稀土、杂多酸、金/TiO2复合催化剂的研制与光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了半导体光催化化学研究的发展现状、理论以及现实意义。详细阐述TiO2光催化消除有机污染物机理及其研究现状。
     制备了(C5H7N2)3AsMo12O40?5H2O/TiO2和RE(RE=La、Ce、Pr、Nd) /TiO2光催化剂。在自行设计和安装的流动连续光催化反应装置中,以甲醇(丙酮)与空气的混合气体模拟室内空气污染物,在可见光或平均波长为253.7nm的紫外灯照射下的进行光催化消除反应,考察了催化剂的光催化活性。运用红外光谱、差热-热重、X-射线衍射、扫描电镜、荧光光谱等表征手段系统研究了催化剂的光谱性质以及结构形态。
     用溶胶-凝胶法制备了RE(RE=La、Ce、Pr、Nd)/TiO2光催化剂,研究了单一稀土元素的掺杂对TiO2催化活性的影响。通过光催化消除甲醇实验研究了活化温度、不同稀土元素及其掺杂量对催化剂活性的影响。差热-热重、荧光等实验结果表明:由于稀土元素的掺杂,TiO2由锐钛矿向金红石相的转变温度有所提高;光生电子和空穴复合率有所降低,催化性能明显提高。尤其是Pr元素的掺杂对TiO2催化性能的提高最为明显。初始浓度为12.0g?m-3,流速为10.0ml?min-1,催化剂用量为0.1g时,Pr/TiO2催化消除甲醇的消除率达84.0%。对Pr/TiO2催化剂催化消除甲醇反应进行了动力学研究。活化能为20.0kJ?mol-1,表现为一级反应。
     采用浸渍法制备了(C5H7N2)3AsMo12O40?5H2O/TiO2复合光催化剂,通过一系列表征手段对催化剂进行了研究。由扫描电镜可以看出复合催化剂粒子细化,颗粒分布更为均匀;测定了TiO2以及不同(C5H7N2)3AsMo12O40?5H2O含量的复合催化剂的荧光发射光谱,发现掺杂后催化剂的发射光谱相对强度要明显小于纯的TiO2,说明(C5H7N2)3AsMo12O40?5H2O的掺杂有助于抑制电子-空穴的复合,充分体现了二者的协同效应。(C5H7N2)3AsMo12O40 ? 5H2O掺杂量为5.0wt.%的(C5H7N2)3AsMo12O40?5H2O/TiO2的催化剂活性最好。在甲醇初始浓度为3.2g?m-3、丙酮初始浓度为3.5 g?m-3时,体系流速为10.0ml?min-1时,催化剂的对甲醇和丙酮的消除率达到100.0%。
     在Au/TiO2紫外光催化消除甲醇研究的基础上,研究了可见光对甲醇的催化消除作用。运用正交试验考察掺杂量、焙烧温度、焙烧时间等制备因素对催化剂可见光催化活性的影响,获得了金含量为1.0wt.%,焙烧温度为200℃时为最佳制备条件。在可见光下,当甲醇气体初始浓度为35.0g?min-1流速为5.0ml?min-1时,催化消除可达62.3%。
The thesis introduces the development, theory and practical significance of semiconductor photo-catalysis, and explains TiO2 photo-catalytic elimination mechanism of organic pollutants and its current research condition in detail.
     The (C5H7N2)3AsMo12O40?5H2O/TiO2 and RE(RE=La、Ce、Pr、Nd)/TiO2 are prepared. The photo-catalytic activity of the photocatalysts is performed in a home-made continuous flow photo-catalytic tube reactor. The photo-catalytic elimination of methanol or acetone is used as model reaction to evaluate the photocatalytic activity of the photo-catalysts under ultraviolet light irradiation or visible light. Spectroscopic properties and structural morphology of catalysts are investigated through means of characterization, such as Infrared Spectrum, DTA-TG, X-ray diffraction, fluorescence spectra, scanning electron microscope, etc.
     RE(RE= La、Ce、Pr、Nd)/TiO2 photo-catalysts are prepared by sol-gel, The influence of a single rare earth element doping TiO2 on the photo-catalytic activity are researched. The effects of doping content, different types of rare earth elements and activation temperature on the catalytic activity are investigated by photo-catalytic elimination methanol experiment. The TG-DTA and Fluorescence results show that as the doping of rare earth elements, phase transition temperature from TiO2 anatase to rutile are increased and the photo-induced electron and hole recombination rate are decreased,the catalytic performance of rare earth elements doped are significantly improved. The best is Pr/TiO2. When the initial concentration of methanol is 12.0g?m-3and the flow rate is 10.0ml?min-1, the elimination rate of methanol can reach to 84.0% over the 0.1g Pr/TiO2 catalyst. The dynamics law of photocatalytic reaction over the Pr/TiO2 catalyst has been studied. The activation energy of the raection is 20.0KJ/mol, which accords to the first order dynamics law.
     The composite photo-catalyst (C5H7N2)3AsMo12O40 ? 5H2O/TiO2 are prepared through impregnation and studied through a series of characterization methods. The scanning electron microscope and XRD show that particle size become miniaturized and uniform; The fluorescence emission spectra of TiO2 and composite photo catalyst with different doping content of (C5H7N2)3AsMo12O40?5H2O show that the relative intensity of emission spectrum of (C5H7N2)3AsMo12O40?5H2O/TiO2 is obviously lower than pure TiO2. It indicates that the doping of (C5H7N2)3AsMo12O40?5H2O can help inhibit electron-hole recombination, and fully elaborate the synergistic effect of these two substances. The composite catalyst doped with 5.0wt.% has the highest activity.
     When the initial concentration of methanol and acetone is 3.2g?m-3 and 3.5 g?m-3 respectively, and the flow is 10.0ml?min-1, the elimination rate of methanol and acetone can reach to 100.0%.
     On the basis of research on elimination of methanol under UV light, the role of the visible light has been studied. Through orthogonal test, the effection of doping amount, calcination temperature, calcination time on catalytic activities have been investigated. The catalyst doped with 1.0wt.% and activated under 200℃has the highest activity. When the initial concentration of methanol is 35.0g?m-3, and the flow is 5.0ml?min-1, the elimination rate of methanol can reach to 62.3% under visible light.
引文
[1]Fujishima A,Honda K.Electrochemical photolysis of waterat a semiconductor electrode[J].Nature,1972, 37:238.
    [2]Steven N. Frank, Allen J. Bard. Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J. Phys. Chem., 1977, 81(15):1484-1488.
    [3]John H. Carey, John Lawrence, Helle M. Tosine. Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions [J].Bulletin of Environmental Contamination & Toxlcology, 1976, 16(6):697- 701.
    [4]John L.Ferry, Marye Anne Fox. Effect of the TiO2 Surface on the Reactivity of Photocatalytically Generated (SCN)2.- and I2.-[J]. Langmuir, 1998, 14(7): 1725-1727.
    [5]Ulick Stafford, Kimberly A. Gray, Prashant V. Kamat. Radiolytic and TiO2-Assisted Photocatalytic Degradation of 4-Chlorophenol. A Comparative Study[J]. J. Phys. Chem., 1994, 98(25):6343-6351. [6 ]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1999,11(1):1-10.
    [7] Gianluca Li Puma, Po Lock Yue.Photocatalytic Oxidation of Chlorophenols in Single-Component and Multicomponent Systems [J]. Ind. Eng. Chem. Res., 1999, 38(9):3238-3245.
    [8] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96.
    [9] E.Pelizzetti, M.Schiavello, Eds, Photochemical Conversion and Storage of Solar Engery, Kluwer Academic Publisher, Dordrecht, Dordrecht, 1991.
    [10]马贵军,雷志斌,李灿等.溶剂热法合成CuInS2-ZnS固溶体及其光催化分解水制氢性能[J].催化学报,2009,30(1):73-77.
    [11]徐用军,周定,姜琳琳等.常温常压气-固光催化CO2加氢合成一碳化合物的研究[J].哈尔滨工业大学学报,2000, 32(4):104-109.
    [12]Olga Rusina,Wojciech Macyk,Horst Kisch.Photoelectrochemical Properties of a Dinitrogen-Fixing Iron Titanate Thin Film [J].J. Phys. Chem. B, 2005, 109(21):10858-10862.
    [13] Marye Anne Fox, Maria T.Dulay. Heterogeneous Photocatalysis [J].Chem.Rev.,1993,93(1):341-357.
    [14]Maurizio Addamo,Vincenzo Augugliaro, Marianna Bellardita et al.Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2[J].Catal.Lett.,2008, 126: 58–62.
    [15]沈伟韧,赵文宽,贺飞等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4): 349-361.
    [16]邓谦,吕晓萌,蔡铁军等.磷钨酸表面修饰TiO2光催化消除空气污染物[J].中国环境科学,2005,25(3):375– 379.
    [17]Bo Sun, Etterddy P., Panagiotis G. Smirniotis.Visible Light Cr(VI) Reduction and Organic Chemical Oxidation by TiO2 Photocatalysis.[J]. Environ. Sci. Technol., 2005, 39(16): 6251-6259.
    [18]Zhaoyue Liu, Xintong Zhang, Shunsuke Nishimoto et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol[J]. J. Phys. Chem. C, 2008, 112(1):253-259.
    [19]Guohui Tian, Honggang Fu, Liqiang Jing et al. Preparation and Characterization of Stable Biphase TiO2 Photocatalyst with High Crystallinity,Large Surface Area,and Enhanced Photoactivity[J].J.Phys.Chem.C,2008, 112(8):3083-3089
    [20]黄汉生.日本二氧化钛光催化剂环境净化技术开发动向[J].现代化工, 1998, 18(12): 39-42.
    [21]蔡铁军,吕晓萌,邓谦等.复合催化剂PWnTiO2光催化消除甲醛反应的研究[J].环境科学学报,2005,25(5):618-622.
    [22]颜世博,张成亮,郑传柯.光催化材料发展概论[J].山东陶瓷,2008,31(5):28.
    [23]韩世同,付贤智,史瑞雪等.半导体光催化研究进展与展望[J].化学物理学报,2003,5(16):341.
    [24]方晓明,陈焕钦.纳米TiO2的液相合成方法[J].化工进展,2001,9:17-21.
    [25]姚超,吴凤琴,林西平等.纳米二氧化钛的气相合成[J].现代化工,2001,24(9):14-18.
    [26]施利毅,李春忠,房鼎业等. TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究[J].无机材料学报,1999,14 (5): 717-725.
    [27]M. Katzer, A. P. Weber, G. Kasper. The effects of electrical fields on growth of titania particles formed in a CH4-O2 diffusion flame[J].Aerosol Science,2001,32(9):1045-1067.
    [28]Hee Dong Jiang, Seong-Kil Kim. Controlled synthesis of titanium dioxide nanoparticles in amodified diffusion flame reactor[J].Materials Research Bulletin, 2001,36(3):627-637.
    [29]Wendelin J. Stark,Sotiris E. Pratsinis. Aerosol Flame Reactors for Manufacture of Nano-particles [J].Powder Technology, 2002,126(2):103-108.
    [30]张卫弟.超微细二氧化钛制备方法进展[J].河南化工,2002, 7: 13-14.
    [31]吕德义,卞飞荣,许可等.胶溶-水热晶化过程中纳米TiO2晶粒聚集机理及形貌的研究[J].无机材料学报,2007,22(1):59-64.
    [32] J?rg Schwitzgebel, J. G. Ekerdt,H. Gerischer et al.Role of the Oxygen Molecule and of the Photo-generated Electron in TiO2-Photocatalyzed Air Oxidation Reactions[J]. J. Phys Chem., 1995, 99(15):5633-5638.
    [33]张汝冰,刘宏英,李凤生.均匀沉淀法制备纳米TiO2及其在环保方面的应用[J].环境化学,1999,18(6):579- 583.
    [34]雷闫盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究[J].无机盐工业, 2001, 33(2): 3-6.
    [35]胡娟,邓建刚,何水样等.纳米级二氧化钛制备方法的比较研究[J].材料科学与工程, 2001,19 (4): 71-74.
    [36]周建国,牛新书等.精细无机化工[M].北京:高等教育出版社, 1999.
    [37]益帼,,邓瑞红,聂基兰.微乳液法制备纳米TiO2粒子[J].有色金属,2007,59(1):46-48.
    [38]施利毅,胡莹玉,张剑平等.微乳液反应法合成二氧化钛超细粒子[J].功能材料,1999,30(4):407-407.
    [39]尹荔松,周歧发,唐新桂等.溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究[J].功能材料,1999,30(4): 407-409.
    [40]廖东亮,肖新颜,张会平等.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程,2003,20(5):256-260
    [41]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [42]Amy L. Linsebigler, Guangquan Lu, John T. Yates, Jr. Photocatalysis on TiO2 Surface: Principles, Mechanisms and Selected Results [J].Chem. Rev., 1995, 95(3): 735-758.
    [43]潘丹霞,邵春雷,舒小红等.流动态甲醇气相光催化降解的机制研究[J].化学学报,2006,64(11):1126-1132.
    [44]崔玉民.过渡金属离子修饰TiO2光催化活性研究进展[J].材料科学与工程学报,2007,25(5):802-804.
    [45]谢先法,吴平宵,党志等.过渡金属离子掺杂改性TiO2研究进展[J].化工进展,2005,24(12):1358-1362.
    [46]Yanqin Wang, Humin Cheng, Yanzhong Hao et al. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes [J].Thin Solid Films,1999,349(1/2): 120.
    [47]Jianhua Chen, Maosheng Yao, Xiaolin Wang.Investigation of transition metal ion doping behaviors on TiO2 nanoparticles [J]. J.Nanopart Res.2008, 10:163–171.
    [48]JoséA. Navío, Gerardo Colón, María Trillas et al. Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method[J]. Applied Catalysis B,1998,16(2): 187.
    [49]JoséA. Navío, Gerardo Colón, Pablo Djedjeian et al. Iron-doped titania semiconductor powders prepared by a sol-gelmethod. Part I: synthesis and characterization[J]. Applied Catalysis A, 1999, 177(1): 111-120.
    [50]JoséA. Navío, Juan J. Testa, Manuel Macías et al. Iron-doped titania powders prepared by a sol-gel method. Part II: Photocatalytic properties [J]. Applied Catalysis A, 1999, 178(2):191-203.
    [51]Marta I. Litter. Heterogeneous photocatalysis Transition metal ions in photocatalytic systems[J]. Applied Catalysis B,1999,23(2/3): 89-114.
    [52]Gianmario Martra. Lewis acid and base sites at the surface of microcrystallineTiO2 anatase: relationships between surface morphology and chemical behaviour[J]. Applied Catalysis A: General,2000,200(1-2):275–285.
    [53]N. Serpone,I. Texier,A.V. Emeline,et,al. Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 136(3)145–155.
    [54]张雯,王绪绪,付贤智.Pt/TiO2催化剂上苯的光催化降解[J].福州大学学报,2004,32(2):323-234.
    [55]Yoichi Ishibai, Junya Sato, Takashi Nishikawa et, al.Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity[J]. Applied Catalysis B: Environmental 2008, 79(2):117–121.
    [56]金振兴,刘守新.Ag/TiO2对几种难降解有机污染物的光催化降解[J].环境科学与技术,2004,27(6):16-18.
    [57]R.S. Sonawane, M.K. Dongare. Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight[J]. Journal of Molecular Catalysis A: Chemical 2006, 243(1):68–76.
    [58]贺攀科,杨建军,杨冬梅等.Au/ TiO2光催化分解臭氧[J].催化学报,2006,27(1):71-74.
    [59]吴湘江,邓谦,彭振山等.Au/TiO2催化剂的制备及低级醇类的光催化消除[J].中国有色金属学报,2009, 19(1):139-147
    [60]杨国臣,马琦,张智敏.Ru/TiO2粉末的制备、表征及其日光催化研究.[J].应用化工,2005,34(11):683-685.
    [61]熊心美,吕文英,刘国光等.TiO2的非金属掺杂改性研究进展.[J].化工新型材料,2006,34(2):5-8.
    [62]Naresh C. Saha, Hadand G. Tompkins. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study [J].J. Appl. Phys.72(7):3072~3079.
    [63]黄雪锋,唐玉朝,黄显怀等.水热法制备N掺杂纳米TiO2及其光催化活性研究[J].环境化学,2006,25(10): 16-19.
    [64]Shouichi Somekawa, Yoshihumi Kusumoto, Miyuki Ikeda et al. Fabrication of N-doped TiO2 thin films by laser ablation method: Mechanism of N-doping and evaluation of the thin films[J].Catalysis Communications, 2008, 9 (3) :437-440.
    [65]Nick Serpone. Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? [J]. J. Phys. Chem. B 2006, 110(49): 24287-24293.
    [66]T. Umebayashi, T. Yamaki, H. Itoh et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. Appl. Phys. Lett., 2002, 81(3):454.
    [67]Teruhisa Ohno, Takahiro Mitsui, Michio Matsumura. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light [J]. Chemistry Letters, 2003,32(4):364-365.
    [68]周武艺,曹庆云,唐绍裘等.硫掺杂对纳米TiO2的结构相变及可见光催化活性的影响[J].中国有色金属学报,2006,16(7):1233-1238.
    [69]Hongmei Luo,Tsuyoshi Takata, Yungi Lee et al. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine[J]. Chemical Material, 2004, 16(5):846
    [70]Jiaguo Yu, Wen guang Wang, Bei Cheng et al. Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment[J]. J. Phys. Chem. C, 2009, 113(16): 6743–6750.
    [71]Jimmy C.Y, Yu J.G, Ho W.K, et al., Effects of F- doping on the photocatalytic activity andmicrostructures of nanocrystalline TiO2 powers[J]. Chemical Material, 2002, 14: 3808-3816.
    [72]金达莱,岳林海,金志敏等.掺C60二氧化钛微晶特性和光催化活性研究[J].浙江大学学报(理学版),2001,28 (5):526~532.
    [73]李丽娜,谷景华,张跃.大气开放式MOCVD法制备碳掺杂氧化钛可见光光催化剂[J].功能材料,2007, 38 (12):2028-2031.
    [74]魏子栋,殷菲,谭君等. TiO2光催化氧化研究进展[J].化学通报, 2001, 2:76-80.
    [75]沈伟韧,贺飞,赵文宽等.TiO2纳米粉体的制备及光催化活性[J].武汉大学学报(自然科学版),1999,45(4): 389-392.
    [76]Vinodgopal, K, Kamat, P. V. Enhanced Rates of photocatalytic degration of an azo dye using SnO2-TiO2 coupled semiconductor thin films[J]. Environ. Sci. Technol., 1995, 29(3),:841-845.
    [77]R.Vogel, P. Hoyer, H.Weller. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2O3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors [J].J. Phys. Chem. , 1994, 98 (12) , 3183-3188.
    [78]K. R. Gopidas, Maria Bohorquez, Prashant V. Kamat. Photophysical and photochemical aspects of coupledsemiconductors. Charge transfer processes in colloidal CdS-TiO2 and CdS-AgI systems[J]. J Phys Chem,1990, 94(16):6435-6440.
    [79]Jungwoo Moon, Chang Yeon Yun , et al . Photocatalytic activation of TiO2 under visible light using Acid Red 44 [J]. Catalysis Today, 2003, 87(1-4):77-86.
    [80] Prashant V. KAMAT, Marye Anne FOX. Photosensitization of TiO2 colloids by Erythrosin B in Acetonitrile [J]. Chem. Phys. Lett., 1983, 102(4):379-384.
    [81] Brian Patrick, Prashant V. Kamat. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids [J]. Phys. Chem., 1992, 96(3), 1423-1428.
    [82]William E. Ford, Michael A. J. Rodgers. Kinetics of Nitroxyl Radical Oxidation by Ru(bpy)33+ following Photosensitization of Antimony-Doped Tin Dioxide Colloidal Particles[J]. Phys. Chem.B., 1997, 101(6):930-936.
    [83]罗菊仙,赵中一.半导体多相光催化氧化技术在环境保护中的应用研究进展[J].中国地质大学学报,2000, 25(5):536-541.
    [84]Ruya R.Ozer, John L.Ferry. Investigation of the photo-catalytic activity of TiO2-Polyoxometalatate Systems [J].Environ. Sci. Technol., 2001, 35(15): 3242-3246.
    [85]丁正新,王绪绪,付贤智.Ti02基固体超强酸及其在光催化空气净化中的应用[J].化工进展,2003,22(12) :1278-1283.
    [86]付贤智,丁正新,苏文悦等.二氧化钛基固体超强酸的结构及其光催化氧化性能[J].催化学报,1999, 20(3):321-324
    [87]苏文悦,陈亦琳,付贤智等.SO42-/TiO2-Si02固体酸的结构及其光催化氧化性能[J].高等学校化学学报,2002,23(7):1398-1400.
    [88]曲济方,方莉,武志刚. SO42-/TiO2-Si02的制备及光催化降解苯酚[J].化工学报,2004,55(1):138-142.
    [89]颜秀茹,白天,韩芳等.SO42-/TiO2-Si02的制备及对甲基橙的光催化降解[J].无机化学学报.2003,19(10): 1125-1128.
    [90]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.
    [91]鲁文升,肖光参,李旦振. Pt/InVO4/TiO2可见光催化剂的制备及性能研究[J].无机化学学报, 2005, 21 (10):1495-1499.
    [92]Gratian R. Bamwenda, Hironori Arakawa.Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+and Fe3+aq species [J].Journal of Molecular Catalysis A:Chemical, 2000,161: 105
    [93] Juan M. Coronado, A. Javier Maira, Arturo Martínez-Arias et al. EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts [J].Journal of Photochemistryand Photobiology A: Chemistry, 2002, 150: 213
    [94]María D. Hernández-Alonso, Ana Belén Hungría, Arturo Martínez-Arias et al. EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation [J].Applied Catalysis B:Environmental, 2004, 50: 167
    [95]陈崧哲,徐盛明,徐刚等.稀土元素在光催化剂中的应用及作用机理[J].稀有金属材料与工程,2006,35(4):506-509
    [96]F.B. Li, X.Z. Li, M.F. Hou. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control[J]. Applied Catalysis B: Environmental, 2004, 48: 185-194.
    [97]F.B. Li, X.Z. Li, M.F. Hou et al. Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control [J]. Applied Catalysis A, 2005,285:181-189.
    [98]Hou Meifang, Li Fangbai, Li Ruifeng et al. Mechanisms of enhancement of photo-catalytic properties andactivity of Nd3+-Doped TiO2 for Methyl orange degradation[J]. Journal of rare earths, 2004, 22 (4):542-546.
    [99]Yuhong Zhang, Huaxing Zhang, Yongxi Xu et al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2[J]. Journal of Solid State Chemistry, 2004, 177:3490-3498.
    [100]蔡铁军,岳明,王贤文等.复合催化剂NdPW12O40/ TiO2的制备、表征及光催化性能[J].催化学报,2007, 28(1):10-16.
    [101]王恩波.多酸化学导论[M].北京:化学工业出版社,1997.
    [102]Toshio Okuhara. New catalytic functions of heteropoly compounds as solid acids [J].Catalysis Today, 2002, 73: 167–176.
    [103]Toshio Okuhara, Noritaka Mizuno, Makoto Misono et al. Catalysis by heteropoly compounds-recent develop-ments [J].J. Appl Catal A: General, 2001, 222(1): 222: 63–77.
    [104]U B Mio?, M R Todorovi?, M. Davidovi? et al. Heteropoly compounds–From proton conductors to biomedical agents [J].Solid State Ionics, 2005, 176: 3005–3017.
    [105]毛萱,殷元骐.杂多酸催化研究新进展[J].分子催化, 2000,14(6): 483-489.
    [106]温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工, 2000, 29(1): 49-55.
    [107]Yamase T.Photo-and Electrochromism of polyoxometalates and related materials[J]. Chem.Rev.,1998, 98:307-325.
    [108]程为.负载型杂多酸(盐)催化剂光催化降解水中苯酚的研究[D].大连:大连交通大学,2004.
    [109]Mizuno N, Misono M. Heterogeneous Catalysis.[J].J.Chem Rev, 1998, 98(1): 199-218.
    [110]Yu Yang, Yihang Guoa, Changwen Hua. Preparation of surface modifications of mesoporous titania with monosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyes under UV irradiation [J]. Applied Catalysis A, 2004, 273:201-210
    [111]Hisao Hori, Etsuko Hayakawa, Kazuhide Koike et al. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution [J].J. Mol. Catal. A: Chem., 2004, 211(1-2): 35-41.
    [112]Hisao Hori, Yuko Takano, Kazuhide Koike et al. Photochemical decomposition of pentafluoro-propionic acid to fluoride ions with a water-soluble heteropolyacid photocatalyst[J].J.Appl Catal B: Environmental, 2003, 46(2): 333–340.
    [113]Hisao Hori, Kazuhide Koike. New Application of Glycerin from a Photochemical Approach: Dihydrogen Formation from Aqueous Glycerin by Use of Giant Polyoxometalate Photocatalysts[J].Energy Fuels, 2005, 19(5): 2209-2213.
    [114]尚静,朱永法.钨磷酸碱金属盐气相光催化氧化甲醛的性能研究[J].复旦学报(自然科学版), 2003, 42(6): 903-905.
    [115]邓谦,吕晓萌,蔡铁军等.磷钨酸表面修饰TiO2光催化降解空气污染物[J].中国环境科学, 2005, 25(3): 375-379.
    [116]蔡铁军,吕晓萌,邓谦等.复合催化剂PWn/TiO2光催化降解甲醛反应的研究[J].环境科学学报, 2005, 25 (5): 618-622.
    [1]Michal Tomkiewicz.Scaling properties in photocalysis[J].Catalysis Today,2000,58:151.
    [2]Hoffmann M R,Martin S T,Choi W Y et al. Environmental applications of semiconductor photocatalysis[J]. Chem.Rev.,1995,95(1):69.
    [3]Jin-kai Zhou, Yuxin Zhang, X. S. Zhao et al. Photodegradation of Benzoic Acid over Metal-Doped TiO2[J]. Ind.Eng.Chem.Res, 2006, 45:3503-3511.
    [4]梁飞雪,朱华青,秦张峰等, CeO2-TiO2复合氧化物的制备、表征及其对CO氧化的催化性能[J]催化学报, 2008, 29(3) :264-267.
    [5] Yibing Xie, Chunwei Yuan.Characterizat ion and photocatalysis of Eu3+-TiO2 sol in the hydro sol reaction system [J]. Materials Research Bulletin, 2004, 39:533-543
    [6] Zili Xu, Qiujing Yang, Chao Xie et al. Structure, luminescence properties and photocatalytic activity of europium doped-TiO2 nanoparticles [J]. Journal of Materials Science, 2005, 40:1539-1541.
    [7]Kai shu Gua, sheng Yin. Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film [J].Materials Chemistry and Physics.2005, 92:10-15.
    [8]Wen yue Su. Jianxiong Chen, Ling Wu et al. Visible light photocatalysis on praseodymium (III)-nitrate- Modified TiO2 prepared by an ultrasound method[J].Applied Catalysis B: Environmental, 2008, 77 : 264-271.
    [9]Zhiqiao He, Xing Xu, Shuang Song et al. A Visible Light-Driven Titanium Dioxide Photocatalyst Codoped with Lanthanum and Iodine: An Application in the Degradation of Oxalic Acid [J]. J. Phys. Chem. C, 2008, 112, 16431-16437.
    [10]柳世忠,王恩波,王广. 12一钨磷杂多酸稀土盐的合成与性质研究(I)[J].湖北大学学报(自然科学版),1993, 15(2):161-165.
    [11]水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性[J ].物理化学学报, 2000,5 (5): 462.
    [12]刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报, 2001, 22(2): 215-218.
    [13]Myung Seok Jeon, Woo Sug Yoon, Hyunku Joo et al.Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst [J]. Appl.Surf.Sci., 2000, 65:209.
    [14]Maruska H P, Ghosh K.Transition-metal dopants for extending the response of titanate photoelectrolysis anodes [J].Sol.Energy Mater., 1979,1:237.
    [15] Jinsheng Liang, Guangchuan Liang, Hongfei Qi et al. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics[J].Journal of rare earths,2002,22 (3):436-439.
    [16]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京化学工业出版社,2006.
    [17]C.D.Wanner, W.M.Riggs, L.E. Davis et al. Handbook of X-Ray Phitoelectron Spectroscopy [M]. G.E.Muilenberg (Perkin-Elemer Corporation,Eden Prairie),1979:68-69.
    [18]Liao S J,Huang D G,Yu D H et a1.Preparation and characterization of ZnO/TiO2,SO4 /ZnO/TiO2 photo- catalystsandtheir photocatalysis[J].Journal of Photochemistry andPhotobiologyA:Chemistry,2004,168:7-13.
    [19]Yeung K L,Yau S T,Maira A J et a1.The influence of surface properties on the photocatalytie activity of nano8-ructured Ti02[J].Journal ofCatalysis.2003,219:107—116.
    [20]Fujishima A. Electrochemical photolysis of water at a Semiconductor Electrode.[J].Nature,1972,238: 37-38.
    [1]Fujishima A, Honda K. Electrochemical photolysis of waterat a semiconductor electrode[J].Nature,1972, 37:238.
    [2]Yan-Li Shi, Wei Qiu, Ying Zheng. Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photacatalyst [J].Journal of Physics Chemistry of solids, 2006, 67:2409-2418
    [3] Duane A. Friesen, Lara Morello, John V. Headley, Cooper H. Langford. Factors influencing relative efficiency in photo-oxidation of organic molecules by Cs3PW12O40 and TiO2 colloidal photocatalysts [J]. Journal of Photochemistry and Photobiology A: Chemistry 2000, 133:213–220
    [4]Hiskia A. MylonasE. Papaconstantinou, Comparison of photoredox properties of polyoxometallates and semiconducting particles[J].Chem. Soc. Rev., 2001, 30: 62-69
    [5]邓谦,吕晓萌,蔡铁军等.磷钨酸表面修饰TiO2光催化降解空气污染物[J].中国环境科学, 2005, 25(3): 375-379.
    [6]蔡铁军,吕晓萌,邓谦等.复合催化剂PWn/TiO2光催化降解甲醛反应的研究[J].环境科学学报, 2005, 25 (5): 618-622
    [7] S.Yanagida, A.Nakajima, T.Sasaki, Y.Kameshima, K.Okada ,Processing and Photocatalytic Properties of Transparent 12 Tungsto(VI) Phosphoric Acid-TiO2 Hybrid Films [J].Chem. Mater., 2008,20(11):3757-3764
    [8] Yihang Guo, Changwen Hu. Heterogeneous photocatalysis by solid polyoxometalates [J]. Journal of Molecular Catalysis A: Chemical ,2007, 262: 136–148
    [9]T. Tachikawa, M. Fujitsuka, T. Majima. Mechanistic Insight into theTiO2 Photocatalystic Reactions: Design of New Photocatalysts[J] J. Phys. Chem. C (Feature Article), 2007, 111(14): 5259-5275.
    [10]Yihang Guoa, Changwen Hua.Heterogeneous photocatalysis by solid Polyoxo-metalates [J]. Journal of Molecular Catalysis A: Chemical, 2007, 262:136-148.
    [11]石晓波,李春根,汪德先.过渡金属钼钒砷酸盐纳米微粒的固相合成与表征[J].化学研究与应用, 2004, 16(5) : 619—622
    [12]Pecchi G, Reyes P, Sanhueza P. Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts[J]. Chemospher, 2001, 43: 141-146
    [13]傅献彩,沈文霞,饶天扬等.物理化学[M.北京:高等教育出版社,2006.
    [14]Yeung K L,Yau S T,Maira A J,et al.The influence of surface properties on the potocataytic activity of nonostruture TiO2[J].Tournal of catalysis,2003,219:107-116.
    [1] M. Haruta. Gold Catalysts prepared by coprecipitation for Low-temperature Oxidation of Hydrogen and Carbon Monoxide [J].Journal of Catalysis,1989,115:301-309
    [2]D. Horváth, L. Toth, L. Guczi. Gold nanoparticles: effect of t reatment on st ructure and catalytic activity of Au/ Fe2O3catalyst prepared by co-precipitation [J].Catalysis Let ters, 2000,67:117-128.
    [3]LászlóGuczi, Gábor Peto,et al. Gold nanoparticles deposited on SiO2/Si (100): correlation between size, elect ronst ructure, and activity in CO oxidation [J]. J. Am. Chem. Soc., 2003, 125:4332-4337.
    [4]Parthasarathi Bera, M.S.Hegde. Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst [J]. Catalysis Letters, 2002, 79:75-81.
    [5]董芳,杨冬梅,张敏等. TiO2晶型对Au/TiO2上光催化分解臭氧的影响[J].催化学报,2007,28 (11):958-962
    [6]甘玉琴,邹翠娥,杨平等. Au纳米粒子大小对Au/TiO2薄膜光催化活性的影响[J].石油化工,2005,34(6): 578-581
    [7]赵清岚,贺攀科,杨冬梅等.微波—二元醇技术制备Au/TiO2及其光催化消除臭氧[J].河南大学学报(自然科学版) 2007,37(2):136-140
    [8]刘秀华,傅依备,谢云等.Au/TiO2薄膜的制备及其光催化氧化对硝基苯酚的性能[J].催化学报,2006,27(6): 532-536
    [9]邓谦,李小梅,蔡铁军等. Au/γ-Al2O3催化剂上高浓度甲醇催化消除反应的研究[J].湖南科技大学学报(自然科学版),2006,21(3):77-80
    [10]吴湘江,邓谦,蒋耀辉等.Au/TiO2催化剂的制备及低级醇类的光催化消除[J].中国有色金属学报,2009, 19(1):139-147
    [11]GratianR. Bamwenda, Susumu Tsubota, et al. The infulence of the preparation methods on the catalytic activity of platinum and supported on TiO2 for Cooxidation [J].Catalysis Letters, 1997, 44:83-87
    [12]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社,2004
    [13]刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报, 2001, 22(2):215-218
    [14]C.E.J.Mitchell, A.Howard, M.Carney, R.G.Egdell.Direct observation of behavior of Au nanocluster on TiO2 (118) at elevated temperatures[J]. Surface Science.2001, 490:196-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700