基于金属基底纳/微米电极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要从以金属为基底合成纳/微米电极材料的角度出发,通过原位反应,调控各种反应参数,探索并制备了几种具有不同形貌的电极材料,并进一步对其电化学性质进行了研究。
     研究表明,对超级电容器而言,目前的工作主要是围绕寻找其它廉价材料代替RuO_2或寻找合适的电极材料组装成混合超级电容器。本论文把重点放在以金属为基底合成具有各种形貌的纳/微米电极材料。我们探索用Ni代替Ru作为超级电容器电极材料。通过控制反应条件并与水热法相结合,使沉淀和沉积过程同时进行,避免了传统的压片法制成电极的复杂过程。这种直接制成电极的方法便于电化学表征和实际的装置应用。
     此外,由于具有两亲特性的表面活性剂分子能作为软模板在溶液中通过自聚形成多种形态的两亲分子有序组合体,能够通过其长分子链的位阻效应避免粒子的团聚,起到稳定,分散,调控和导向作用。本论文中,分别使用金属锌箔和铜箔作为基底,通过水热反应分别在阴阳离子混合表面活性剂和单一表面活性剂两种体系控制得到了对应的金属氧化物,硫化物纳/微米结构,通过电流取代法制备了各种形貌的Ag。
     为了得到综合性能优异的电极材料,本论文创新性地通过原位法,并与水热法,沉积法相结合探索在金属表面直接生长不同形貌的电极材料,并对其进行了表征和应用研究。
Energy storage is the fundamental problem of new energy development, while the development of energy storage device depends largely on the progress of new materials. The properties of the materials are closely related to its structure. Therefore, the development of facile and effective methodologies for rational control over the morphologies and size of the nanostructures are the prerequisite for practical applications in micro-electronic devices, energy storage and conversion. As to an advanced supercapacitor device, the preparation and modification of the electrode materials is the key now. How to find and prepare a desirable active electrode material with high capacity performance is the most important to optimal device performance. The paper focuses on the design and controlled synthesis of nano/micro structures on metallic substrates as electrode materials. Because this structure not only has the large surface area as the general film structure, but also has regular and ordered electrical channel, and could form strong electrical and mechanical contact with the sunbstrate materials. At the same time, we optimize its preparation method and improve the utilization of material and study their electrochemical performance.
     We explore the using Ni instead of Ru as electrode material. The simple synthesis system composed only of water, Ni(NO_3)_2 and NaOH, the effects of synthesis conditions, including nickel raw materials, precipitating agent, reactants molar ratio, reaction temperature, reaction time, are investigated in detail. We identified optimal reaction conditions. In order to improve the utilization of electrode materials, we control the reaction conditions by hydrothermal treatment, make the process of the formation of Ni(OH)_2 precipitation and the deposition on nickel foam simultaneously. Such deposit has strong absorption and could increase the effective utilization of active material due to the high temperature and pressure in the hydrothermal process. At the same time, it avoids the traditional complex process of the forming of electrodes by the re-pressed process on the nickel foam with additives, carbon black and binder. We investigated the electrochemical properties of the prepared material by cyclic voltammetry and constant current charge-discharge test. The results show that the effective utilization of the unique Ni(OH)_2 structure helps improving the electrochemical capacitance behavior, and the as-fabricated Ni(OH)_2 electrode displays a maximum specific capacitance as high as 1778 F g~(-1) at a current density of 0.25 A g~(-1) in 2 M KOH electrolyte. NiO is final obtained by calcination the as-prepared Ni(OH)_2 in muffle furnace at high temperature,which can also be used as electrode materials for application in supercapacitors.
     In our cetyltrimethylammonium bromide (CTAB)/sodium dodecyl sulfate (SDS) mixed cationic and anionic surfactants system, ZnO nanosheets and nanoplates are obtained by directly oxidation of zinc foil surface in peroxydisulfate (APS) alkaline solution and ethylenediamine (en), respectively,by using zinc foil as both zinc source and substrate. A series of control experiments show that many reaction parameters, such as surfactant types, hydrothermal temperature and concentration of reactants have a direct influence on the morphologies. The reason that ZnO nanostructures obtained in different reaction medium (NaOH and APS or en aqueous) possess different morphologies is because of different surface oxidation process. In addition, the CTAB/SDS mixed cationic and anionic surfactants system can be used as structure-directing agents or capping agents to modulate the growth of nano-materials by their synergy. Finally, Raman, photoluminescence and electrochemical test are used to characterize the obtained products.
     In CTAB/SDS mixed cationic and anionic surfactants system, Cu_2O nano/microstructures were grown directly on copper foil substrates by controlled surface-oxidation in APS alkaline aqueous solutions, by using copper foil to serve as both copper source and substrate. A reasonable formation mechanism was proposed based on the experimental results, and photoluminescence and electrochemical test are used to characterize the obtained products. According to the reaction principle that copper foil can be used as copper source, we explore the direct formation of copper sulfide on the surface of the copper foil. Cu_2S nanostructures are obtained via a facile one-step hydrothermal process using en and distilled water as co-solvent and CTAB as surfactant. To our surprised, Cu_2S nanosheets and hexagonal nanoplates have been synthesized respectively on either side of a copper substrate. This difference is mainly caused by different growing environment. In addition, we also examined the effect of the amount of solvent, adding other copper source, pH value on the morphologies of Cu_2S nanostructures.
     We have further explored the simple method to directly generate nano/micro structures on the surface of metal substrate. According to the principle of galvanic displacement, through a simple synthetic system, that is composed only of Zn and AgNO_3 solution , Ag nanostructures with different morphologies have been synthesized on the surface of zinc substrate. The experimental results confirm that synthesis routes, that are solution-dropping and solution-immersion, have direct influences on the morphologies of Ag nanostructures. We made a detailed comparison of the growth process and form mechanism. Then the two synthesis routes have been modified, respectively. The process of solution-dropping is modified by suitable thermal treatment,and for the process of solution-immersion, controlled reaction process could be achieved by introducing various additives to reduction reaction rate. The obtained Ag nanostructure could serve as excellent active substrate material for SERS detection of low concentration target molecules.
     Based on the research in this thesis, synthesis of nano/micro structures on metallic substrates as electrode materials, through the regulation of morphology to optimize its performance, particularly in electrochemical performance, several conclusions are drawn in the following:
     (1) For the synthesis of nano/micro structures on metallic substrates, this easy way that by the direct growth of hydroxide, oxide and sulfide on corresponding metal surfaces, provides the experimental basis for practical device applications.
     (2) The surfactant with amphiphilic molecules properties can be used as soft template in solution to form amphiphilic molecular assembly by self-polymerization, it can also prevent particles aggregation due to its steric effect of the long molecular chain, and play the role of stabilizing agent, dispersing agent, control and guidance functions. When the reaction system has the ligand with strong coordination ability, they could complex with metal atoms and adsorbed on the surface of the nanocrystal, which play a similar role as the amphiphilic molecules.
     (3) The essence of the galvanic displacement is active metal can replacement out the non-active metal from its salt solution.
引文
[1]Becker H I, US, 2800616[P]. 1957-07-23.
    [2]Zhang Yong, Feng Hui, Wu Xingbing, Wang Lizhen, Zhang Aiqin, Xia Tongchi, Dong Huichao, Li Xiaofeng, Zhang Linsen, Progress of electrochemical capacitor electrode materials: A review[J]. International Journal of Hydrogen Energy, 2009, 128(1): 56-61.
    [3]Stephane F, Agnieszka K, Christos C, Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution[J]. Electrochemistry Communications, 2010, 12(1): 172-174.
    [4]Wang Xiaomei, Hu Jiming, Zhang Jianqing, Cao Chunan, Electrochemical Activity of IrO2 Electrodes in Aqueous Solutions Containing 4-Chlorophenol[J]. Acta Physico-Chimica Sinica 2009, 25(9): 1725-1730.
    [5]Reddy R N, Reddy R G,Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material[J]. Journal of Power Sources, 2004, 132(1-2): 315-320.
    [6]Li Jianling, Gao Fei, Jing Yan, Miao Ruiying, Wu Kezhong, Wang Xindong, Electrochemical characterization of MnO2 as the cathode material for a high voltage hybrid capacitor[J]. International Journal of Minerals Metallurgy and Materials, 2009, 16(5): 576-580.
    [7]Yang Xinhui, Wang Yonggang, Xiong Huanming, Xia Yongyao, Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor[J]. Electrochimica Acta, 2007, 53(2): 752-757.
    [8]Zheng Mingbo, Ling Zongxin, Liao Shutian, Yang Zhenjiang, Ji Guangbin, Cao Jieming, Tao Jie, Synthesis of Mesoporous NiO and Co3O4 by Low-temperature Heat-treatment and Their Application to Supercapacitor[J]. Acta Chimica Sinica, 2009, 67(10): 1069-1074.
    [9]Patil U M, Salunkhe R R, Gurav K V, Lokhande C D, Chemically depositednanocrystalline NiO thin films for supercapacitor application[J]. Applied Surface Science, 2008, 255(5): 2603-2607.
    [10]Cui Li, Li Juan, Zhang Xiaogang, Preparation and properties of Co3O4 nanorods as supercapacitor material[J]. Journal of Applied Electrochemistry, 2009, 39(10): 1871-1876.
    [11]Yang X S, Wang Y, Dong L, WO3-based capacitor-varistor doped with Gd2O3[J]. Materials Chemistry and Physics, 2004, 86(2-3): 253-257.
    [12]Yang Xinsheng, Wang Yu, Dong Liang, Chen Min, Zhang Feng, Qi Lizhen,Effect of CeO2 on the microstructure and electrical properties of WO3 capacitor-varistor ceramics[J]. Materials Science and Engineering B-solid state materials for Advanced Technology, 2004, 110(1): 6-10.
    [13]Huang Jianhua, Lai Qiongyu, Song Jianmei, Chen Lianmei, Ji Xiaoyang, Capacitive performance of amorphous V2O5 for supercapacitor[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(2): 237-242.
    [14]Chen Lianmei, Lai Qiongyu, Hao Yanjing, Zhao Yan, Ji Xiaoyang, Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes[J]. Journal of Alloys and Compounds, 2009, 467(1-2): 465-471.
    [15]Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K,Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes[J]. Solid State Ionics, 2002, 152-153: 833-841.
    [16]Hu Zhongai, Xie Yulong, Wang Yaoxian, Mo Liping, Yang Yuying, Zhang Ziyu, Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2009, 114(2-3): 990-995.
    [17]Wu N L, Kuo S L, Lee M H, Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor[J]. Journal of Power Sources, 2002, 104(1): 62-65.
    [18]Yu Nengfei, Gao Lijun, Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor[J]. Electrochemistry Communications, 2009, 11(1): 220-222.
    [19]Kazaryan S A, Litvinenko S V, Kharisov G G, Self-discharge of heterogeneous electrochemical supercapacitor of PbO2 vertical bar H2SO4 vertical bar C related tomanganese and titanium ions[J]. Journal of the Electrochemical Society, 2008, 155(6): A464-A473.
    [20]Du Xuan, Wang Chengyang, Chen Mingming, Jiao Yang, Wang Jin, Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution[J]. Journal of Physical Chemistry C, 2009, 113(6): 2643-2646.
    [21]Du Xuan, Wang Chengyang, Chen Mingming, Jiao Yang, Electrochemical Properties of Hybrid Supercapacitor with Nanosized Fe3O4/activated Carbon as Electrodes[J]. Journal of Inorganic Materials, 2008, 23(6): 1193-1198.
    [22]Chen Jie, Huang Kelong, Liu Suqin, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor[J]. Electrochimica Acta, 2009, 55(1): 1-5.
    [23]Choi S H, Kim J, Yoon Y S,Fabrication and characterization of a LiCoO2 battery-supercapacitor combination for a high-pulse power system[J]. Journal of Power Sources, 2004, 138(1-2): 360-363.
    [24]Wang Lihong, Takahiro M, Masahiro T, Michio I, Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions[J]. Electrochimica Acta, 2007, 53(2): 882-886.
    [25]Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna P L, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.
    [26]Xing W, Qiao S Z, Ding R G, Li F, Lu G Q, Yan Z F, Cheng H M, Superior electric double layer capacitors using ordered mesoporous carbons[J]. Carbon, 2006, 44(2): 216-224.
    [27]Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T, Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material[J]. Electrochemical and Solid State Letters, 2004, 7(8): A221-A223.
    [28]Zhao Yu, Zheng, Mingbo, Cao Jieming, Ke Xingfei, Liu Jinsong, Chen Yongping, Tao Jie, Easy synthesis of ordered meso/macroporous carbon monolith foruse as electrode in electrochemical capacitors[J]. Materials Letters, 2008, 62(3): 548-551.
    [29]Fang, Baizeng, Binder Leo, Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor[J]. Electrochimica Acta, 2007, 52(24): 6916-6921.
    [30]Taira A, Ichiro M, Koji Y, Masayuki M, Analyses of capacity loss and improvement of cycle performance for a high-voltage hybrid electrochemical capacitor[J]. Journal of the Electrochemical Society, 2007, 154(8): A798-A804.
    [31]Taira A, Ichiro M, Koji Y, Masayuki M, High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode[J]. Journal of Power Sources, 2007, 166(2): 462-470.
    [32]Xu Bin, Wu Feng, Chen Shi, Zhang Cunzhong, Cao Gaoping, Yang Yusheng, Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors[J]. Electrochimica Acta, 2007, 52(13): 4595-4598.
    [33]Yuichi H, Tetsuhisa H, Masayuki T, Hideki S, Takaharu K, Masashi I, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance[J]. Electrochemical and Solid State Letters, 2007, 10(4): A106-A110.
    [34]Conway B E. Electrochemical Supercapacitiors-Scientific Fundamentals and Technological Application[M]. New York: Kluwer Academic/Plenum, 1999.
    [35]Kim Il H, Kim K B, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications[J]. Journal of the Electrochemical Society, 2006, 153(2): A383-A389.
    [36]Sugimoto W, Iwata H, Murakami Y, Takasu Y, Electrochemical capacitor behavior of layered ruthenic acid hydrate[J]. Journal of the Electrochemical Society, 2004, 151(8): A1181-A1187.
    [37]Gao Bo, Zhang Xiaogang, Yuan Changzhou, Li Juan, Yu Long, Amorphous Ru1-yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors[J]. Electrochimica Acta, 2006, 52(3): 1028-1032.
    [38]Chen Zhaoyong, He Yi, Li Zhijie, Gao Lizhen, Jian Qiyu, Zuo Long, Synthesisand electrochemical performance of spinel LiMn2O4-x(SO4)x cathode materials[J]. Chinese Journal of Chemistry, 2002, 20(2): 194-197.
    [39]Pang S C, Anderson M A, Chapman T W, Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society, 2000, 147(2): 444-450.
    [40]Yang Guangwu, Xu Cailing, Li Hulin, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance[J]. Chemical Communications, 2008, (48): 6537-6539.
    [41]Lang Junwei, Kong Lingbin, Wu Weijin, Luo Yongchun, Kang Long, Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J]. Chemical Communications, 2008, (35): 4213-4215.
    [42]Manjunath S, Koppalkar Anil Kumar, Prasad M V N Ambika, Dielectric Spectroscopy of Polyaniline/Stanic Oxide (PANI/SnO2) Composites[J]. Ferroelectrics 2008, 336(1): 22-28.
    [43]Zhang Zhongjie, Chen Xiangying, Wang Bainian, Shi Chengwu, Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties[J]. Journal of Crystal Growth, 2008, 310(24): 5453-5457.
    [44]Kuo S L, Wu N L, Electrochemical capacitor of MnFe2O4 with organic Li-ion electrolyte[J]. Electrochemical and Solid State Letters, 2007, 10(7): A171-A175.
    [45]Florence F, Hoang A H, Livain B, Daniel B , Poly(cyano-substituted diheteroareneethylene) as active electrode material for electrochemical supercapacitors[J]. Chemistry of Materials, 2000, 12(9): 2581-2589.
    [46]Drachev A I, Gil'man A B, Obolonkova E S, Kuznetsov A A, Semiconductive polymer layers obtained by plasma polymerization of 1-amino-9,10-anthraquinone in dc discharge[J]. Synthetic Metals, 2004, 142(1-3): 35-40.
    [47]Drachev A I, Gil'man A B, Shklyarova E I, Dorofeeva T V, Kuznetsov A A, Conducting polymer layers obtained by direct-current discharge polymerization of 1-amino-9,10-anthraquinone[J]. High energy Chemistry, 2003, 37(3): 196-200.
    [48]Drachev A I, Shklyarova E I, Dorofeeva T V, Gil'man A B, Kuznetsov A A,Electroconductive polymer films obtained by plasma polymerization of 1-amino-9,10-anthraquinone[J]. Russian Chemical Bulletin, 2002, 51(3): 554.
    [49]Zhang Jing, Kong Lingbin, Wang Bin, Luo Yongchun, Kang Long, In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors[J]. Synthetic Metals, 2009, 159(3-4): 260-266.
    [50]Arabale G, Wagh D, Kulkarni M, Mulla I S, Vernekar S, Vijayamohanan P K, Rao A M, Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide[J]. Chemical Physics Letters, 2003, 376(1-2): 207-213.
    [51]Chen J H, Huang Z P, Wang D Z, Yang S X, Wen J G, Ren Z F, Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays[J]. Applied Physics A-Materials Science and Processing, 2001, 73(2): 129-131.
    [52]Fang Yueping, Liu Jianwei, Yu D J, Wicksted J P, Kalkan K, Topal C O, Flanders B N, Wu J, Li Jun, Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition[J]. Journal oF Power Sources, 2010, 195(2): 674-679.
    [53]Han Gaoyi, Yuan Jinying, Shi Gaoquan, Wei Fei , Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films[J]. Thin Solid Films, 2005, 474(1-2): 64-69.
    [54]Wu N L, Nanocrystalline oxide supercapacitors[J]. Materials Chemistry and Physics, 2002, 75(1-3): 6-11.
    [55]Wu Hui, Zhang Rui, Liu Xinxin, Lin Dandan, Pan Wei, Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties[J]. Chemistry of Materials, 2007, 19(14): 3506-3511.
    [56]Pan Caofeng, Zhu Jing, The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires[J]. Journal of Materials Chemistry, 2009, 19(7): 869-884.
    [57]Tsao F C, Chen J Y, Kuo C H, Chi G C, Pan C J, Huang P J, Tun C J, Pong B J, Hsueh T H, Chang C Y, Pearton S J, Ren F, Residual strain in ZnO nanowires grownby catalyst-free chemical vapor deposition on GaN/sapphire (0001)[J]. Applied Physics Letters, 2008, 92(20): 203110.
    [58]Kuo Chinguo, Chen Chienchon, Technique for self-assembly of tin Nano-particles on anodic aluminum oxide (AAO) templates[J]. Materials Transactions, 2009, 50(5): 1102-1104.
    [59]Cui Yuntao, Wang Jinshu, Li Hongyi, Wang Zhenzhen, Effects of AAO template on the surface microstructure of TiO2 Nanoarray films fabricated by liquid phase deposition[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(7): 1274-1278.
    [60]Meng Xiuxia, Yang Naitao, Tan Xiaoyao, Preparation of polyelectrolyte Nanotubes by a pressure-filter-template technique using microporous anodic aluminum oxide (AAO) as the template[J]. Chinese Journal of Chemistry, 2009, 27(10): 1925-1928.
    [61]Wang Kai, Chen Jiajun, Zhou Weilie, Zhang Yong, Yan Yanfa, Pern John, Mascarenhas Angelo, Direct growth of highly mismatched type IIZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications[J]. Advanced Materials, 2008, 20(17): 3248-3253.
    [62]Kuo C L, Huang M H, The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates[J]. Nanotechnology, 2008, 19, (15): 155604.
    [63]Wang Hua, Quan Xie, Zhang Yaobin, Chen Shuo, Direct growth and photoelectrochemical properties of tungsten oxide nanobelt arrays[J]. Nanotechnology, 2008, 19(6): 065704.
    [64]Hu F, Chan K C, Yue T M, Morphology and growth of electrodeposited cuprous oxide under different values of direct current density[J]. Thin Solid Films, 2009, 518(1): 120-125.
    [65]Pradhan D, Leung K T, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition[J]. Langmuir, 2008, 24(17): 9707-9716.
    [66]Li Zongmu, Xu Faqiang, Sun Xiuyu, Zhang Wenhua, Oriented attachment in vapor: Formation of ZnO three-dimensional structures by intergrowth of ZnOmicrocrystals[J]. Crystal Growth & Design, 2008, 8(3): 805-807.
    [67]Varghese B, Reddy M V, Zhu Yanwu, Lit C S, Hoong, T C, Rao G V S, Chowdari B V R, Wee A Thye Shen, Lim C T, Sow C H, Fabrication of NiO nanowall electrodes for high performance lithium ion battery[J]. Chemistry of Materials, 2008, 20(10): 3360-3367.
    [68]Patil U M, Gurav K V, Fulari V J, Lokhande C D, Joo Oh Shim, Characterization of honeycomb-like "β-Ni(OH)2" thin films synthesized by chemical bath deposition method and their supercapacitor application[J]. Journal of Power Sources, 2009, 188(1): 338-342.
    [69]Soumitra K, Apurba D, Subhadra C, Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. Journal of Physical Chemistry B, 2006, 110(36): 17848-17853.
    [70]Soumitra K, Swadeshmukul S, ZnO nanotube arrays and nanotube-based paint-brush structures: A simple methodology of fabricating hierarchical nanostructures with self-assembled junctions and branches[J]. Journal of Physical Chemistry C, 2008, 112(22): 8144-8146.
    [71]Chang C H, Rheem Y, Choa Y H, Shin D H, Park D Y, Myung N V, Bi and Te thin films synthesized by galvanic displacement from acidic nitric baths[J]. Electrochimica Acta, 2010, 55(3): 743-752.
    [72]Li Haohua, Liang Chaolun, Liu Meng, Zhong Kuan, Tong Yexiang, Liu Peng, Hope Greg A., Synthesis of indium nanowires by galvanic displacement and their Optical properties[J]. Nanoscale Research Letters, 2009, 4(1): 47-53.
    [73]Albert G, Ian L, Carlo C, Roya M, Silver nanostructures on silicon based on galvanic displacement process[J]. Journal of Physical Chemistry C, 2009, 113(39): 16939-16944.
    [74]Tveritinova Evgeniya A, Maksimov Yurii M, Zhitnev Yurii N, Podlovchenko Boris I, Lunin Valery V, Use of galvanic displacement in the synthesis of a Pd(Cu) hydrodechlorination catalyst[J]. Mendeleev Communications, 2010, 20(1): 10-11.
    [75]Rheem Y, Chang C H, Hangarter Carlos M, Park D Y, Lee K H, Jeong Y S, Myung N V, Synthesis of tellurium nanotubes by galvanic displacement[J].Electrochimica Acta, 2010, 55(7): 2472-2476.
    [76]DaRosa Calvin P, Iglesia Enrique, Maboudian Roya, Copper deposition onto silicon by galvanic displacement: Effect of Cu complex formation in NH4F solutions[J]. Electrochimica Acta, 2009, 54(12): 3270-3277.
    [77]Yan Chenglin, Xue Dongfeng, A modified electroless deposition route to dendritic Cu metal nanostructures[J]. Crystal Growth & Design, 2008, 8(6): 1849-1854.
    [78]Vasilic R, Viyannalage L T, Dimitrov N, Epitaxial growth of Ag on Au(111) by galvanic displacement of Pb and Tl monolayers[J]. Journal of the Electrochemical Society, 2006, 153(9): C648-C655.
    [79]Hu Xianluo, Yu Jimmy C., Gong Jingming, Li Quan, A facile surface-etching route to thin films of metal iodides[J]. Crystal Growth & Design, 2007, 7(2): 262-267.
    [80]Li J, Papadopoulos C, Xu J M, Highly-ordered carbon nanotube arrays for electronics applications[J]. Applied Physics Letters, 1999, 75(3): 367-369.
    [81]Brejna Przemyslaw R, Griffiths Peter R, Yang Jyisy, Nanostructural silver and gold substrates for surface-enhanced raman spectroscopy measurements prepared by galvanic displacement on germanium disks[J]. Applied Spectroscopy, 2009, 63(4): 396-400.
    [82]Vasquez B, Pablo J, Hicham F, Single-molecule SERRS detection platforms obtained via galvanic displacement on silver fractals[J]. Journal of Physical Chemistry C, 2009, 113(29): 12897-12900.
    [83]Sun Xianzhong, Lin Linhan, Li Zhengcao, Zhang Zhengjun, Feng Jiayou, Fabrication of silver-coated silicon nanowire arrays for surface-enhanced Raman scattering by galvanic displacement processes[J]. Applied Surface Science, 2009, 256(3): 916-920.
    [84]Sharma J, Tai Yian, Imae T, Synthesis of Confeito-Like Gold Nanostructures by a Solution Phase Galvanic Reaction[J]. Journal of Physical Chemistry C, 2009, 112(29): 17033-17037.
    [85]宋薇.几种微纳米结构材料的表面增强拉曼光谱及浸润性质研究[D].长春:吉林大学,2008.
    [86]Jiang Lei, Feng Xinjian, Zhai Jin, Jin Meihua, Song Yanlin, Zhu Daoben, High-yield self-assembly of flower-like ZnO nanostructures[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(6): 1830-1832.
    [87]Gu Changdong, Zhang Tongyi, Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces[J]. Langmuir, 2008, 24(20): 12010-12016.
    [88]Michael H. Huang, Samuel Mao, Henning Feick, Yan Haoquan, Wu Yiying, Hannes Kind, Eicke Weber, Richard Russo, Yang Peidong, Room-Temperature Ultraviolet Nanowire Nanolasers[J]. Science, 2001, 292(5523): 1897-1899.
    [89]Huo Kaifu, Hu Yemin, Fu Jijiang, Wang Xuebin, Chu Paul K., Hu Zheng, Chen Yi, Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate[J]. Journal of Physical Chemistry C, 2007, 111(16): 5876-5881.
    [90]Shao Sifei, Ha Peijun, Liu Shengchun, Bai Wei, Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route[J]. Materials Letters, 2008, 62(8-9): 1200-1203.
    [91]Chen Hongsheng, Qi Jun jie, Zhang Yue, Liao Qing liang, Huang Yun hua, Morphological effects on the field emission characteristics of zinc oxide nanotetrapods films[J]. Frontiers of physics in China, 2007, 2(2): 195-198.
    [92]Patake V D, Lokhande C D, Chemical synthesis of nano-porous ruthenium oxide (RuO2) zthin films for supercapacitor application[J]. Applied Surface Science, 2008, 254(9): 2820-2824.
    [93]Gujar T P, Shinde V R, Lokhande C D, Kim Woo-Young, Jung Kwang-Deog, Joo Oh-Shim, Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor[J]. Electrochemistry Communications, 2007, 9(3): 504-510.
    [94]Tao Feifei, Guan Mingyun, Zhou, Yiming, Zhang Li, Xu Zheng, Chen Jun, Fabrication of nickel hydroxide microtubes with micro- and nano-scale composite structure and improving electrochemical performance[J]. Crystal Growth & Design, 2008, 8(7): 2157-2162.
    [95]Yang Dongning, Wang Rongming, He Maoshuai, Zhang Jin, Liu Zhongfan,Ribbon- and boardlike nanostructures of nickel hydroxide: Synthesis, characterization, and electrochemical properties[J]. Journal of Physical Chemistry B, 2005, 109(16): 7654-7658.
    [96]Yang Lixia, Zhu Yingjie; Tong Hua, Liang Zhenhua, Wang Weiwei, Hierarchicalβ-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks[J]. Crystal Growth & Design, 2007, 7(12): 2716-2719.
    [97]Dong Lihong, Chu Ying, Sun Wendong, Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies[J]. Chemistry-A European Journal, 2008, 14(16): 5064-5072.
    [98]Luo Yuanyuan, Li Guanghai, Duan Guotao, Zhang Lide, One-step synthesis of sphericalα-Ni(OH)2 nanoarchitectures[J]. Nanotechnology, 2006, 17(16): 4278-4283.
    [99]Kuang Daibin, Lei Bingxin, Pan Yuping, Yu Xiaoyun, Su Chengyong, Fabrication of Novel Hierarchicalβ-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process[J]. Journal of Physical Chemistry C, 2009, 113(14): 5508-5513.
    [100]Cao Minhua, He Xiaoyan, Chen Jun, Hu Changwen, Self-assembled nickel hydroxide three-dimensional nanostructures: A nanomaterial for alkaline rechargeable batteries[J]. Crystal Growth & Design, 2007, 7(1): 170-174.
    [101]Luo Yuanyuan, Duan Guotao, Li Guanghai, Synthesis and characterization of flower-likeβ-Ni(OH)2 nanoarchitectures[J]. Journal of Solid State Chemistry, 2007, 180(7): 2149-2153.
    [102]Zhang Shengmao, Zeng Huachun, Self-Assembled Hollow Spheres ofβ-Ni(OH)2 and Their Derived Nanomaterials[J]. Chemistry of Materials, 2009, 21(5): 871-883.
    [103]Qi Yajun, Qi Hongyan, Li Jinhua, Lu Chaojing, Synthesis, microstructures and UV-vis absorption properties ofβ-Ni(OH)2 nanoplates and NiO nanostructures[J]. Journal of Crystal Growth, 2008, 310(18): 4221-4225.
    [104]Xiong Shenglin, Yuan Changzhou, Zhang Maogang, Xi Baojuan, Qian Yitai, Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors[J]. Chemistry-A European Journal,2009, 15(21): 5320-5326.
    [105]Hansung Kim, Branko N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method[J]. Journal of Power Sources, 2002, 104(1): 52-61.
    [106]Liu H B, Xiang L, Jin Y, Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability[J]. Crystal Growth & Design, 2006, 6(1): 283-286.
    [107]Zheng Yanzhen, Ding Haiyang, Zhang Milin, Preparation and electrochemical properties of nickel oxide as a supercapactior electrode material[J]. Materials Research Bulletin, 2009, 44(2): 403-407.
    [108]Hong Sangsu, Joo Taiha, Park Won Il, Jun Yong Ho, Yi Gyu-Chul, Time-resolved photoluminescence of the size-controlled ZnO nanorods[J]. Applied Physics Letters, 2003, 83(20): 4157-4159.
    [109]Park W. I, Jun Y. H, Jung S. W, Yi Gyu-Chul, Excitonic emissions observed in ZnO single crystal nanorods[J]. Applied Physics Letters, 2003, 82(6): 964-966.
    [110]Gao Puxian, Lao Changshi, Ding Yong, Wang Zhonglin, Metal/semiconductor core/shell nanodisks and nanotubes[J]. Advanced Functional Materials, 2006, 16(1): 53-62.
    [111]Yang Yong1iang, Du Gaohui, Ding Wei, Li Jie, Li Tianbao, Xu Bingshe, Synthesis, Structure and Optical Characteristics of ZnO Complex with Nano-plates/Micro-rods[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(2): 300-304.
    [112]Yan Xiaodong, Li Zhengwei, Zou Chongwen, Li Sean, Yang Jack, Chen Ray, Han Jie, Gao Wei, Renucleation and Sequential Growth of ZnO Complex Nano/Microstructure: From Nano/Microrod to Ball-Shaped Cluster[J]. Journal of Physical Chemistry C, 2010, 114(3): 1436-1443.
    [113]Suchanek Wojciech L, Systematic study of hydrothermal crystallization of zinc oxide (ZnO) nano-sized powders with superior UV attenuation[J]. Journal of Crystal Growth, 2009, 312(1): 100-108.
    [114]Lei Hua, Xu Tao, Gao Chuantao, Characterization of the dispersion oftetrapod-like nano-ZnO whiskers in acrylic resin and properties of the nano-composite coating system[J]. Journal of Coatings Technology and Research, 2010, 7(1): 91-97.
    [115]Khranovskyy V, Tsiaoussis I, Yazdi G R, Hultman L, Yakimova R, Heteroepitaxial ZnO nano hexagons on p-type SiC[J]. Journal of Crystal Growth, 2010, 312(2): 327-332.
    [116]Yadav B C, Srivastava Richa, Dwivedi C D, Pramanik P, Synthesis of nano-sized ZnO using drop wise method and its performance as moisture sensor[J]. Sensors and Actuators A-Physical, 2009, 153(2): 137-141.
    [117]Wang Xiangyan, Wang Zhiliang, Tian Hanmin, Zhang Jiyuan, Yu Tao, Yu Zhentao, Zou Zhigang, Preparation of hollow ZnO spheres with hierarchical micro/nano architectures and photoelectric conversion property[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(11): 1893-1897.
    [118]Wu Yaping, Zhang Xianhua, Xu Fuchun, Zheng Lansun, Kang Junyong, A hierarchical lattice structure and formation mechanism of ZnO nano-tetrapods[J]. Nanotechnology, 2009, 20(32): 325709.
    [119]Li Yan, Liu Chuansheng, Zou Yunling, Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method[J]. Chemical Papers, 2009, 63(6): 698-703.
    [120]Huo Chunqing, Zhang Yuefei, Liu Fuping, Chen Qiang, Meng Yuedong, Different Shapes of Nano-ZnO Crystals Grown in Catalyst-Free DC Plasma[J]. Plasma Science & Technology, 2009, 11(5): 564-568.
    [121]Tang Qun, Zhou Wenjia, Shen Jianmin, Zhang Wu, Kong Lingfen, Qian Yitai, A template-free aqueous route to ZnO nanorod arrays with high optical property[J]. Chemical Communications, 2004, (6): 712-713.
    [122]Wang Yuxin, Li Xinyong, Lu Guang, Quan Xie, Chen Guohua, Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities[J]. Journal of Physical Chemistry C, 2008, 112(19): 7332-7336.
    [123]Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Optical properties of the ZnO nanotubes synthesized via vapor phase growth[J]. Applied Physics Letters, 2003,83(9): 1689-1691.
    [124]Umar Ahmad, Hahn Y B, ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties[J]. Nanotechnology, 2006, (17): 2174–2180.
    [125]Yu Shiyong, Zhang Hongjie, Peng Zeping, Sun Lining, Shi Weidong, Template-free fabrication of hexagonal ZnO microprism with an interior space[J]. Inorganic Chemistry, 2007, 46(19): 8019-8023.
    [126]Lu Conghua, Qi Limin, Yang Jinhu, Tang Li, Zhang Dayong, Ma Jiming, Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate[J]. Chemical Communications, 2006, (33): 3551-3553.
    [127]Wu Xufeng, Bai Hua, Li Chun, Lu Gewu, Shi Gaoquan, Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature[J]. Chemical Communications, 2006, (15): 1655-1657.
    [128]Yang Heqing, Song Yuzhe, Li Li, Ma Junhu, Chen Dichun, Mai Shuling, Zhao Han, Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3 center dot H2O hydrothermal system[J]. Crystal Growth & Design, 2008, 8(3): 1039-1043.
    [129]Liu Yang, Chu Ying, Li Lili, Dong Lihong, Zhuo Yujiang, Controlled fabrication of highly oriented ZnO microrod/microtube arrays on a zinc substrate and their photoluminescence properties[J]. Chemistry-A European Journal, 2007, 13(23): 6667-6673.
    [130]Shi Hongtao, Wang Xiaohong, Zhao Nana, Qi Limin, Ma Jiming, Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers[J]. Journal of Physical Chemistry B, 2006, 110(2): 748-753.
    [131]Shen Guozhen, Chen Di, Lee Cheol Jin, Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces[J]. Journal of Physical Chemistry B, 2006, 110(32): 15689-15693.
    [132]Shivkumar R, Kalaignan G Paruthimal, Vasudevan T, Studies with porous zinc electrodes with additives for secondary alkaline batteries[J]. Journal of Power Sources, 1998, 75(1): 90–100.
    [133]Burda C, Chen Xiaobo, Narayanan R, Mostafa A El-Sayed, Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4): 1025-1102.
    [134]Yang Z, Chiang C K, Chang H T, Synthesis of fluorescent and photovoltaic Cu2O nanocubes[J]. Nanotechnology, 2008, 19(2): 025604.
    [135]Xia Younan, Yang Peidong, Sun Yugang, Wu Yiying, Mayers Brian, Gates Byron, Yin Yadong, Kim Franklin, Yan Haoquan, One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced Materials, 2003, 15(5): 353-389.
    [136]Zhao Wenyan, Fu Wuyou, Yang Haibin, Tian Chuanjin, Ge Ruixia, Wang Chunjie, Liu Zhanlian, Zhang Yanyan, Li Minghui, Li Yixing, Shape-controlled synthesis of Cu2O microcrystals by electrochemical method[J]. Applied Surface Science, 2010, 256(7): 2269-2275.
    [137]Calderon C A, Ojeda C, Macagno V A, Paredes-Olivera P, Patrito E M, Interaction of Oxidized Copper Surfaces with Alkanethiols in Organic and Aqueous Solvents. The Mechanism of Cu2O Reduction[J]. Journal of Physical Chemistry C, 2010, 114(9): 3945-3957.
    [138]Yu Guangwei, Hu Xiaobo, Liu Duo, Sun Daliang, Li Jing, Zhang Huaijin, Liu Hong, Wang Jiyang, Electrodeposition of submicron/nanoscale Cu2O/Cu junctions in an ultrathin CuSO4 solution layer[J]. Journal of Electroanalytical Chemistry, 2010, 638(2): 225-230.
    [139]Sui Yongming, Fu Wuyou, Yang Haibin, Zeng Yi, Zhang Yanyan, Zhao Qiang, Li Yangen, Zhou Xiaoming, Leng Yan, Li Minghui, Zou Guangtian, Low Temperature Synthesis of Cu2O Crystals: Shape Evolution and Growth Mechanism[J]. Crystal Growth & Design, 2010, 10(1): 99-108.
    [140]Lee Woo-ram, Piao Longhai, Park Cheol-Hee, Lim Young Soo, Do Young Rag, Yoon Sungho, Kim Sang-Ho, Facile synthesis and size control of spherical aggregates composed of Cu2O nanoparticles[J]. Journal of Colloid and Interface Science, 2010, 342(1): 198-201.
    [141]Jimenez-Cadena G, Comini E, Ferroni M, Sberveglieri G, Synthesis of Cu2Obi-pyramids by reduction of Cu(OH)2 in solution[J]. Materials Letters, 2010, 64(3): 469-471.
    [142]Cao Yuebin, Fan Junmei, Bai Liuyang, Yuan Fangli, Chen Yunfa, Morphology evolution of Cu2O from octahedra to hollow structures[J]. Crystal Growth & Design, 2010, 10(1): 232-236.
    [143]Zhou Bo, Liu Zhiguo, Wang Hongxia, Zhao Lijun, Liu Weilong, Su Wenhui, Visible photocatalytic activity of flowerlike Cu2O/Cu nanocomposites[J]. Chemical Journal of Chinese Universities-Chinese, 2010, 31(1): 141-144.
    [144]Wang Wenzhong, Zhang Pengcheng, Peng Lei, Xie Wenjuan, Zhang Guling, Tu Ya, Mai Weijie, Template-free room temperature solution phase synthesis of Cu2O hollow spheres[J]. CrystEngComm, 2010, 12(3): 700-701.
    [145]Liu Yang, Chu Ying, Li Meiye, Li Lili, Dong Lihong In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process[J]. Journal of Materials Chemistry, 2006, 16(2): 192-198.
    [146]Liu Jinping, Huang Xintang, Li Yuanyuan, Sulieman K. M., He Xiang, Sun Fenglou, Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability[J]. Journal of Materials Chemistry, 2006, 16(45): 4427-4434.
    [147]Ng Choon Hwee Bernard, Fan Wai Yip, Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth[J]. Journal of Physical Chemistry B, 2006, 110(42): 20801-20807.
    [148]Xu Yanyan, Chen Dairong, Jiao Xiuling, Xue Keyan, Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells[J]. Journal of Physical Chemistry C, 2007, 111(44): 16284-16289.
    [149]Gorai S, Ganguli D, Chaudhuri S, Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates[J]. Materials Chemistry and Physics, 2004, 88(2-3): 383-387.
    [150]Patake V D, Joshi S S, Lokhande C D, Joo Oh-Shim, Electrodeposited porous and amorphous copper oxide film for application in supercapacitor[J]. Materials Chemistry and Physics, 2009, 114(1): 6-9.
    [151]Lu Qingyi, Zhao Dongyuan, Creation of a unique self-supported pattern of radially aligned semiconductor Ag2S nanorods[J]. Angewandte Chemie-International Edition, 2002, 41(11): 1932-1934.
    [152]Kuang Daibin, Xu Anwu, Fangm Yueping Liu Hanqin, Frommen Christoph, Fenske Dieter, Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process[J]. Advanced Materials, 2003, 15(20): 1747-1750.
    [153]Wu Zhengcui, Pan Cheng, Yao Zhenyu, Zhao Qingrui, Xie Yi, Large-scale synthesis of single-crystal double-fold snowflake Cu2S dendrites[J]. Crystal Growth & Design, 2006, 6(7): 1717-1719.
    [154]Liu Zhaoping, Xu Dan, Liang Jianbo, Shen Jianming, S Zhang huyuan, Qian Yitai, Growth of Cu2S ultrathin nanowires in a binary surfactant solvent[J]. Journal of Physical Chemistry B, 2005, 109(21): 10699-10704.
    [155]Yu Xuelian, An Xiaoqiang, Controllable hydrothermal synthesis of Cu2S nanowires on the copper substrate[J]. Materials Letters, 2010, 64(3): 252-254.
    [156]Ding Yuanhua, Liu Xiaoxia, Guo Rong, Shape evolution of Cu2S nanostructures in Triton X-100/cyclohexane/water reverse micelles[J]. Materials Research Bulletin, 2008, 43(3): 748-758.
    [157]Zhuang Zhongbin, Peng Qing, Zhang Boce, Li Yadong, Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice[J]. Journal of the American Chemical Society, 2008, 130(32): 10482.
    [158]Xiao Yu, Chen Jun, Deng S Z, Xu N S, Yang Shihe, Preparationof Cu2S dendritic, double-comb-like nanostructures by gas-solid reaction method[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(1): 237-243.
    [159]Yang Ming, Yang Xiao, Huai Lufeng, Liu Wei, Synthesis and characterization of spherical hollow composed of Cu2S nanoparticles[J]. Applied Surface Science, 2008, 255(5): 1750-1753.
    [160]Du Xusheng, Yu Zhongzhen, Dasari Aravind, Ma Jun, Meng Yuezhong, Mai Yiuwing, Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures[J]. Chemistry of Materials, 2006, 18(22): 5156-5158.
    [161]Zhang Peng, Gao Lian, Copper sulfide flakes and nanodisks[J]. Journal ofMaterials Chemistry, 2003, 13(8): 2007-2010.
    [162]Gorai S, Ganguli D, Chaudhuri S, Synthesis of flower-like Cu2S dendrites via solvothermal route[J]. Materials Letters, 2005, 59(7): 826-828.
    [163]Gorai S, Ganguli D, Chaudhuri S, Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process[J]. Crystal Growth & Design, 2005, 5(3): 875-877.
    [164]Panda S K, Gorai S, Chaudhuri S, Shape selective solvothermal synthesis of SnS: Role of ethylenediamine-water solvent system[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006, 129(1-3): 265-269.
    [165]Lu Fang, Cai Weiping, Zhang Yugang, Li Yue, Sun Fengqiang, Heo Sung Hwan, Cho Sung Oh, Fabrication and field-emission performance of zinc sulfide nanobelt arrays[J]. Journal of Physical Chemistry C. 2007, 111(36): 13385-13392.
    [166]Chen Jingyi, Wiley Benjamin J, Xia Younan, One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications[J]. Langmuir, 2007, 23(8): 4120-4129.
    [167]Liu Yang, Chu Ying, Zhuo Yujiang, Dong Lihong, Li Lili, Li Meiye, Controlled synthesis of various hollow Cu nano/microStructures via a novel reduction route[J]. Advanced Functional Materials, 2007, 17(6): 933-938.
    [168]Zhang Junping, Kielbasa Jerrold E, Carroll David L, Nanostructure of the nanopores in anodic aluminum oxide films used as template to fabricate Ag nanowires[J]. Journal of Materials Research, 2009, 24(5): 1735-1740.
    [169]Han Y P, Ye H A, Wu W Z, Shi G, Fabrication of Ag and Cu nanowires by a solid-state ionic method and investigation of their third-order nonlinear optical properties[J]. Materials Letters, 2008, 62(17-18): 2806–2809.
    [170]Li Xueming, Wang Dingsheng, Tang Libin, Dong Kun, Wu Yongjun, Yang Peizhi, Zhang Pengxiang, Controllable synthesis of Ag nanorods using a porous anodic aluminum oxide template[J]. Applied Surface Science, 2009, 255(17): 7529-7531.
    [171]Jiu Jinting, Murai K, Kim D, Kim K, Suganuma K, Preparation of Ag nanorods with high yield by polyol process[J]. Materials Chemistry and Physics, 2009, 114(1):333-338.
    [172]Bai Jingwei, Qin Yao, Jiang Chengyang, Qi Limin, Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns[J]. Chemistry oF Materials, 2007, 19(14): 3367-3369.
    [173]Washio Isao, Xiong Yujie, Yin Yadong, Xia Younan, Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates[J]. Advanced Materials, 2006, 18(13): 1745-1749.
    [174]Song Jinling, Chu Ying, Liu Yang, Li Lili, Sun Wendong, Room-temperature controllable fabrication of silver nanoplates reduced by aniline[J]. Chemical Communications, 2008, (10): 1223-1225.
    [175]Sayed Sayed Y, Wang Feng, Mallac Marek, Meldrum Al Egerton, Ray F, Buriak, Jillian M, Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement[J]. ACS Nano, 2009, 3(9): 2809-2817.
    [176]Rosalinda I, Salvatore P, Carmelo S, Synthesis of self-standing Pd nanowires via galvanic displacement deposition[J]. Electrochemistry Communications, 2009, 11(7): 1385-1388.
    [177]Wen Xiaogang, Xie Yutao, Wing Martin Mak Cheung, Cheung Kwan Yee, Li Xiao Yuan, Renneberg Reinhard, Yang Shihe, Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications[J]. Langmuir, 2006, 22(10): 4836-4842.
    [178]Wang Cheechan, Surfaced-enhanced Raman scattering-active substrates prepared through a combination of argon plasma and electrochemical techniques[J]. Journal of Physical Chemistry C, 2008, 112(14): 5573-5578.
    [179]Lu Y C, Chou K S, Nogami M, Process window for the synthesis of Ag wires through polyol process[J]. Materials Chemistry and Physics, 2009, 116(1): 1-5.
    [180]Kemal L, Jiang X C, Wong K, Yu A B, Experiment and theoretical study of poly(vinyl pyrrolidone)-controlled gold nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(40): 15656-15664.
    [181]Huang T K, Chen Y C, Ko H C, Huang H W, Wang C H, Lin H K, Chen F R,Kai J J, Lee C Y, Chiu H T, Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions[J]. Langmuir, 2008, 24(11): 5647-5649.
    [182]Gou Linfeng, Chipara Mircea, Zaleski Jeffrey M, Convenient, rapid synthesis of Ag nanowires[J]. Chemistry of Materials, 2007, 19(7): 1755-1760.
    [183]Sun Yugang, Lei Changhui, Gosztola D, Haasch R, Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates[J]. Langmuir, 2008, 24(20): 11928-11934.
    [184]Hu Jianqiang, Chen Qing, Xie Zhaoxiong, Han Guobin, Wang Ruihong, Ren Bin, Zhang Yong, Yang Zhilin, Tian Zhongqun, A simple and effective route for the synthesis of crystalline silver nanorods and nanowires[J]. Advanced Functional Materials, 2004, 14(2): 183-189.
    [185]Yeonjoo B, Hoon K N, Minjung K, Yeol L K, Woo H S, Anisotropic assembly of Ag nanoprisms[J]. Journal of the American Chemical Society, 2008, 130(16): 5432-5433.
    [186]Wang Cuihong, Sun Dacheng, Xia Xinghua, One-step formation of nanostructured gold layers via a galvanic exchange reaction for surface enhancement raman scattering[J]. Nanotechnology, 2006, 17(3): 651-657.
    [187]Xue Hun, Li Zhaohui, Dong Hui, Wu Ling, Wang Xuxu, Fu Xianzhi, 3D Hierarchical Architectures of Sr2Sb2O7: Hydrothermal syntheses, formation mechanisms, and application in aqueous-phase photocatalysis[J]. Crystal Growth & Design, 2008, 8(12): 4469-4475.
    [188]Lim Byungkwon, Jiang Mojiong, Tao Jing, Camargo Pedro H C, Zhu Yimei, Xia Younan, Shape-controlled synthesis of Pd nanocrystals in aqueous solutions[J]. Advanced Functional Materials, 2009, 19(2): 189-200.
    [189]Guo Zhirui, Zhang Yu, Xu Aiqun, Wang Meng, Huang Lan, Xu Kang, Gu Ning, Layered assemblies of single crystal gold nanoplates: Direct room temperature synthesis and mechanistic study[J]. Journal of Physical Chemistry C, 2008, 112(33): 12638-12645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700