NaBH_4的第一原理计算及SrOD分子的电子结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要工作有两个:1对NaBH4的晶格结构、电子结构、弹性性质进行了计算并比较了两种近似对物性预测的效果;2 SrOD分子的电子结构研究。
     第一章介绍了氢及氢能、储氢原理和储氢材料的研究现状。氢能源作为一种清洁,储量丰富,利用率高的清洁能源引起了广泛的关注。在氢能的利用环节中储氢目前最为关键也是至今没有得到很好解决的一个瓶颈。目前储氢方式主要有:(1)气态储氢;(2)液态储氢;(3)纳米材料储氢;(4)金属氢化物;(5)配位金属氢化物。传统的气态,液态储氢方式由于不安全等因素制约了氢能的储存与运输。而固体储氢材料作为一种安全,运输方便,储氢密度高的储氢方式得到了广泛的研究。
     第二章主要介绍了近似密度函数:局域密度近似(LDA)和广义梯度近似(GGA)。由于LDA是建立在理想的均匀电子气模型基础上,而实际原子和分子体系的电子密度远非均匀的。要进一步提高计算精度,就需要考虑电子密度的非均匀性,所以就得到了GGA。
     第三章介绍了基于密度泛函理论的方法,采用交换关联函数的广义梯度近似(GGA)和局域密度近似(LDA)对NaBH4的晶格结构、电子结构、弹性性质进行了计算并比较了两种近似对物性预测的效果。计算表明GGA在晶格常数,能隙,弹性性质上要比LDA更准确。
     第四章用高斯程序优化了SrOD分子的基态键长。使用molcas程序Caspt2(全活性空间的二阶微扰)方法计算了SrOD分子的键长、键角和相对基态的能量,画出了势能曲线。在计算中,我们发现了试验上没有给出的新态2△,并得到了它的键长和能量。此外,计算确认了C2Π态是非线性结构,印证了实验上关于这个态的猜想。
This paper is consist of two parts:calculations of the structural, electronic and elastic properties of NaBH4 using GGA and LDA of exchange-correlation function, comparison of the two approximation for predicting the physical properties, electronic structure research on SrOD molecular.
     The first chapter is consist of hydrogen, hydrogen storage principle and the situation of the research. As a kind of clean, abundant, high efficient energy carrier, hydrogen has attracted wide concern. In the process of the using of hydrogen, hydrogen storage is the most important part and has yet solved successfully. Methods for hydrogen storage are mainly:(1) gaseous storage, (2) liquid storage, (3) adsorption of nanomaterials, (4) metal hydrides, (5) complex hydride. The traditional gas, liquid storage are not ideal because of the unsafety, difficulties in hydrogen storage and transportation. While solid hydrogen storage materials have been widely studied as one kind of safe, convenient for transportation, high density of hydrogen method.
     The second chapter mainly introduces the approximate density function:Local density approximation (LDA)and Generalized gradient approximation(GGA). Because LDA is based on the ideal uniform electron gas model,electron density of real atoms and molecules in the system is far from uniform. In order to improve the calculation accuracy further, we need to consider the inhomogeneity of electron density. So we got GGA.
     In the third chapter, we calculated the lattice, electronic and elastic properties of NaBH4 based on density function theory with GGA and LDA of exchange-correlation function. Our results indicate that GGA is more favorable than LDA for predicting physical properties, such as lattice constants, band gaps and elastic properties.
     In the fourth chapter, we showed the methods we used to optimize SrOD molecular ground-state bond length using Gaussian code. Furthermore, Molcas program based on the MCSCF using reference state Caspt2 (the second perturbation of active space) are used to calculate the bond length, relative ground-state energy and the potential energy curve (PEC) of SrOD molecules. In conclusions, we found a new state of SrOD, which is not reported by experiments yet and calculated its bond length and PEC. We prove the configuration of C2(?) is nonlinear structure and confirm the conjecture of the experiment.
引文
[1]刘啸锋,马光,李银娥,姜婷,郑晶,储氢材料的研究与进展[M],合成化学,(2007),11:161~164.
    [2]许炜,陶占良,陈军,储氢研究进展[M],化学进展,(2006),18(2/3):200~210.
    [3]A.Zuttel,Materials for hydrogenstorage[M],Materialstoday,(2003),6(9):24-33.
    [4]无机化学(第三版)[M],武汉大学,吉林大学等校编,北京:高等教育出版社,(1998).
    [5]L.Schlapbach,A.Zuttel,Hydrogen-storge matterials for mobile applications[J], Nature, (2001),414:353-358.
    [6]殷景华,王雅珍,鞠刚,功能材料概论[M],哈尔滨:哈尔滨工业大学出版社,(1999)
    [7]刁兆玉,姜云生,孔繁岐,石成法,物理化学[M],济南:山东教育出版社,(1995)
    [8]卢国俭,周仕学,姜瑶瑶,雷桂芹,金属合金及碳材料储氢的研究进展[M],材料导报,(2007),21(3):86~89.
    [9]李式模,黄忠平,氢浆制备特性及其潜在应用[M],真空与低温,1996,2(3):149~152.
    [10]D.J.W.Geldart and M.Rasolt. Phys. Rev., B13:1477,1976.
    [11]J.P.Perdew. Physica, B172:1,1991.
    [12]A.D.Becke. Phys. Rev., A38:3098,1988.
    [13]J.P.Perdew. Phys. Rev., B33:8822,1986.
    [14]J.P.Perdew and Wang Yue. Phys. Rev., B33:8800,1986.
    [15]J.P.Perdew, J.A.Chevary, S.H.Vosko, K.A.Jackson, M.R.Pederson, D.J.Singh, and C.Fiolhais. Phys. Rev., B46:6671,1992.
    [16]J.P.Perdew in. Electronic Structure of Solids 1991. (eds.)P.Ziesche and H.Eschrig, Akademie Verlag, Berlin,1991.
    [17]E.Engel, J.A.Chevary, L.D.Macdonald, and S.H.Vosko. Z. Physik, D23:7,1992.
    [18]D.C.Langreth and.J.Mehl. Phys. Rev., B28:1809,1983.
    [19]D.C.Langreth and J.P.Perdew. Phys. Rev., B21:5469,1980.
    [20]A.D.Becke. J. Chem. Phys.,97:9173,1993.
    [21]J.P.Perdew. Int. J. Quantum Chem. Symp.,27:93,1993.
    [22]T.Zhu, C.Lee, and W.Yang. J. Chem. Phys.,98:4814,1993.
    [23]T.Zhu, C.Lee, and W.Yang. J. Chem. Phys.,99:4239,1993.
    [24]L.J.Sham and M.Schluter. Phys. Rev. Lett.,51:1888,1983.
    [25]L.J.Sham. Phys. Rev., B32:3876,1985.
    [26]K.Schonhammer and O.Gunnarsson. J. Phys., C20:3675,1987.
    [27]W.Hanke, N.Meskini, and H.Weiler in. Electronic Structure, Dynamics, and Quantum Struct- ural Properties of Condensed Matter, volume B121 of NATO ASI Series. (eds.)J.T.DeVreese and P.van Camp, Plenum Press,New York,1985.
    [28]L.Hedin. Phys. Rev.,136:A796,1965.
    [29]L.Hedin, A.Johansson, B.I.Lundqvist, S.Lundqvist, and V.Samathiyakanit. Arkiv for Fysik, 39:97,1968.
    [30]E.L.Shirley and R.M.Martin. Phys. Rev., B47:15404.1993.
    [31]R.W.Godby, M.Schluter, and L.J.Sham. Phys. Rev. Lett.,56:2415,1986.
    [32]Bogdanovic B and Schwichardi M, Vacancy-mediated dehydrogenation of sodium alanate[J]. J.Alloys Compounds 153 (1997),1-9.
    [33]Umit B. Demirci, P. Miele, C. R. Sodium tetrahydroborate as energy/hydrogen carrier, its history[M]. Chim. (2008). Doi:10.1016/j.crci,2008.08.002.
    [34]Geunsik Lee, Jin-Yang Lee, Jai Sam Kim, Ab initio P-T phase diagram of NaBH4[J] Solid State Communications 139 (2006) 516-521.
    [35]Ravhi S. Kumar and Andrew L. Structural transitions in NaBH4 under pressure.Cornelius[J], A. Phys. Lett.87 (2005) 261916.
    [36]C. Moyses Araujo, R. Ahuja, A.V. Talyzin, B. Sundqvist, Pressure-induced structural phase transition in NaBH4[J].Phys. Rev. B 72 (2005) 054125.
    [37]B. Sundqvist and O. Andersson, Low-temperature phase transformation in NaBH4 under pressure[J]. Phys. Rev. B 73 (2006) 092102.
    [38]Y. Filinchuk, A.V. Talyzin, D. Chernyshov, and V. Dmitriev, High-pressure phase of NaBH4:Crystal structure from synchrotron powder diffraction data[J].Phys. Rev. B (2007) 092104.
    [39]Eunja Kim, Ravhi Kumar, Philippe F. Week, Andrew L. Cornelius, Malcolm Nicol, Sven C. Vogel, Jianzhong Zhang, Monika Hartl, Ashley C. Stowe, Luke Daemen, and Yusheng Zhao, Pressure-Driven Phase Transitions in NaBH4:Theory and Experiments[J]. J. Phys. Chem. B 2007,111,13873-13876.
    [40]A. Scrivanti, B. Vicentini, V. Beghetto, G. Chessa, U. Matteoli, Hydrodehalogenation of aromatic chlorides with NaBH4 in the presence of Ni(0) catalysts[J].Inoranic Chemistry Communications 1 (1998)246-248.
    [41]N. Patel, R. Fernandes, A. Miotello, Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst:A kinetic study[J]. J. Power Sources (2008), doi:10,1016/j.jpowsour.2008.11.121.
    [42]H. Ma, et al., Preparation, characterization and catalytic NaBH4 hydrolysis of Co-B hollow spheres[J]. J. Alloys Compd. (2008),doi:10.1016/j.jallcom.2008.07.005. [43] R. Pena-Alonso, A. Sicurelli, E. Callone, G. Carturan, R. Raj, A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells[J]. J. Power Sources 165 (2007) 315-323.
    [44]S.U. Jeong, R.K. Kim, E.A.Cho,H.-J.Kim,S.-W.Nam,I.-H.Oh, S.-A. Hong, S. H. Kim, A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst[J]. J. Power Sources 144 (2005) 129-134.
    [45]Ying Bai, Chuan Wu, Feng Wu, Baolian Yi, Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution[J]. Materials Lett.60 (2006) 2236-2239.
    [46]Chuan Wu, Feng Wu, Ying Bai, Baolian Yi, Huamin Zhang, Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution[J]. Materials Lett.59 (2005) 1748-1751.
    [47]Chuan Wu, Ying Bai, Feng Wu, Fast hydrogen generation from NaBH4 solution accelerated by ferric catalysts[J]. Materials Lett.62 (2008) 4242-4244.
    [48]Yeji Lee, Uoungmi Kim, Harim Jeong, Misook Kang, Hydrogen production from the photocatalytic hydrolysis of sodium borohydride in the presence of In-, Sn-, and Sb-TiO2s[J]. J. Industrial and Engineering Chemistry 14 (2008) 655-660.
    [49]Chen C-W et al., Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH4 solution[J]. International Journal of Hydrogen Energy (2009), doi:10.1016/j.ijhydene.2008.12.077.
    [50]Yingbo Chen, Herm Kim, Ni/Ag/silica nanocomposite catalysts for hydrogen generation from hydrolysis of NaBH4 solution[J]. Materials Lett. (2008) 1451-1454.
    [51]Chan-Li Hsueh, Chuh-Yung Chen, Jie-Ren Ku, Shing-Fen Tsai,Ya-Yi Hsu,Fanghei Tsau,Ming-Shan Jeng, Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution[J].J. Power Sources 177 (2008) 485-492.
    [52]D. Chernyshov, A. Bosak,V. Dmitriev, Y. Filinchuk, and HY. Hagemann, Low-lying phonons in NaBH4 studied by inelastic scattering of synchrotron radiation[J]. Phy.Rev. B 78, 172104(2008).
    [53]Xiao-Dong Zhang, Zhen-Yi Jiang, Yu-Qing Hou, Li-Sha Li, Elastic Properties of NaXH4 (X= B, Al) [J]. J. Phy:Condens. Matter 21 (2009) 275401 [54] Kresse G and Hafner J, Ab initio molecular dynamics for liquid metals[J]. Phy. Rev. B 47 (1993)558.
    [55]Kresse G and Furthmuller J, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Comput. Mater. Sci.6 (1996)15.
    [56]P. Fischer, A. Zuttel, Low-temperature phase transformation in NaBH4 under pressure[J]. Mater. Sci. Forum 443-444 (2004) 287.
    [57]P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvag, Theoretical modeling of hydrogen storage materials:Prediction of structure, chemical bond character, and high-pressure behavior[J] J. Alloy. Compound.404-406 (2005) 377-383.
    [58]P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvag, Structural stability of alkali boron tetrahydrides ABH4 (A= Li, Na, K, Rb, Cs) from first principle calculation[J] J. Alloy. Compound.387 (2005) 97-104.
    [59]P. Vajeeston, P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage[J].Phy. Rev. B 68 (2003) 175506.
    [60]P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvag, Pressure-induced phase of NaAlH4: A potential candidate for hydrogen storage? [J]. Appl. Phys. Lett.82 (2003) 2257.
    [61]Kazutoshi Miwa, Kobuko Ohba, Sin-ichi Towata, First-principles study on lithium borohydride LiBH4[J]. Phys. Rev. B 69 (2004) 245120.
    [62]R. Hill, Proc. First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure[J]. Phys.Soc. London 65,350 (1952).
    [63]W. Voigt, Thermodynamic Definition of Higher Order Elastic Coefficients[J].Lehrbuch der Kristallphysik (Taubner, Leipzig,1928).
    [64]A. Reuss, Z. Angew. Optimal bounds and microgeometries for elastic two-phase composities[J]. Math. Mech.9,55 (1929).
    [65]J.-G.Wang, P.M. Sheridan, M.J.Dick[J], J. Mol. Spectrosc.236(2006) 21-28.
    [66]A.R. Allouche,M. Aubert-Fre'con[J], J.Mol. Spectrosc.163 (1994) 599-603.
    [67]J.-G.Wang, M.J.Dick, P.M. Sheridan[J], J. Mol. Spectrosc.245(2007) 26-33.
    [68]Wai-To Chan, I.P. Hamilton 1,2[J]. Chemical Physics Letters 297 1998.217-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700