聚苯胺复合材料的制备与储能应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学超级电容器(ESC)是近年来发展起来的一种新型储能器件,具有充放电速率快、效率高,对环境无污染,循环寿命长,使用范围广等特点而受到人们的重视。而电极材料是决定其电化学性能的关键。聚苯胺(PANI)由于其合成简单,环境稳定性好,优异的电学性能成为人们的首选材料。而由于纯聚苯胺比容量偏低,循环稳定性差等缺点限制其广泛应用。碳纳米管(CNT)以其独特的电学、力学性能成为一种良好的填充材料,并成为人们研究的热点。而把碳纳米管与聚苯胺复合则可克服彼此的缺点,并能大大提高比容量。
     首先通过有机化学合成法使苯胺单体接枝到碳纳米管表面得到碳纳米管-苯胺材料,之后分别采用化学氧化法、有机化学接枝-电化学沉积聚合联合法和模板法制备出聚苯胺/碳纳米管复合材料。并采用透射电镜、电子扫描电镜、傅立叶红外光谱等测试手段,对材料表面形貌、成分进行了表征;采用循环伏安、恒电流充放电、循环寿命和交流阻抗等测试方法讨论所制备材料在超级电容器电极材料领域的电化学性能。具体研究内容如下:
     1、通过有机化学合成法,使苯胺单体接枝到碳纳米管表面,然后再经化学原位聚合法制备碳纳米管/聚苯胺复合材料。由于精确控制CNTs和PANI之间的结合,充分发挥各自的优点,使它们之间产生协同作用,使得电化学性能得以提高,其电化学比容量可达到152F/g(有机电解液)。同时并讨论不同的羧基位置对复合材料电化学性能的影响。
     2、采用有机化学接枝-电化学沉积聚合联合法制备CNTs/PANI纳米复合材料。首先使功能化的碳纳米管与苯胺反应制备出碳纳米管-苯胺材料,之后并在与苯胺的硫酸溶液中电化学聚合得到聚苯胺/碳纳米管复合材料,并通过不同的电化学聚合速率讨论其对复合材料电容量的影响。结果表明,在聚合速率为20mV/s时生成的聚苯胺/碳纳米管膜具有导电率高,比容量大的电容性能,在电流密度为22A/m2下充放电测试,测其单电极比容量高达397F/g。
     3、以无机材料Fe3O4为模板,将碳纳米管功能化后包裹在模板表面,然后再将苯胺单体接枝在CNT表面,之后采用化学氧化法,将接枝于CNT表面的苯胺单体聚合成聚苯胺,从而制备CNTs/PANI微米空心球复合材料,并在电流密度为3.4A/m2的电流密度下充放电测试,其复合材料比容量可达到185F/g(有机电解液)。
In recent years, supercapacitors as the electrical energy storage systems have attracted growing attention due to quick charge and discharge rate, high efficiency, environmental pollution, long cycle life. The electrode material is the key to determine their electrochemical performances. Polyaniline(PANI) is one of the most intensively investigated conductive polymers due to its environmental stability, special electrical property, low raw material and ease of synthesis, however, because of the disadvantages of the pure polyaniline, such as the low specific capacitance, poor circle stability and so on, its universal application has been limited. Carbon nanotubes (CNTs) as a good filling material with its unique electrical, mechanical properties have been one of the most attractive areas of research. Preparing CNTs and PANI to be composite material could conquer the disadvantages of each other, and increase the specific capacitance.
     Firstly, the aniline was inarched on the surface of the carbon nanotubes by a series of organic reaction. Then, the aniline on the surface of the CNTs was polymerized to PANI by the in situ chemical polymerization, organic chemistry inarching-electrochemistry deposition polymerization and organic chemistry method synthesis. At last, a nanometer composite named as the CNTs/PANI composite were obtained. Constitution and morphology of the obtained CNTs/PANI composite were characterized by Fourier transform infrared spectroscope and scanning electron microscope. And the electrochemical performances of the obtained materials were tested by the cyclic voltammograms, galvanostatic charging/discharging, cycles life, and electrochemical impedance spectroscopy. Specific studies are as follows:
     1、Through organic synthesis, the aniline was grafted on the surface of the carbon nanotubes by series of organic chemistry reactions. Then, the aniline grafted on the CNTs was polymerized to polyaniline by in-situ chemical polymerization. Because of the precise control combination of CNTs and PANI and giving full play to their strengths, it create synergies between them. At last, the methods improve the electrochemical properties. Electrochemical specific capacity can reach 152F/g (organic electrolyte). At the same time,we discuseed that carboxyl different locations of composites have also impact on electrochemical performances of composites.
     2、Preparation of carbon nanotubes/polyaniline nano-composites by organic chemistry inarching-electrochemistry deposition polymerization.Firstly carbon nanotubes-aniline materials were prepared by the reaction of functionalized carbon nanotubes and aniline. Then, the CNTs with the aniline and the other aniline were polymerized in the sulfuric acid solution on the surface of stainless steel by electrochemistry cyclic voltammetry deposition method at the different scanning rate. The experimental results showed that the scanning rate was 20mV/s, the obtained composite had the best conductivity and electrochemical capacitance. The single-electrode special capacitance was up to 397F/g with the 22A/m2 charging-discharging current density.
     3、In this paper, the Fe3O4 was used as a template to prepare carbon nanotube (CNT)/polyaniline (PANI) composite. Firstly, the aniline was grafted on the surface of the CNT by series of organic chemistry reactions. The CNT was absorbed on the surface of the Fe3O4 oxide. Then, the aniline grafted on the CNT was polymerized to PANI by in-situ chemical polymerization. At last, a hollow sphere structure composite was obtained. And the obtained CNTs/PANI composite had high specific capacitance of 185F/g (organic electrolyte) at the current density of 3.4A/m2.
引文
[1]. N.J.Turro,M.F.Chow,C.J.Chung,G.C.Weed,B.Kraeutler. Magnetic Field and Magnetic Isotope Effects on Photoinduced Emulsion Polymerization. Journal of the American Chemical Society, 1980(102):4843-4845.
    [2]. MacDiarmid,A.G.;Kaner,R.B.In Handbook of Conducting Polymers,Skotheim,T.A.Ed,Dkothim Marcel Dekker Inc:New York,1986(1):718-720
    [3]. Miller,J.S. Conducting polymers-materials of commerce. Advanced Materials,1993(5):587-589.
    [4]. Clery D. After years in the dark,electric plastic finally shines. Science,1994(263):1700-1703.
    [5]. E.M.Genies,C.Tsintavis, Redox mechanism and electrochemical behaviour of polyaniline deposits. Journal of the Electrochemical Society,1985(195):109-128.
    [6]. Shaolin Mu, Jinqing Kan. Evidence for the autocatalytic polymerization of aniline.Electrochimica Acta,1996(41):1593-1599.
    [7]. D.E.Stilwell,S.M.Park, Electrochemistry of conductive polymers. Journal of the Electrochemical Society,1988(135):2254-2261.
    [8]. B.Yan,J.Yang,Y.Li,Y.Cao,Synth.Met. Electrochemical adsorption of hydrogen and various ions on polyaniline film. Reactions concerning the first pair of cyclic voltammetric peaks. Synthetic Metals, 1991(44):189-197.
    [9]. T.Kobayashi,H.Yoneyama,H.Tamura, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, Journal of Electroanalytical Chemistry,1984(177):281-291.
    [10]. A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein. Polyaniline:a new concept in conducting polymers. Synthetic Metals,1987(18):285-290.
    [11].G.E.Wnek, A proposal for the mechanism of conduction in polyaniline. Synthetic Metals,1986(15):213-218.
    [12].G.Maret,k.Dransfeld,Strong and Ultrastrong Magnetic Fields and Applications,in F.Herlach (Ed.),Springer,Berlin,1985,143-204.
    [13].E.M.Genies,N.Kuramoto,Electrorheological Properties of Non-aqueous Polyaniline Derivatives Suspensions,Synthetic Metals,1994(68):191-194
    [14].王利祥,王佛松,导电聚合物—聚苯胺的研究进展:电子现象、导电机理、性质和应用.应
    用化学,1996(7):1-8.
    [15].赵文元,王亦军,功能高分子材料学.化学工业出版社,1996,12.
    [16].雀部博之,导电高分子材料,科学出版社,1989,42-56.
    [17].Jin-Chih Chinag, Alan G.MacDiarmid. Polyaniline:Protoniec acid doping of the emeraldine form to the metallic regime. Synthetic Metals,1986(13):193-205.
    [18].Y.Kieeffl, J.P.Travers.Nonlinear electrical properties of polyaniline:role of conjugation length. Synthetic Metals,2003(135-136):325-326.
    [19].Yong Cao, Paul Smith and Alan J. Heeger, Counter-ion induced processibility of conducting polyaniline. Synthetic Metals,1993(57):3514-3519.
    [20].The dispersing ability of copolymers as photo acid Zwitterionic aniline-formaldehyde condensates to dyes. Journal of Applied Polymer Science.1993(48):1953-1961.
    [21].赵文元,王亦军.功能高分子材料化学[M].北京:化学工业出版社.1996.
    [22].C.R.Martin,Template synthesis of polymeric and metal microtubules. Advanced Materials.1991(3): 457-459.
    [23].D.H.Reneker,I.Chun,Nanometer Diameter Fibres of Polymer,Produced by Electrospinning. Nanotechnology,1996(7):216-223.
    [24].E.H.Sanders,R.Kloefkorn,GL.Bowlin,et al. Two-Phase electrospinning from a single electrifiedJet: microencapsulation of aqueous reservoirs in Poly(ethylene-co-vinyl acetate) fibers. Macromolecules,2003(36):3803-3805.
    [25].Hong Dong,Sudhindra Prasad,Verrad Nyame,et al. Sub-micrometer Conducting Polyaniline Tubes Prepared from Polymer Fiber Templates. Chemistry of Materials.2004(16):371-373.
    [26].Li.jia Pan, Lin Pn, Yi Shi, et al.Synthesis of Polvaniline Nanotnbes with a Reactive Template of Manganese Oxide. Advanced Materials.2007(19):461-464.
    [27]. Yang Y, Ying C, Yang F U, et al. Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template. Materials Chemistry and Physics,2005(92):164-171.
    [28].高雨,模板法制备聚苯胺纳米管状结构材料,东北师范大学,硕士论文,2007.5
    [29].R.Madathil,R.Parkesh,S.Ponrathnam,M.C.J.Large,Macromolecules,2004(37):2002-2003.
    [30].A.Baba,W.Knoll, Electrochemical growth of dendritic conducting polymer networks, Advanced Materials,2003(15):1015-1018.
    [31].J.M.Liu,S.C.Yang.Novel colloidal polyaniline fibrils made by template guided chemical
    polymerization. Chemical Communications,1991(21):1529-1531.
    [32].W.Li,H.L.Wang, Oligomer-assisted synthesis of chiral polyaniline nanofibers. Journal of the American Chemical Society,2004(126):2278-2279.
    [33].Y.Long,L.Zhang,Y.Ma,Z.Chen,N.Wang,Z.Zhang,M.Wan, Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromolecular Rapid Communications,2003(24):938-942.
    [34].杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能.物理化学学报,2005(21):414-418.
    [35].Gupta V, Miura N. Electrochemically deposited polyaniline nanowire's network. Electrochemical and Solid-State Letters,2005(8):A630-A632.
    [36].Gupta V, Miura N. Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochemistry Communications,2005(7):995-999.
    [37].Girija T C, Sangaranarayanan M V. Investigation of polyaniline-coated stainless steel electrodes for electrochemical supercapacitors. Synthetic Metals,2006(156):244-250.
    [38].Girija T C, Sangaranarayanan M V. Polyaniline-based nickel electrodes for electrochemical supercapacitors-Influence of Triton X-100 Journal of Power. Sources,2006(159):1519-1526.
    [39].Jing Zhang, Ling-Bin Kong, Bin Wang, Yong-Chun Luo, Long Kang. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors Synthetic Metals,2008(159):260-266.
    [40].Wei-Kang Lu, Ronald L. Elsenbaumer and Bernhard Wessling. Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals 1995,71(1-3):2163-2166.
    [41].A.T.Ozilmaz, M. Erbil and B. Yazici. The electrochemical synthesis of polyaniline on stainless steel and its corrosion performance. Current Applied Physics,2005(6):1-9.
    [42].Camalet J L, Lacroix J C, Aeiyach S, etc. Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium, Synthetic Metals,1998(93):133-142.
    [43].Bernard M. C., Hugot-LeGoff A., Joiret S., Polyaniline layer for iron protection in sulfate medium, Synthetic Metals,1999(102):1383-1384.
    [44].Yen wei, Jianguo Wang, Xinru Jia, etc, Polyaniline as corrosion protection coatings on cold rolled steel, Polymer,1995(36):4535-4537.
    [45].Lu W. K., Elsenbaumer R. L., Wessling B., Corrosion protection of mild steel by coatings
    containing polyaniline, Synthetic Metals,1995(71):2163-2166
    [46]. Yang Y, Westexweele E, Zhang C, et al. Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes. Journal of Applied Physics,1995 (77): 694-698.
    [47].Parkhutili V P, Calleja R D, Matveeva E S, et al. Luminescent structures of porous silicon capped by conductive polymers. Synthetic Metals,1994(67):111-114.
    [48].阚锦晴,穆绍林.聚苯胺尿酸酶电极性能的研究.物理化学学报,1993(9):345-350.
    [49].穆绍林,薛怀国.聚苯胺黄嘌呤氧化酶电极的生物电化学活性.化学学报1995(53):521-525.
    [50].J.Q.Kan,X.H.Pan,C.Chen, Polyaniline-uricase biosensor prepared with template process. Biosensors and Bioelectronics,2004(19):1635-1640.
    [51].X.H.Pan,J.Q.Kan,L.M.Yuan, Polyaniline glucose oxidase biosensor prepared with template process. Sensors and Actuators B:Chemcal,2004(102):325-330.
    [52].Monk P.M.S., Mortimer R.J.,Rosseinsky D. R. Electrochromism:Fundamentalsand Applications, Weinheim:VCH,1995(1):1-49.
    [53].Mortimer R. J., Dyer A. L., Reynolds J. R. Electrochromic organic and polymeric materials for display applications. Displays,2006(27):2-18.
    [54].T.J. Richardson, New electrochromic mirror systems, Solid State Ionics.2003(165):305-308.
    [55].Ebbesen T.W.Carbon nanotubes.Physics Today,New York,1996(49):26-32.
    [56].Iijima S.,Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter.Nature,1993(363):603-605
    [57].Bethune D.S.,Klang C.H.,de Vries M.S.,et al.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls.Nature,1993(363):605-607
    [58].Henning T.H.,Salama F.Carbon in the universe.Science,1998(282):2204-2210
    [59].Hiura H., Ebbesen T. W., Fujita J., et al. Role of spa defect structures in graphite and carbon nanotubes. Nature,1994(367):148-151.
    [60].Qin L.-C., Zhao X., Hirahara K., et al. The smallest carbon nanotube. Nature,2000(408):50-58.
    [61].Hertel T., Walkup. R. E., Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Physical Review B,1998(58):13870-13873.
    [62].Cumings J., Zettl A. Low-friction nanoscale linear bearing realized form multiwall carbon nanotubes. Science,2000(289):602-604.
    [63].Colbert D. T., Zhang J., Mcclure S. M., et al. Growth and sintering of fullerene nanotubes. Science,
    1994(266):1218-1222.
    [64].Pan Z. W., Xie S. S., Chang B. H., et al. Very long carbon nanotubes. Nature,1998(394):631-633
    [65].R.Daito, GDresselhaus, M.S.Dresselhaus, Tunneling Conductance of Connected Carbon Nanotubes. Physical Review B -Condensed Mater,1996(53):2044-2049.
    [66].薛增泉,刘惟敏,侯士敏等.竖立在晶态金属表面上的短单壁碳纳米管.电子科学学刊,1999(21):692-696.
    [67].P.GCollins, A.Zettl, H.Bando et al, Nanotubes nanodevices.Science,1997(278),100-102.
    [68].C.Dekker,Carbon Nanotubes as Molecular quantum wires.Physics Today,1999(52):22-24.
    [69].王力,张海燕,揭晓华等.镀镍碳管的结构及磁性能研究.电子元件与材料,2006(25):18-20.
    [70].A.Krishnan, E.Dujardin, TWEbbesen et al., Young's Modulus of Single-walled Nanotubes. Physical Review B-Condensed Matter,1998(58):1401-1403.
    [71].H.L.Young, G.K.Seong, T.David, Catalytic Growth of Single-walled Carbon Nanotubes. Physical Review Letters,1997(78):2393-2395.
    [72].孙晓刚,曾效舒,程国安.碳纳米管的特性及应用.中国粉体技术,2001(6):29-33.
    [73].高永刚,施兴华,赵亚博.碳纳米管的力学行为.机械强度.2001(23):402-412.
    [74].Philippe P, Z.L.Wang, Daniel U,et.al, Electrostatic Deflections and Electromechanical resonance of Carbon Nanotubes. Science,1999(283):1513-1515.
    [75].P.Kim,C.M.Lieber,Nanotube Nanotweezers. Science,1999(286):2148-2150
    [76].Savas Berber,Young-Kyun Kwon,David Tomanek.Unusually high thenral conductivity of carbon nanotubes. Physical Review Letters,2000(84):4611-4616.
    [77].Yi W, Lu L,Zhang D L,et al. Linear specific heat of carbon nanotubes. Physical Review B, 1999(59):R9015-R9018.
    [78].Tsang S.C.,Chen Y.K.,Green M.L.H.,et al.A simple chemical method of opening and filling carbon nanotubes.Nature,1994(372):159-162.
    [79].Hiura H.,Ebbesen T.W.,Tanigaki K.,Opening and purification of carbon nanotubes in high yields. Advanced Materials,1995(7):275-276.
    [80].Tsang S.C.,Chen Y.K.,Green M.L.H.,et al.Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups. Electrochemistry Communications, 1995(13),1355-1356
    [81].Chen Y,Haddon R C,Smalley R E,et al.Chemical attachment of organic functional groups to single-walled carbon nanotube materials. Journal of Materials Research,1998,13(9):2423-2431.
    [82].Liu J,Rinzler A qSmalley R E,et al.Fullerene pipes.Science,1998(280):1253-1256.
    [83].Chen J, Hamon M A, Haddon R C, et al. Solution nanotubes. Science.1998(282):95-98.
    [84].Sano M, Kamino A, Okamura J, et al. Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and.Langmuir-Blodgett Films. Langmuir,2001(17):5125-5128.
    [85]. Zhao B, Hui H, Haddon R C. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly (m-aminobenzene sulfonic acid)graft copolymer. Advanced Functional Materials, 2004(14):71-76.
    [86].Kong H, Gao C, Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. Journal of the American Chemical Society,2004(126): 412-413.
    [87].邓梅根,杨邦朝,胡永达,汪斌华,基于碳纳米管—聚苯胺纳米复合物的超级电容器研究.化学学报,2005(63):1127-1130.
    [88].杨杰,沈曾民,熊涛.聚苯胺原位包覆碳纳米管材料的制备及性能.新型炭材料,2003(18):95-100.
    [89].Dong B, He B. L, Xu C L, Li H L. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Materials Science and Engineering B,2007(143):7-13.
    [90].Parveen Saini, Veena Choudhary, B P Singh, R.B. Mathur, S K Dhawan. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics, 2009(113):919-926.
    [91].E. Frackowiak; V. Khomenko; K. Jurewicz; K. Lota; F. B'eguin. Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources,2006(153):413-418.
    [92].S.R. Sivakkumar, Wan Ju Kim, Ji-Ae Choi, Douglas R.MacFarlane, Maria Forsyth, Dong-Won Kim. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources,2007(171):1062-1068.
    [93].C.Y. Wang, V. Mottaghitalab, C.O. Too, G.M. Spinks, G.G. Wallace. Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. Journal of Power Sources,2007(163):1105-1109.
    [94].封伟;易文辉;徐友龙;连彦青;王晓工;吉野腾美.聚苯胺.碳纳米管复合体的制备及其光响应.物理学报,2003(5):1272-1277.
    [95]. P. Santhosh;K.M. Manesh; A. Gopalan; Kwang-Pill Lee. Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide. Analytica Chimica Acta,2006(575):32-38.
    [96].Tzong-Ming Wu, Yen-Wen Lin. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer,2006(47):3576-3582.
    [97].Zan-Zan Zhu, Zhe Wang, Hu-Lin Li. Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Applied Surface Science,2008(254):2934-2940.
    [98].米红宇,张校刚,黄建书,叶向果,杨苏东.微波法核-壳结构聚苯胺/多壁碳纳米管复合材料的电化学性能.功能材料,2007(38):1319-1323.
    [99].Hongyu Mi, Xiaogang Zhang, Shuying An, Xiangguo Ye, Sudong Yang. Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochemistry Communications.2007(9):2859-2862.
    [100]. Anantha Iyengar Gopalan, Kwang-Pill Lee, Padmanabhan Santhosh,Kyu Soo Kim, Young Chang Nho. Different types of molecular interactions in carbon nanotube/conducting polymer composites-A close analysis. Composites Science and Technology,2007(67):900-905.
    [101].邱桂花,陈英红,夏和生.超声辐照制备聚苯胺/碳纳米管复合微管.四川大学学报(工程科学版),2006(38):105-109.
    [102].马利,杜新胜,郑星,冯利军.磁场作用下大分子酸掺杂聚苯胺性能.北京科技大学学报,2008(30):659-663.
    [103]. C.S. Choi, S.J. Park, H.J. Choi. Carbon nanotube/polyaniline nanocomposites and their electrorheological characteristics under an applied electric field. Current Applied Physics,2007(7): 352-355.
    [104].Sainath G,Vaidyaa, Sanjay Rastogia, Aranzazu Aguirre. Surfactant assisted processable organic nanocomposite dispersions of polyaniline-single wall carbon nanotubes. Synthetic Metals, 2010(160):134-138.
    [105].Hongfan Guo, Hong Zhu, Haiyan Lin, Jiqiao Zhang. Synthesis of polyaniline/multi-walled carbon nanotube nanocomposites in water/oil microemulsion. Materials Letters,2008(62):3919-3921.
    [106].江奇,张倩,杜冰,赵晓峰,赵勇.有限域聚合法制备碳纳米管-聚苯胺复合材料及其电化学性能.物理化学学报.2008,24(9):1719-1723.
    [107]. Vinay Gupta, Norio Miura. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta,2006(52),1721-1726.
    [108]. Vinay Gupta, Norio Miura. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. Journal of Power Sources,2006(157) 616-620
    [109].Chuang Peng, Jun Jin, George Z. Chen. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochimica Acta,2007(53),525-537.
    [110].Zhe Wang, Zan-Zan Zhu, Jin Shi, Hu-Lin Li. Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film. Applied Surface Science.2007(253),8811-8817.
    [111].Zhijuan Wang, Junhua Yuan, Meiye Li, Dongxue Han, Yuanjian Zhang,Yanfei Shen, Li Niu,, Ari Ivaska. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Journal of Electroanalytical Chemistry, 2007(599),121-126.
    [112].Xiaofeng Xie, Lian Gao, Jing Sun, Yangqiao Liu, Hisashi Kajiura, Yongming Li,Kazuhiro Noda. Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. Carbon,2008(46),1145-1151.
    [113].Kalayil Manian Manesha, Padmanabhan Santhosha, Shanmugasundaram Komathia,Nam Hee Kima, Jong Wook Parka, Anantha Iyengar Gopalana,b, Kwang-Pill Lee. Electrochemical detection of celecoxib at a polyaniline grafted multiwall carbon nanotubes modified electrode. Analytica Chimica Acta,2008(626):1-9.
    [114].杨红生周啸,张庆武.聚苯胺/分级碳纳米管复合材料的制备与性能研究.高分子学报.2004(5):766-769.
    [115].曾宪伟,赵东林.碳纳米管/聚苯胺复合材料的原位合成及其形成机理.炭素技术,2004(23),15-19.
    [116].Chuizhou Meng, Changhong Liu,ShoushanFan. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications,2009(11), 186-189.
    [117].Hao Zhang, Gaoping Cao,Zhiyong Wang, Yusheng Yang, Zujin Shi, Zhennan Gu. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochemistry Communications,2008(10),1056-1059.
    [118]. Mengqiang Wu, Graeme A. Snook, Vibhav Gupta, Milo Shaffer, Derek J. Fray, George Z. Chen. Electrochemical fabrication and capacitance of composite films of carbon-nanotubes and polyaniline. Journal of Materials Chemistry.2005,15,2297-2303
    [119]. Fan Huang, Estelle Vanhaecke, De Chen. In situ polymerization and characterizations of polyaniline on MWCNT powders and aligned MWCNT films. Catalysis Today.2010 (150):71-76.
    [120].李仁贵,苗小丽,邓正华.表面修饰活性炭的电容器电极.电源技术.2003(27):308-310.
    [121].江奇,卢晓英,赵勇,于作龙.碳纳米管微结构的改变对其容量性能的影.物理化学学报.2004(5):546-549.
    [122].江奇,刘宝春,瞿美臻,周固民,张伯兰,于作龙.多壁碳纳米管结构与其电化学容量之间关系的研究.化学学报,2002,60(8):1539-1542.
    [123]. Roland H, Jorge G C, Germa G B. Journal of Electroanalytical Chemistry,2005,577 (1):99-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700