognition, enzyme mimics, etc. Therefore they are considered as the third host molecule after crown ethers and cyclodextrins in supramolecular chemistry.
     Tradictional calixarenes were connected by methylene groups in meta position. T. Ogoshi first reported a new calixar[5]arene named 1,4-dimethoxypillar[5]arene, which was synthesized by a Lewis acid-catalyzed reaction using 1,4-dimethoxybenzene and formaldehyde in the presence of BF3·Et2O. The methylene groups were in para position. They also got pillar[5]arenes by demethylation of 1,4-dimethoxypillar[5]arenes. But the yeilds were poor. Our research group found a simple method for the synthesis of pillar[5]arene. 2,5-Bis(ethoxymethyl)-1,4-dialkoxybenzene was treated with catalytic amount of p-toluenesulfonic acid in boiling dichloromethane to give 1,4-dialkoxypillar[5]arenes in high yield. Recent research on pillar[5]arenes included molecular recognition, spectral properties, nonsymmetric pillar[5]arene, conformation analyses.
     In this article, we applied our synthetic method to synthesize bispillar[5]arene. 4-Methoxyphenol reacted with dihalo-compounds to form a dimer; then chloromethylation and methoxylation of the dimer gave the intermediate with four methoxymethyl groups. The intermediate was treated with catalytic amount of p-toluenesulfonic acid. However, bispillar[5]arene was not found. We have tried many mehtods, but failed.
     1,4-Alkoxylpillar[5]arenes reacted with NBS to give bis(4-bromo-2,5-dialkoxyphenyl)methane, undergoing ring opening reaction, ipso substituted reaction. Nitration of 1,4-methylpillar[5]arenes with nitric acid gave bis(4-nitro-2,5-dimethoxyphenyl)methane. This synthetic method for preparation of such a compound has some advantages, such as mild reaction conditions, simple operation, high selectivity and good yield.
引文
[1] Gutsche C. D.. Calixarenes An Introduction[M]. 2nd Edition. Cambridge: The Royal Society of Chemistry, 2008: 1-2
    [2] Zinke A., Ziegler E., The hardening process in phenol-formaldehyde resins. VII[J]. Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen, 1941, 74B: 1729-36
    [3] Zinke A., Ziegler E., Martinowitz E., et al. The hardening process of phenol-formaldehyde resins. X.[J]. Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen, 1944, 77B: 264-72
    [4] Gutsche C. D.. Calixarenes An Introduction[M]. 2nd Edition. Cambridge: The Royal Society of Chemistry, 2008: 18-20
    [5] Ogoshi T., Kanai S., Fujinami S., et al. para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host–Guest Property[J]. Journal of the American Chemical Society, 2008, 130 (15): 5022-3
    [6] Gutsche C. D.. Calixarenes An Introduction[M]. 2nd Edition. Cambridge: The Royal Society of Chemistry, 2008: 3
    [7] Zinke A., Ziegler E., Martinowitz E., et al. The hardening process of phenol-formaldehyde resins. X. Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen[J]. 1944, 77B: 264-72
    [8] Zinke A., Zigeuner G., Hossinger K., et al. The hardening processes of phenol-formaldehyde resins. XVIII. Preliminary communication: cyclic polynuclear phenols[J]. Monatshefte fuer Chemie, 1948, 79: 438-9
    [9] Zinke A., Kretz R., Leggewie E., et al. The phenol-formaldehyde resin hardening process. XXVI. Linear and cyclic polynuclear methylenephenols[J]. Monatshefte fuer Chemie, 1952, 83: 213-27
    [10] Gutsche C. D.. Calixarenes An Introduction[M]. 2nd Edition. Cambridge: The Royal Society of Chemistry, 2008: 9-10
    [11] Niederl J. B., Vogel H. J.. Aldehyde-resorcinol condensations[J]. Journal of the American Chemical Society, 1940, 62: 2512-14
    [12] Erdtman H., Hogberg S., Abrahamsson S., et al. Cyclooligomeric phenol-aldehyde condensation products. I[J]. Tetrahedron Letters, 1968, 14: 1679-82
    [13] Hayes B. T., Hunter R. F.. Rational synthesis of cyclic tetranuclear p-cresol novolak[J]. Chemistry & Industry (London, United Kingdom), 1956: 193-4
    [14] Hayes B. T., Hunter R. F.. Phenol-formaldehyde and allied resins. VI: Rational synthesis of a cyclic tetranuclear p-cresol Novolak[J]. Journal of Applied Chemistry, 1958, 8: 743-8
    [15] Cornforth J. W., Hart P. D., Nicholls G. A., et al. Antituberculous effects of certain surface-active polyoxyethylene ethers[J]. British Journal of Pharmacology and Chemotherapy, 1955, 10(1): 73-86
    [16] Cornforth J. W., Morgan E. D., Potts K. T., et al. Preparation of antituberculous poly(oxyethylene ethers) of homogeneous structure[J]. Tetrahedron, 1973, 29(11): 1659-67
    [17] Buriks R. S. Fauke A. R. Munch J. H.. Cyclic phenol-aldehyderesins[P]. US Patent: 4259464, 1976
    [18] Buriks R. S. Fauke A. R. Munch J. H.. Process of demulisification employing oxyalkylated cyclic phenol-aldehyde resins[P]. US Patent: 4098717, 1977
    [19] Buriks R. S. Fauke A. R. Munch J. H.. Liquid storage float formed of steel concrete or prestressed concrete[P]. US Patent: 4032514, 1976
    [20] Patrick T. B., Egan P. A.. An improved preparation of phenolic [1.1.1.1]metacyclophanes[J]. Journal of Organic Chemistry, 1977, 42(2): 382–3
    [21] Kaemmerer H., Happel G., Caesar F.. Spectroscopic analysis of a cyclic tetrameric compound from p-cresol and formaldehyde[J]. Makromolekulare Chemie, 1972, 162: 179-97
    [22] Munch J. H.. Ring inversion in a p-alkylphenol-formaldehyde cyclic tetracondensate[J]. Makromolekulare Chemie, 1977, 178: 69
    [23] Gutsche C. D., Gutsche A. E., Karaulov A. I.. Calixarenes. 11. Crystal and molecular structure of p-tert-butylcalix[8]arene[J]. Journal of Inclusion Phenomena, 1985, 3(4): 447-51
    [24] Cao D. R., Kou Y. H., Liang J. Q. et al. A Facile and Efficient Preparation of Pillararenes and a Pillarquinone[J]. Angewandte Chemie, International Edition, 2009, 48: 9721-3
    [25] Patterson A. M., Capell L. T., Walker D. F.. The Ring Index[M]. 2nd edtion. Washington DC: American Chemical Society, 1960: Ring Index No. 6485
    [26] Cram D. J., Steinberg H., Macro Rings. I. Preparation and Spectra of the Paracyclophanes[J]. Journal of the American Chemical Society, 1951, 73 (12): 5691-704
    [27] Gutsche C. D., Muthukrishnan R.. Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols[J]. Journal of Organic Chemistry, 1978, 43(25): 4905-6
    [28] Arduini A., Pochini A., Reverberi S. et al. p-tert-Butylcalix[4]arene tetracarboxylic acid.A water soluble calixarene in a cone structure[J]. Journal of the Chemical Society, Chemical Communications, 1984, (15): 981-2
    [29] Gutsche C. D., Dhawan B., No K. H. et al. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol[J]. Journal of the American Chemical Society, 1981, 103(13): 3782-92
    [30] Gutsche C. D., Bauer L. J.. Calixarenes. 5. Dynamic NMR characteristics of p-tert-butylcalix[4]arene and p-tert-butylcalix[8]arene[J]. Tetrahedron Letters, 1981, 22(48): 4763-6
    [31] Jaime C., de Mendoza J., Prados P. et al. Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes[J]. Journal of Organic Chemistry, 1991, 56(10): 3372-6
    [32] Stewart D. R., Krawiec M., Kashyap R. P. et al. Conformational Characteristics of Ethers and Esters of p-tert-Butylcalix[5]arene[J]. Journal of the American Chemical Society, 1995, 117(2): 586-601
    [33] Kanamathareddy S., Gutsche C. D.. Conformational Characteristics of p-tert-Butylcalix[6]arene Ethers[J]. Journal of Organic Chemistry, 1994, 59(14): 3871-9
    [34] Gutsche C. D., Dhawan B., Levine J. A. et al. Calixarenes. 9. Conformational isomers of the ethers and esters of calix[4]arenes[J]. Tetrahedron, 1983, 39(3): 409-26
    [35] Gutsche C. D., Iqbal M.. p-tert-Butylcalix[4]arene [preparation][J]. Organic Syntheses, 1990, 68: 234-7
    [36] Dhawan B., Chen S. I., Gutsche C. D.. Calixarenes. 19. Studies of the formation of calixarenes via condensation of p-alkylphenols and formaldehyde[J]. Makromolekulare Chemie, 1987, 188(5): 921-50
    [37] Gutsche C. D., Dhawan B., Leonis M. et al. p-tert-Butylcalix[6]arene [preparation][J]. Organic Syntheses, 1990, 68: 238-42
    [38] Munch J. H., Gutsche C. D.. p-tert-Butylcalix[8]arene [preparation][J]. Organic Syntheses, 1990, 68: 243-6
    [39] Stewart D. R., Gutsche C. D.. The one-step synthesis of p-tert-butylcalix[5]arene[J]. Organic Preparations and Procedures International, 1993, 25(1): 137-9
    [40] Nakamoto Y., Ishida S.. Calix[7]arene from 4-tert-butylphenol and formaldehyde[J]. Makromolekulare Chemie, Rapid Communications, 1982, 3(10): 705-7
    [41] Vocanson F., Lamartine R., Lanteri P. et al. Synthesis of p-tert-butylcalix[7]arene. Optimization of recovery by the method of experimental plants[J]. New Journal of Chemistry, 1995, 19(7): 825-9
    [42] Gutsche C. D., Rogers J. S., Stewart D. et al. Calixarenes: paradoxes and paradigms in molecular baskets[J]. Pure and Applied Chemistry, 1990, 62(3): 485-91
    [43] Stewart D. R., Gutsche C. D.. Isolation, Characterization, and Conformational Characteristics of p-tert-Butylcalix[9-20]arenes[J]. Journal of the American Chemical Society, 1999, 121(17): 4136-46
    [44] Atwood J. L., Hardie M. J., Raston C. L. et al. Convergent Synthesis of p-Benzylcalix[7]arene: Condensation and UHIG of p-Benzylcalix[6 or 8]arenes[J]. Organic Letters, 1999, 1(10): 1523-6
    [45] Izatt S. R., Hawkins R. T., Christensen J. J. et al. Cation transport from multiple alkali cation mixtures using a liquid membrane system containing a series of calixarene carriers[J]. Journal of the American Chemical Society, 1985, 107(1): 63-6
    [46] Bocchi V., Foina D., Pochini A. et al. Molecular inclusion in functionalized macrocycles. Part 3. Synthesis, proton and carbon-13 NMR spectra, and conformational preference of open chain ligands on lipophilic macrocycles[J]. Tetrahedron, 1982, 38(3): 373-8
    [47] Vicens J., Pilot T., Gamet D. et al. Synthesis and characterization of precursors of phenolic resins produced from 4-isopropylphenol[J]. Comptes Rendus de l'Academie des Sciences, Serie II: Mecanique, Physique, Chimie, Sciences de la Terre et de l'Univers, 1986, 302(1): 15-20S
    [48] Yilmaz M., Vural U. S.. Synthesis of new substituted calix[4]arenes and their complexes with iron(III)[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1991, 21(8): 1231-41
    [49] Asfari Z., Vicens J.. Preparation of series of calix[6]arenes and calix[8]arenes derived from p-n-alkylphenols[J]. Tetrahedron Letters, 1988, 29(22): 2659-60
    [50] Seki Y., Morishige Y., Wamme N. et al. Nonpolymer new organic film for local insulation in laser-direct-writing circuit restructuring for large-scale integrated circuits[J]. Applied Physics Letters, 1993, 62(25): 3375-6
    [51] Asfari Z., Vicens J.. Calix[7]arenes from 4-methyl- or 4-ethylphenols and formaldehyde[J]. Makromolekulare Chemie, Rapid Communications, 1989, 10(4): 181-3
    [52] Vicens J., Pilot T., Gamet D., Lamartine R. et al. Synthesis and characterization of precursors of phenolic resins produced from 4-isopropylphenol[J]. Comptes Rendus de l'Academie des Sciences, Serie II: Mecanique, Physique, Chimie, Sciences de la Terre et de l'Univers, 1986, 302(1): 15-20
    [53] Makha M., Raston C. L.. Direct synthesis of calixarenes with extended arms: p-phenylcalix[4, 5, 6, 8]arenes and their water-soluble sulfonated derivatives[J].Tetrahedron Letters, 2001, 42(35): 6215-7
    [54] Souley B., Asfari Z., Vicens J.. Isolation and characterization of p-benzylcalix[n]arenes (n = 5, 6 and 8) from p-benzylphenol and formaldehyde[J]. Polish Journal of Chemistry, 1992, 66(6): 959-61
    [55] Atwood J. L., Hardie M. J., Raston C. L. et al. Convergent Synthesis of p-Benzylcalix[7]arene: Condensation and UHIG of p-Benzylcalix[6 or 8]arenes[J]. Organic Letters, 1999, 1(10): 1523-6
    [56] Lubitov I. E., Shokova E. A., Kovalev V. V.. New class of host molecules. p-1-Adamantylcalix[8]arenes[J]. Synlett, 1993, (9): 647-8
    [57] Jauch J., Schuring V.. Synthesis of chiral calix[n]arenes. I. A synthetic approach towards a new enantiomerically pure calix[8]arene derivative[J]. Tetrahedron: Asymmetry, 1997, 8(2): 169-72
    [58] Tung C. H., Ji H. F.. A novel host molecule p-[1-(4-hydroxyphenyl)-1-methylethyl]calix[8]arene. Synthesis and complexation properties in nonaqueous polar solution[J]. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1997, (2): 185-8
    [59] Georghiou P. E., Li Z. P.. Calix[4]naphthalenes: cyclic tetramers of 1-naphthol and formaldehyde[J]. Tetrahedron Letters, 1993, 34(18): 2887-90
    [60] Georghiou P. E., Ashram M., Li Z. P. et al. Syntheses of Calix[4]naphthalenes Derived from 1-Naphthol[J]. Journal of Organic Chemistry, 1995, 60(22): 7284-9
    [61] Chasar D. W.. A calix[4]arene type molecule and its hydrate[J]. Journal of Organic Chemistry, 1985, 50(4): 545-6
    [62] Sorrell T. N., Yuan H. P.. Synthesis of Covalently-Linked exo-Calix[4]arenes[J]. Journal of Organic Chemistry, 1997, 62(6): 1899-902
    [63] Hoegberg A. G. S.. Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products[J]. Journal of Organic Chemistry, 1980, 45(22): 4498-500
    [64] Hoegberg A. G. S.. Cyclooligomeric phenol-aldehyde condensation products. 2. Stereoselective synthesis and DNMR study of two 1, 8, 15, 22-tetraphenyl[14]metacyclophan-3, 5, 10, 12, 17, 19, 24, 26-octols[J]. Journal of the American Chemical Society, 1980, 102(19): 6046-50
    [65] Cram D. J., Karbach S., Kim H. E. et al. Host-guest complexation. 46. Cavitands as open molecular vessels form solvates[J]. Journal of the American Chemical Society, 1988, 110(7): 2229-37
    [66] Thoden van Velzen E. U., Engbersen J. F. J., Reinhoudt D. N.. Self-AssembledMonolayers of Receptor Adsorbates on Gold: Preparation and Characterization[J]. Journal of the American Chemical Society, 1994, 116(8): 3597-8
    [67] Curtis A. D. M.. Novel calix[4]resorcinarene glycosides[J]. Tetrahedron Letters, 1997, 38(24), 4295-6
    [68] Aoyama Y., Tanaka Y., Sugahara S.. Molecular recognition. 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle[J]. Journal of the American Chemical Society, 1989, 111(14): 5397-404
    [69] Tunstad L. M., Tucker J. A., Dalcanale E.. Host-guest complexation. 48. Octol building blocks for cavitands and carcerands[J]. Journal of Organic Chemistry, 1989, 54(6): 1305-12
    [70] Gibb B. C., Chapman R. G., Sherman J. C.. Synthesis of Hydroxyl-Footed Cavitands[J]. Journal of Organic Chemistry, 1996, 61(4): 1505-9
    [71] Kobayashi K., Asakawa Y., Kato Y. et al. Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH- interaction[J]. Journal of the American Chemical Society, 1992, 114(26): 10307-13
    [72] Kon N., Iki N., Miyano S.. Synthesis of p-tert-butylthiacalix[n]arenes (n=4, 6, and 8) from a sulfur-bridged acyclic dimer of p-tert-butylphenol[J]. Tetrahedron Letters, 2002, 43(12): 2231-4
    [73] Schneider U., Schneider H.. Synthesis and properties of macrocycles from resorcinol, corresponding derivatives and host-guest complexes[J]. Chemische Berichte, 1994, 127(12): 2455-69
    [74] Shivanyuk A., Paulus E. F., Bohmer V. et al. Quasi-complete solvation of organic molecules in the crystalline state[J]. Angewandte Chemie, International Edition in English, 1997, 36(12): 1301-3
    [75] Egberink R. J. M., Cobben P. L. H. M., Verboom W. et al. Hoegberg compounds with a functionalized box-like cavity[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1992, 12(1-4): 151-8
    [76] Beer P. D., Tite E. L., Drew M. G. B.et al. Redox active cavitand host molecules containing multiple ferrocenyl redox centers: syntheses, crystal structure, molecular mechanics calculations, and electrochemical properties[J]. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999), 1990, (8): 2543-50
    [77] Morikawa O., Ueno R., Nakajima K. et al. Trifluoromethanesulfonic acid-catalyzed synthesis of resorcinarenes: cyclocondensation of 2-bromoresorcinol with aldehydes[J].Synthesis, 2002, (6): 761-5
    [78] Konishi H., Nakamura T., Ohata K. et al. The acid-catalyzed condensation of 2-propylresorcinol with formaldehyde diethyl acetal. The formation and isomerization of calix[4]resorcinarene, calix[5]resorcinarene, and calix[6]resorcinarene[J]. Tetrahedron Letters, 1996, 37(41): 7383-6
    [79] Konishi H., Iwasaki Y.. Base-catalyzed synthesis of a calix[4]resorcinarene: cyclocondensation of 2-butyrylresorcinol with formaldehyde[J]. Synlett, 1995, (6): 612
    [80] Kwang H. N., Gutsche C. D.. Calixarenes. 8. Short, stepwise synthesis of p-phenylcalix[4]arene and p-phenyl-p-tert-butylcalix[4]arene and derived products. Journal of Organic Chemistry, 1982, 47(14): 2713-9
    [81] Boehmer V., Marschollek F., Zetta L.. Calix[4]arenes with four differently substituted phenolic units[J]. Journal of Organic Chemistry, 1987, 52(15): 3200-5
    [82] Boehmer V., Merkel L., Kunz U.. Asymmetrically-substituted calix(4)arenes[J]. Journal of the Chemical Society, Chemical Communications, 1987, (12): 896-7
    [83] Moshfegh A. A., Beladi E., Radnia L. et al. The synthesis of 5, 11, 17-trihalotetracyclo[13. 3. 1. 13, 7. 19, 13]heneicosa-1(19), 3, 5, 7(20), 9, 11, 13(21), 15, 17-nonaene-19, 20, 21-triols and 5, 11, 17-trihalo-19, 20, 21-trihydroxytetracyclo[13. 3. 1. 13, 7. 19, 13]heneicosa-1(19), 3, 5, 7(20), 9, 11, 13(21), 15, 17-nonaene-8, 14-dione. Cyclic derivatives of phloroglucide analogs[J]. Helvetica Chimica Acta, 1982, 65(4): 1264-70
    [84] Moshfegh A. A., Badri R., Hojjatie M. et al. The synthesis of 4, 11, 18, 25-tetrachloro[14]metacyclophane-7, 14, 21, 28-tetrol. Structural analogs of phloroglucides[J]. Helvetica Chimica Acta, 1982, 65(4): 1221-8
    [85] Moshfegh A. A., Mazandarani B., Nahid A. et al. The synthesis of hetero-halogenated derivatives of phloroglucide analogs[J]. Helvetica Chimica Acta, 1982, 65(4): 1229-32
    [86] Pappalardo S., Ferguson G., Gallagher J. F.. Mesitylene-derived 1, 3-alternate [1. 1. 1. 1]metacyclophanes[J]. Journal of Organic Chemistry, 1992, 57(26): 7102-9
    [87] Izatt R. M., Christensen J. J., Hawkins R. T.. Recovery of cesium[P]. US Patent: 4477377, 1984
    [88] Taniguchi H., Nomura E.. Catalytic activity of an octopus-type calixarene on the formation of ethers[J]. Chemistry Letters, 1988, (10): 1773-6
    [89] Seiffarth K., Schulz M., Goermar G.. et al. Calix[n]arenes-new light stabilizers for polyolefins[J]. Polymer Degradation and Stability, 1989, 24(1): 73-80
    [90] Boehmer V., Goldmann H., Vogt W.et al. The synthesis of double-calixarenes[J]. Tetrahedron Letters, 1989, 30(11): 1391-4
    [91] Marchand A. P., Chong H., Takhi M. et al. Synthesis and alkali metal picrate extraction studies of p-tert-butylcalix[4]arene crown ethers bridged at the lower rim with pyridyl units[J]. Tetrahedron, 2000, 56(20): 3121-6
    [92] Wang W., Gong S. L., Meng L. Z. et al. Preparation and characterization of biscalix[4]arenes with alkyne-containing spacer and their complexion ability towards solvent[J]. Gaodeng Xuexiao Huaxue Xuebao, 2005, 26(8): 1467-70
    [93] Haino T., Yanase M., Fukazawa Y.. Fullerenes enclosed in bridged calix[5]arenes[J]. Angewandte Chemie, International Edition, 1998, 37(7): 997-8
    [94] Haino T., Yanase Manabu., Fukunaga C. et al. Fullerene encapsulation with calix[5]arenes[J]. Tetrahedron, 2006, 62(9): 2025-35
    [95] Haino T., Yamanaka Y., Araki H. et al. Metal-induced regulation of fullerene complexation with double-calix[5]arene[J]. Chemical communications(Cambridge, England), 2002, (5): 402-3
    [96] Kanamathareddy S., Gutsche C. D.. Conformational Characteristics of p-tert-Butylcalix[6]arene Ethers[J]. Journal of Organic Chemistry, 1994, 59(14): 3871-9
    [97] Zhang W. C., Zhu Y., Li E. C. et al. Synthesis, conformation and metal-binding properties of calix[6]arene derivatives[J]. Tetrahedron, 2000, 56(21): 3365-71
    [98] Arduini A., Pochini A., Secchi A. et al. A new macrocavitand from the head to tail four-point capping of p-tert-butylcalix[8]arene with a calix[4]arene[J]. Journal of the Chemical Society, Chemical Communications, 1995, (8): 879-80
    [99] Perrin C. L., Skinner G. A.. Directive effects in electrophilic aromatic substitution ("ipso factors"). Nitration of haloanisoles[J]. Journal of the American Chemical Society, 1971, 93(14): 3389-94
    [100] Idoux J. P., Madenwald M. L., Garcia B. S. et al. Aromatic fluoroalkoxylation via direct displacement of a nitro or fluoro group[J]. Journal of Organic Chemistry, 1985, 50(11): 1876-8
    [101] Srpek O.. Substitution in aromatic hydrocarbons[J]. Monatshefte fuer Chemie, 1890, 11: 429-32
    [102] Miller B., Walling C.. Displacement of aromatic substituents by halogen atoms[J]. Journal of the American Chemical Society, 1957, 79: 4187-91
    [103] Franke J., Voegtle F.. Cyclic p-phenylene sulfide: selective synthesis, doping and electrical conductivity[J]. Tetrahedron Letters, 1984, 25(32): 3445-8
    [104] Ma D. W. Cai Q.. N,N-Dimethyl Glycine-Promoted Ullmann Coupling Reaction of Phenols and Aryl Halides[J]. Organic Letters, 2003, 5(21): 3799-802
    [105] Kaplan M. L., Reents Jr. W. D.. Cyclopenta(p-phenylene sufide) and cyclotetra(p-phenylene sulfide): examples of a new macrocyclic series[J]. Tetrahedron Letters, 1982, 23(4): 373-4
    [106] Baxter I., Ben-Haida A., Colquhoun H. M., Hodge P. et al. Sulfone-linked paracyclophanes via macrocyclic aromatic thioethers: synthetic and structural investigations[J]. Chemistry--A European Journal, 2000, 6(23): 4285-96
    [107] Leininger S., Olenyuk B., Stang P. J.. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals[J]. Chemical Reviews (Washington, D. C.), 2000, 100(3): 853-907
    [108] Yusheng, X. Part A. A new Deep-UV photoresist based on photochemistry of 2-aryl-4,5-benzotropone. Part B. Syntheses of [1.1.1] paracyclophane and other strained aromatic compounds, in search for the soccer ball C60. Univ. California., Los Angeles, USA. 1987.
    [109] Gribble G. W., Nutaitis C. F. [1.1.1.1.1]paracyclophane and [1.1.1.1.1.1]paracyclophane[J]. Tetrahedron Letters, 1985, 26, 6023-6
    [110] Ogoshi T., Kitajima K., Aoki T. et al. Effect of an Intramolecular Hydrogen Bond Belt and Complexation with the Guest on the Rotation Behavior of Phenolic Units in Pillar[5]arenes[J]. The Journal of Physical Chemistry Letters, 2010, 1, 817-21
    [111] Ogoshi T., Umeda K., Yamagishi T. et al. Through-space p-delocalized Pillar[5]arene[J]. Chemical Communications, 2009, (32): 4874-6
    [112] Ogoshi T., Kitajima K., Yamagishi T. et al. Synthesis and Conformational Characteristics of Nonsymmetric Pillar[5]arene[J]. Organic Letters, 12(3): 636-8
    [113] Ogoshi T., Nishida Y., Yamagishi T. et al. Polypseudorotaxane Constructed from Pillar[5]arene and Viologen Polymer[J]. Macromolecules, 2010, 43: 3145-7
    [114]黃文魁.碘雜环化合物的研究Ⅰ.3,6-二硝基二苯并碘六圜衍生物的製备及其性质[J].化学学报. 1956, 22(4): 292-8
    [115] Lin Y. H., Liao K. H., Chou N. K., Wang S. S., Chu S. H., Hsieh K. H. UV-curable low-surface-energy fluorinated poly(urethane-acrylate)s for biomedical applications[J]. Eur. Polym. J. 2008, 44(9): 2927
    [116]穆振义,戴明时.功能性二氨基二苯甲烷类有色物质的合成[J].精细石油化工. 1994, (5): 64-9
    [117]韩冰,钱秀松,林再文,周晏云.二氨基二苯甲烷作为环氧树脂韧性固化剂的研究[J].纤维复合材料, 2000, (03): 3-4+31
    [118]谭新民,谢格波. N,N,N ,N -四甲基二氨基二苯甲烷分光光度法测定金[J].南昌大学学报(理科版). 1979, (2): 95-9
    [119] Christudhas, M., Joshua, C. P.. Synthesis of some 5,5'-dimethyl- and 5,3'-dimethyl-4,4'-dihalo-2,2'-dinitrodiphenylmethanes and their conversion into related 11H-dibenzo[c,f][1,2]diazepine derivatives[J]. Indian J. Chem., Sect B. 1982, 21B(8): 721-3
    [120] Joshua, C. P.; Christudhas, M. Photochemistry of 2,2'-dinitrodiphenylmethanes: Part III. Irradiations of 5,3'-dimethyl-2,2'-dinitrodiphenylmethanes in neutral, acidic and alkaline media[J]. Indian J. Chem., Sect B. 1983, 23B(5): 432-6
    [121] Ceraulo, L.; Filizzola, F.; Fontana, G.; Lamartina, L.; Natoli, M. C. Substituent effects on the formation of benzyl ions from ortho-methoxy substituted 1,1-diarylalkanes under electron ionization: correlations between the abundance of the process and the 13C-NMR chemical shifts of the neutral precursors[J]. ARKIVOC 2002, 11: 123-141
    [122] McKinnon, D. M.; Duncan, K. A. The 2,1-benzisothiazolo[2,3-b]-2,1-benzisothiazole system, synthesis and properties[J]. J. Heterocycl. Chem. 1988, 25(4): 1059-8
    [123] Giumanini, A. G..; Geatti, P.; Verardo, G.. Nitration of Diphenylmethane and the Isomeric Nitrodiphenylmethanes in Dichloromethane[J]. Industrial & Engineering Chemistry Research, 2002, 41(8): 1929-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700